BSC 4934: Q'BIC Capstone Workshop

Giri Narasimhan

ECS 254A; Phone: x3748 giri@cs.fiu.edu
http://www.cs.fiu.edu/~giri/teach/BSC4934_Su10.html July 2010

The Central Dogma of Molecular Biology

Transcription

Fig 1.7, Zvelebil/Baum

(B)

Q'BIC Bioinformatics

Transcription Regulation

Transcription Initiation

Transcription

Figure 6-2 The synthesis of an RNA molecule by RNA polymerase. The enzyme binds to the promoter sequence on the DNA and begins its synthesis at a start site within the promoter. It completes its synthesisa a stop (termination) signal, whereupon both the polymerase and its completed RNA chain are released During RNA chain elongation, polymerization rates average about 30 nucleotides per second at $37^{\circ} \mathrm{C}$. Therefore, an RNA chain of 5000 nucleotides takes about 3 minutes to complete.

Transcription Factors

\square The general transcription factors have been highly conserved in evolution; some of those from human cells can be replaced in biochemical experiments by the corresponding factors from simple yeasts.

Protein Synthesis

Protein Synthesis:
 Incorporation of amino acid into protein

Drosophila Eyeless vs. Human Aniridia

Query: 57 HSGVNQLGGVFVGGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETG 116
Sbjct: 5 HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETG 64
Query: 117 SIRPRAIGGSKPRVATAEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSIN 176
SIRPRAIGGSKPRVAT EVVSKI+QYKRECPSIFAWEIRDRLL E VCTNDNIPSVSSIN
Sbjct: 65 SIRPRAIGGSKPRVATPEVVSKIAQYKRECPSIFAWEIRDRLLSEGVCTNDNIPSVSSIN 124
Query: 177 RVLRNLAAQKEQ 188
RVLRNLA++K+Q
Sbjct: 125 RVLRNLASEKQQ 136
Query: 417 TEDDQARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQV 476
+++ Q RL LKRKLQRNRTSFT +QI++LEKEFERTHYPDVFARERLA KI LPEARIQV
Sbjct: 197 SDEAQMRLQLKRKLQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLPEARIQV 256
Query: 477 WFSNRRAKWRREEKLRNQRR 496
WFSNRRAKWRREEKLRNQRR
Sbjct: 257 WFSNRRAKWRREEKLRNQRR 276
$E-$ Value $=2 e-31$

Implications of Sequence Alignment

MMutation in DNA is a natural evolutionary process. Thus sequence similarity may indicate common ancestry.
\square In biomolecular sequences (DNA, RNA, protein), high sequence similarity implies significant structural and/or functional similarity.

Discovery based on alignments

\square Early 1970s: Simian sarcoma virus causes cancer in some species of monkeys.
\square 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.

- Hypothesis: Certain genes (oncogenes) in viruses encode cellular growth factors, which are proteins needed to stimulate growth of a cell colony. Thus uncontrolled quantities of growth factors produced by the infected cells cause cancer-like behavior.
\square 1983:
- The oncogene from SSV called v-sis was isolated and sequenced.
- The partial amino-acid sequence for platelet-derived growth factor (PDGF) was sequenced and published. It stimulates the proliferation of normal cells.
- R.F. Doolittle was maintaining one of the earliest home-grown databases of published amino-acid sequences.
- Sequence Alignment of v-sis and PDGF showed something surprising.

PDGF and v-sis

\square One region of 31 amino acids had 26 exact matches
\square Another region of 39 residues had 35 exact matches.

- Conclusion:
- The previously harmless virus incorporates the normal growthrelated gene (proto-oncogene) of its host into its genome.
- The gene gets mutated in the virus, or moves closer to a strong enhancer, or moves away from a repressor.
- This causes an uncontrolled amount of the product (the growth factor, for example) when the virus infects a cell.
\square Several other oncogenes known to be similar to growthregulating proteins in normal cells.

