BSC 4934: Q'BIC Capstone Workshop

Giri Narasimhan

ECS 254A; Phone: x3748

giri@cs.fiu.edu

http://www.cs.fiu.edu/~giri/teach/BSC4934_Su10.html July 2010

The Central Dogma of Molecular Biology

7/13/10

Transcription

Fig 1.7, Zvelebil/Baum

Transcription Regulation

7/13/10 Q'BIC Bioinformatics 5

Transcription Initiation

7/13/10

Transcription

Figure 6–2 The synthesis of an RNA molecule by RNA polymerase. The enzyme binds to the promoter sequence on the DNA and begins its synthesis at a start site within the promoter. It completes its synthesis at a stop (termination) signal, whereupon both the polymerase and its completed RNA chain are released. During RNA chain elongation, polymerization rates average about 30 nucleotides per second at 37°C. Therefore, an RNA chain of 5000 nucleotides takes about 3 minutes to complete.

Transcription Factors

☐ The general transcription factors have been highly conserved in evolution; some of those from human cells can be replaced in biochemical experiments by the corresponding factors from simple yeasts.

Protein Synthesis

9

Protein Synthesis:

Incorporation of amino acid into protein

7/13/10 Q'BIC Bioinformatics 10

Drosophila Eyeless vs. Human Aniridia

```
Query: 57 HSGVNQLGGVFVGGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETG 116
          HSGVNQLGGVFV GRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETG
Sbjct: 5 HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETG 64
Query: 117 SIRPRAIGGSKPRVATAEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSIN 176
           SIRPRAIGGSKPRVAT EVVSKI+QYKRECPSIFAWEIRDRLL E VCTNDNIPSVSSIN
Sbjct: 65 SIRPRAIGGSKPRVATPEVVSKIAOYKRECPSIFAWEIRDRLLSEGVCTNDNIPSVSSIN 124
Query: 177 RVLRNLAAQKEQ 188
          RVLRNLA++K+O
Sbjct: 125 RVLRNLASEKQQ 136
Query: 417 TEDDQARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQV 476
           +++ Q RL LKRKLQRNRTSFT +QI++LEKEFERTHYPDVFARERLA KI LPEARIQV
Sbjct: 197 SDEAOMRLOLKRKLORNRTSFTOEOIEALEKEFERTHYPDVFARERLAAKIDLPEARIOV 256
Query: 477 WFSNRRAKWRREEKLRNORR 496
          WFSNRRAKWRREEKLRNORR
Sbjct: 257 WFSNRRAKWRREEKLRNORR 276
   E-Value = 2e-31
```

Q'BIC Bioinformatics

12

7/13/10

Implications of Sequence Alignment

- Mutation in DNA is a natural evolutionary process. Thus sequence similarity may indicate common ancestry.
- ☐ In biomolecular sequences (DNA, RNA, protein), high sequence similarity implies significant structural and/or functional similarity.

Discovery based on alignments

- □ Early 1970s: Simian sarcoma virus causes cancer in some species of monkeys.
- □ 1970s: infection by certain viruses cause some cells in culture (in vitro) to grow without bounds.
 - Hypothesis: Certain genes (oncogenes) in viruses encode cellular growth factors, which are proteins needed to stimulate growth of a cell colony. Thus uncontrolled quantities of growth factors produced by the infected cells cause cancer-like behavior.

1983:

- The oncogene from SSV called v-sis was isolated and sequenced.
- The partial amino-acid sequence for platelet-derived growth factor (PDGF) was sequenced and published. It stimulates the proliferation of normal cells.
- R.F. Doolittle was maintaining one of the earliest home-grown databases of published amino-acid sequences.
- Sequence Alignment of v-sis and PDGF showed something surprising.

PDGF and v-sis

- One region of 31 amino acids had 26 exact matches
- ☐ Another region of 39 residues had 35 exact matches.
- □ Conclusion:
 - The previously harmless virus incorporates the normal growthrelated gene (proto-oncogene) of its host into its genome.
 - The gene gets mutated in the virus, or moves closer to a strong enhancer, or moves away from a repressor.
 - This causes an uncontrolled amount of the product (the growth factor, for example) when the virus infects a cell.
- Several other oncogenes known to be similar to growthregulating proteins in normal cells.

V-sis Oncogene - Homologies

	Score	E
Sequences producing significant alignments:	(bits)	Value
gi 332623 gb J02396.1 SEG_SSVPCS2 Simian sarcoma virus v-si	. 4591	0.0
gi 61774 emb V01201.1 RESSV1 Simian sarcoma virus proviral	. 4504	0.0
gi 332622 gb J02395.1 SEG_SSVPCS1 Simian sarcoma virus LTR	. 1283	0.0
gi 885929 gb U20589.1 GLU20589 Gibbon leukemia virus envelo	. 1140	0.0
gi 4505680 ref NM_002608.1 Homo sapiens platelet-derived g	. 954	0.0
gi 20987438 gb BC029822.1 Homo sapiens, platelet-derived g	. 954	0.0
gi 338210 gb M12783.1 HUMSISPDG Human c-sis/platelet-derive	. 954	0.0

Sequence Alignment

Sequence Alignment

```
Sequence 1 gi 332624 Simian sarcoma virus v-sis transforming protein p28 gene, complete cds; and 3' LTR long terminal repeat, complete sequence. Length 2984 (1 .. 2984)

Sequence 2 gi 4505680 Homo sapiens platelet-derived growth factor beta polypeptide (simian sarcoma viral (v-sis) oncogene homolog) (PDGFB), transcript variant 1, mRNA Length 3373 (1 .. 3373)
```


Similarity vs. Homology

- Homologous sequences share common ancestry.
- Similar sequences are "near" to each other by some appropriately defined measurable criteria.

Types of Sequence Alignments - 1

□Global Alignment: similarity over entire length

□Local Alignment: no overall similarity, but some segment(s) is/are similar

Types of Sequence Alignments - 2

Semi-global Alignment: end segments may not be similar

Multiple Alignment: similarity between sets of sequences

Sequence Alignment

□Global:

Needleman-Wunsch-Sellers (1970).

□Local:

- Smith-Waterman (1981)
- Useful when commonality is small and global alignment is meaningless. Often unaligned portions "mask" short stretches of aligned portions. Example: comparing long stretches of anonymous DNA; aligning proteins that share only some motifs or domains.
- Dynamic Programming (DP) based.

Why gaps?

- Example: Finding the gene site for a given (eukaryotic) cDNA requires "gaps".
- ☐ What is cDNA? cDNA = Copy DNA

How to score mismatches?

BLAST & FASTA

□ FASTA

[Lipman, Pearson '85, '88]

■ Basic Local Alignment Search Tool [Altschul, Gish, Miller, Myers, Lipman '90]

BLAST Overview

- Program(s) to search all sequence databases
- ☐ Tremendous Speed/Less Sensitive
- Statistical Significance reported
- WWWBLAST, QBLAST (send now, retrieve results later), Standalone BLAST, BLASTcl3 (Client version, TCP/IP connection to NCBI server), BLAST URLAPI (to access QBLAST, no local client)

BLAST Strategy & Improvements

- Lipman et al.: speeded up finding "runs" of "hot spots".
- □ Eugene Myers '94: "Sublinear algorithm for approximate keyword matching".
- □ Karlin, Altschul, Dembo '90, '91:
 "Statistical Significance of Matches"

Why Gaps?

DExample: Aligning HIV sequences.

BLAST Variants

■ Nucleotide BLAST

- Standard blastn
- MEGABLAST (Compare large sets, Near-exact searches)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering)

Protein BLAST

- Standard blastp
- PSI-BLAST (Position Specific Iterated BLAST)
- PHI-BLAST (Pattern Hit Initiated BLAST; reg expr. Or Motif search)
- Short Sequences (higher E-value threshold, smaller word size, no low-complexity filtering, PAM-30)

□ Translating BLAST

- Blastx: Search nucleotide sequence in protein database (6 reading frames)
- Tblastn: Search protein sequence in nucleotide dB
- Tblastx: Search nucleotide seq (6 frames) in nucleotide DB (6 frames)

BLAST Cont'd

RPS BLAST

 Compare protein sequence against Conserved Domain DB; Helps in predicting rough structure and function

☐ Pairwise BLAST

blastp (2 Proteins), blastn (2 nucleotides), tblastn (protein-nucleotide w/ 6 frames), blastx (nucleotide-protein), tblastx (nucleotide w/6 frames-nucleotide w/ 6 frames)

Specialized BLAST

- Human & Other finished/unfinished genomes
- P. falciparum: Search ESTs, STSs, GSSs, HTGs
- VecScreen: screen for contamination while sequencing
- IgBLAST: Immunoglobin sequence database

BLAST Credits

- Stephen Altschul
- Jonathan Epstein
- David Lipman
- Tom Madden
- Scott McGinnis
- ☐ Jim Ostell
- Alex Schaffer
- Sergei Shavirin
- ☐ Heidi Sofia
- Jinghui Zhang

Databases used by BLAST

Protein

nr (everything), swissprot, pdb, alu, individual genomes

Nucleotide

 nr, dbest, dbsts, htgs (unfinished genomic sequences), gss, pdb, vector, mito, alu, epd

■Misc

Rules of Thumb

- Most sequences with significant similarity over their entire lengths are homologous.
- Matches that are > 50% identical in a 20-40 aa region occur frequently by chance.
- Distantly related homologs may lack significant similarity. Homologous sequences may have few absolutely conserved residues.
- \square A homologous to B & B to C \Rightarrow A homologous to C.
- Low complexity regions, transmembrane regions and coiled-coil regions frequently display significant similarity without homology.
- ☐ Greater evolutionary distance implies that length of a local alignment required to achieve a statistically significant score also increases.