V-sis Oncogene - Homologies

Sequence Alignment

>gi|4505680|ref|NM_002608.1| Homo sapiens platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) (PDGFB), transcript variant 1, mRNA Length $=3373$ Score $=954$ bits (481), Expect $=0.0$ Identities $=634 / 681$ (93\%), Gaps $=3 / 681$ (0%) Strand = Plus / Plus
Query: 1015 agggggaccccattcctgaggagctctataagatgctgagtggccactcgattcgctcct 1074

Sbjct: 1084 agggggaccccattcccgaggagctttatgagatgctgagtgaccactcgatccgctcct 1143 $\begin{array}{llllllllllllllllllll} & 21 & E & G & D & \text { P } & \text { P } & \text { E } & \text { E } & \text { L } & \text { I } & \text { M } & \text { L } & \text { S } & \text { D } & H & S & I & R & S\end{array}$
Query: 1075 tcgatgacctccagcgcctgctgcagggagactccggaaaagaagatggggctgagctgg 1134

Sbjct: 1144 ttgatgatctccaacgcctgctgcacggagaccccggagaggaagatggggccgagttgg 1203 $\begin{array}{llllllllllllllllllll}\mathbf{r} & 61 & \mathrm{D} & \mathrm{L} & \mathrm{N} & \mathrm{M} & \mathrm{T} & \mathrm{R} & \mathrm{S} & \mathrm{H} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{E} & \mathrm{L} & \mathrm{E} & \mathrm{S} & \mathrm{L} & \mathrm{A} & \mathrm{R}\end{array} \mathrm{G} \quad \mathrm{R}$

Sequence Alignment

Sequence 1 gi 332624 Simian sarcoma virus v-sis transforming protein p28 gene, complete cds; and 3^{\prime} LTR long terminal repeat, complete sequence. Length 2984 (1 .. 2984)
Sequence 2 gi 4505680 Homo sapiens platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) (PDGFB), transcript variant 1, mRNA Length 3373 (1 . . 3373)

Similarity vs. Homology

\square Homologous sequences share common ancestry.
\square Similar sequences are "near" to each other by some appropriately defined measurable criteria.

Types of Sequence Alignments - 1

QGlobal Alignment: similarity over entire length

LLocal Alignment: no overall similarity, but some segment(s) is/are similar

Types of Sequence Alignments - 2

\square Semi-global Alignment: end segments may not be similar

-Multiple Alignment: similarity between sets of sequences

Sequence Alignment

-GGlobal:

- Needleman-Wunsch-Sellers (1970).
-Local:
- Smith-Waterman (1981)
- Useful when commonality is small and global alignment is meaningless. Often unaligned portions "mask" short stretches of aligned portions. Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.
\square Dynamic Programming (DP) based.

Why gaps?

DExample: Finding the gene site for a given (eukaryotic) cDNA requires "gaps".
\square What is cDNA? cDNA = Copy DNA

How to score mismatches?

BLAST \& FASTA

DFASTA
[Lipman, Pearson '85, '88]
\square Basic Local Alignment Search Tool
[Altschul, Gish, Miller, Myers, Lipman '90]

BLAST Overview

\square Program(s) to search all sequence databases
\square Tremendous Speed/Less Sensitive
\square Statistical Significance reported
\square WWWBLAST, QBLAST (send now, retrieve results later), Standalone BLAST, BLASTcl3 (Client version, TCP/IP connection to NCBI server), BLAST URLAPI (to access QBLAST, no local client)

BLAST Strategy \& Improvements

LLipman et al.: speeded up finding "runs" of "hot spots".
-Eugene Myers '94: "Sublinear algorithm for approximate keyword matching".
-Karlin, Altschul, Dembo '90, '91: "Statistical Significance of Matches"

Why Gaps?

DExample: Aligning HIV sequences.

BLAST Variants

\square Nucleotide BLAST

- Standard blastn
- MEGABLAST (Compare large sets, Near-exact searches)
- Short Sequences (higher E-value threshold, smaller word size, no lowcomplexity filtering)
\square Protein BLAST
- Standard blastp
- PSI-BLAST (Position Specific Iterated BLAST)
- PHI-BLAST (Pattern Hit Initiated BLAST; reg expr. Or Motif search)
- Short Sequences (higher E-value threshold, smaller word size, no lowcomplexity filtering, PAM-30)
\square Translating BLAST
- Blastx: Search nucleotide sequence in protein database (6 reading frames)
- Tblastn: Search protein sequence in nucleotide dB
- Tblastx: Search nucleotide seq (6 frames) in nucleotide DB (6 frames)

BLAST Cont'd

\square RPS BLAST

- Compare protein sequence against Conserved Domain DB; Helps in predicting rough structure and function
\square Pairwise BLAST
- blastp (2 Proteins), blastn (2 nucleotides), tblastn (proteinnucleotide w/ 6 frames), blastx (nucleotide-protein), tblastx (nucleotide w/6 frames-nucleotide w/ 6 frames)
\square Specialized BLAST
- Human \& Other finished/unfinished genomes
- P. falciparum: Search ESTs, STSs, GSSs, HTGs
- VecScreen: screen for contamination while sequencing
- IgBLAST: Immunoglobin sequence database