Rules of Thumb

- Results of searches using different scoring systems may be compared directly using normalized scores.
- If S is the (raw) score for a local alignment, the **normalized** score S' (in bits) is given by

$$S' = \frac{\lambda - ln(K)}{ln(2)}$$
 The parameters depend on the scoring system.

Statistically significant normalized score,

$$S' > \log\left(\frac{N}{E}\right)$$

where E-value = E, and N = size of search space.

Types of Sequence Alignments

Global Alignment: An example

V: G A A T T C A G T T A

W: G G A T C G A

		G	A	Α	T	T	С	A	G	T	T	A
	0	0	0	0	0	0	0	0	0	0	0	0
G	0											
G	0											
A	0											
Т	0											
С	0											
G	0											
A	0											

Given

 $\delta[I, J]$ = Score of Matching the I^{th} character of sequence V & the J^{th} character of sequence W

Compute

S[I, J] = Score of Matching

First I characters of sequence V &

First J characters of sequence W

Recurrence Relation

$$S[I, J] = MAXIMUM {$$

 $S[I-1, J-1] + \delta(V[I], W[J]),$
 $S[I-1, J] + \delta(V[I], -),$
 $S[I, J-1] + \delta(-, W[J]) {}$

Global Alignment: An example

```
S[I, J] = MAXIMUM {
    S[I-1, J-1] + \delta(V[I], W[J]),
    S[I-1, J] + \delta(V[I], -)
    S[I, J-1] + \delta(-, W[J])
```

V: GAATTCAGTTA

GGATCGA

Traceback

Q'BIC Bioinformatics

38

7/13/10

Alternative Traceback

Improved Traceback

		G	Α	Α	Т	Т	С	Α	G	Т	Т	Α
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	← 1	← 1	← 1	← 1	← 1	×1	← 1	← 1	← 1
G	0	×1	↑1	†1	†1	↑1	↑1	↑1	×2	← 2	← 2	← 2
A	0	↑1	↑1	×2	← 2	← 2	← 2	×2	†2	†2	† 2	×3
Т	0	†1	← 2	† 2	×3	×3	← 3	← 3	← 3	×3	×3	↑ 3
С	0	↑1	†2	†2	†3	↑ 3	×4	← 4	← 4	← 4	← 4	← 4
G	0	↑1	†2	†2	†3	↑ 3	↑4	↑4	×5	← 5	← 5	← 5
Α	0	†1	† 2	×3	†3	†3	↑4	×5	↑ 5	↑5	<u></u> †5	×6

7/13/10

Q'BIC Bioinformatics

Improved Traceback

		G	Α	Α	Т	Т	С	Α	G	Т	Т	Α
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	← 1	← 1	← 1	← 1	← 1	×1	← 1	← 1	← 1
G	0	×1	↑1	†1	†1	↑1	↑1	↑1	×2	← 2	← 2	← 2
Α	0	↑1	↑1	×2	← 2	← 2	← 2	×2	†2	†2	† 2	×3
Т	0	†1	← 2	† 2	×3	×3	← 3	← 3	← 3	×3	×3	↑ 3
С	0	↑1	†2	† 2	†3	↑ 3	×4	← 4	← 4	← 4	← 4	← 4
G	0	↑1	†2	†2	†3	↑ 3	↑4	↑4	×5	← 5	← 5	← 5
Α	0	†1	† 2	×3	†3	†3	↑4	×5	↑5	↑5	<u></u> †5	×6

7/13/10

Improved Traceback

		G	Α	Α	Т	Т	С	Α	G	Т	Т	Α
	0	0	0	0	0	0	0	0	0	0	0	0
G	0	×1	←1	← 1	← 1	← 1	← 1	← 1	×1	← 1	← 1	← 1
G	0	×1	↑1	†1	↑1	↑1	↑1	↑1	×2	← 2	← 2	← 2
Α	0	↑1	↑1	×2	← 2	← 2	← 2	×2	†2	†2	†2	×3
Τ	0	↑1	← 2	†2	×3	×3	← 3	← 3	← 3	×3	×3	↑ 3
С	0	↑1	↑2	†2	↑ 3	↑ 3	×4	← 4	← 4	← 4	← 4	← 4
G	0	↑1	↑2	†2	↑ 3	↑ 3	↑4	↑4	×5	← 5	← 5	← 5
Α	0	↑1	↑2	×3	↑ 3	13	↑4	×5	↑5	↑5	<u></u> †5	×6
		ļ	V:	G A	- A	ТТ	C A	. G I	T = I	<u>A</u>		
7/1	3/10		W:	 G	G A	- T	C -	 G -	7	<u> </u>		42