BLAST Credits

\square Stephen Altschul
\square Jonathan Epstein
\square David Lipman
Tom Madden
\square Scott McGinnis

- Jim Ostell
- Alex Schaffer
\square Sergei Shavirin
- Heidi Sofia
\square Jinghui Zhang

Databases used by BLAST

\square Protein
-nr (everything), swissprot, pdb, alu, individual genomes
\square Nucleotide
-nr, dbest, dbsts, htgs (unfinished genomic sequences), gss, pdb, vector, mito, alu, epd
\square Misc

Rules of Thumb

\square Most sequences with significant similarity over their entire lengths are homologous.
\square Matches that are > 50\% identical in a 20-40 aa region occur frequently by chance.
\square Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
$\square A$ homologous to $B \& B$ to $C \Rightarrow A$ homologous to C.
\square Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
\square Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
If If is the (raw) score for a local alignment, the normalized score S' (in bits) is given by

$$
S^{\prime}=\frac{\lambda-\ln (\mathrm{K})}{\ln (2)}
$$

The parameters depend on the scoring system.

- Statistically significant normalized score,

$$
S^{\prime}>\log \left(\frac{N}{E}\right)
$$

where E -value $=\mathrm{E}$, and $\mathrm{N}=$ size of search space.

Types of Sequence Alignments

Global Alignment: An example

```
V: G A A T T C A G T T A
W: G G A T C G A
```

		G	A	A	T	T	C	A	G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0											
G	0											
A	0											
T	0											
C	0											
G	0											
A	0											

Given

$\delta[I, J]=$ Score of Matching the $I^{\text {th }}$ character of sequence V \& the $\mathrm{J}^{\text {th }}$ character of sequence W

Compute

S[I, J] = Score of Matching

$$
\begin{aligned}
& \text { Recurrence Relation } \\
& \text { S[I, J] = MAXIMUM \{ } \\
& \quad \text { S[I-1, J-1] }+\delta(V[I], W[J]), \\
& \text { S[I-1, J] }+\delta(V[I],-), \\
& \quad \text { S[I, J-1] }+\delta(-, W[J])\}
\end{aligned}
$$

First I characters of sequence V \&
First J characters of sequence W

Global Alignment: An example

S[I, J] = MAXIMUM \{

S[I-1, J-1] + $\delta(\mathrm{V}[\mathrm{I}], \mathrm{W}[\mathrm{J}])$,
S[I-1, J] $+\delta(V[I], ~ 一)$,
$S[I, J-1]+\delta(-, W[J])\}$
$V: G A A T T C A G T T A$
W: G G A T C G A

7/13/10

Q'BIC Bioinformatics

Traceback

7/13/10

V: G A A T T C A G T T A

Q'BIC Bioinformatics

Alternative Traceback

Improved Traceback

Improved Traceback

Improved Traceback

			A	A	T	T	c	A	G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	$\times 1$	$\leftarrow 1$	$\times 1$	$\leftarrow 1$	$\leftarrow 1$	$\leftarrow 1$					
G	0	$\times 1$	$\uparrow 1$	$\times 2$	$\leftarrow 2$	$\leftarrow 2$	$\leftarrow 2$					
A	0	$\uparrow 1$	$\uparrow 1$	$\times 2$	$\leftarrow 2$	$\leftarrow 2$	$\leftarrow 2$	$\times 2$	$\uparrow 2$	$\uparrow 2$	$\uparrow 2$	$\times 3$
T	0	$\uparrow 1$	$\leftarrow 2$	$\uparrow 2$	$\times 3$	$\times 3$	$\leftarrow 3$	$\leftarrow 3$	$\leftarrow 3$	$\times 3$	$\times 3$	$\uparrow 3$
c	0	$\uparrow 1$	$\uparrow 2$	$\uparrow 2$	$\uparrow 3$	$\uparrow 3$	$\times 4$	$\leftarrow 4$				
G	0	$\uparrow 1$	$\uparrow 2$	$\uparrow 2$	$\uparrow 3$	$\uparrow 3$	$\uparrow 4$	$\uparrow 4$	$\times 5$	$\leftarrow 5$	$\leftarrow 5$	$\leftarrow 5$
A	0	$\uparrow 1$	$\uparrow 2$	$\times 3$	$\uparrow 3$	$\uparrow 3$	$\uparrow 4$	$\times 5$	$\uparrow 5$	$\uparrow 5$	$\uparrow 5$	$\times 6$
												42

