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BLAST Parameters and Output"
 Type of sequence, nucleotide/protein 
 Word size, w 
 Gap penalties, p1 and p2 
 Neighborhood Threshold Score, T 
 Score Threshold, S 
 E-value Cutoff, E 
 Number of hits to display, H 
 Database to search, D 
 Scoring Matrix, M 
 Score s and E-value e 

"   E-value e is the expected number of sequences that would have an 
alignment score greater than the current score s. 
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BLAST algorithm: Phase 1"
Phase 1: get list of word pairs (w=3) above threshold T 

Example: for a human RBP query 
…FSGTWYA… 
GTW is a word in this query sequence 

A list of words (w=3) is: 
FSG SGT GTW TWY WYA 
YSG TGT ATW SWY WFA 
FTG SVT GSW TWF WYS 
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Phase 1: Find list of similar words"

 Find list of words of length w (here w = 3) 
and distance at least T (here T = 11) 
"  GTW  22   
"  GSW  18 
"  ATW  16 
"  NTW  16 
"  GTY   13 
"  GNW  10 
"  GAW  9 
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Use BLOSUM to score word hits"
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BLAST: Phases 2 & 3"

 Phase 2: Scan database for exact hits of 
similar words list and find HotSpots 

 Phase 3:  
"  Extend good hit in either direction. 
"  Keep track of the score (use a scoring matrix) 
"  Stop when the score drops below some cutoff. 
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KENFDKARFSGTWYAMAKKDPEG 50 RBP (query) 
MKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin (hit) 

Hit! 
extend extend 
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BLAST: Threshold vs # Hits & Extensions"
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Word Size"

 Blastn: w = 7, 11, or 15.  
"  w=15 gives fewer matches and is faster than 

w=11 or w=7.  
 Megablast: w = 28 to 64.  
"  Megablast is VERY fast for finding closely 

related DNA sequences! 
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Scores: Follow Extreme Value Distribution"
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E = Kmn e-λS 

m,n = seq length 
S = Raw Score 
K ≈ Search space 

S’ = (λS - lnK) / ln2 
S’ = Bit Score  

p = 1 - e-Ε 

p = p-value 
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E-value versus P-value"
E-value P-value 

10 0.9999546 
5 0.99326205 
2 0.86466472 
1 0.63212056 

0.1 0.09516258 
0.05 0.04877058 
0.001 0.00099950 

0.0001 0.0001 
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E-values are easier to interpret; 
If query is short aa sequence, then use very large E-value; 

Sometimes even meaningful hits have large E-values. 



RBP4 and PAEP: 
Low bit score, E value 0.49, 24% identity (“twilight zone”). 
But they are indeed homologous. Try a BLAST search  
with PAEP as a query, and find many other lipocalins.  

Assessing whether proteins are homologous"
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Difficulties with BLAST"
 Use human beta globin as a query against 

human RefSeq proteins, and blastp does not 
“find” human myoglobin. This is because the 
two proteins are too distantly related. PSI-
BLAST at NCBI as well as hidden Markov 
models easily solve this problem. 

 How can we search using 10,000 base pairs as 
a query, or even millions of base pairs? Many 
BLAST-like tools for genomic DNA are 
available such as PatternHunter, Megablast, 
BLAT, and BLASTZ. 
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Related Tools"

 Megablast 
"  For long, closely-related sequences 
"  Uses large w and is very fast 

 BLAT 
"  UCSC tool 
"  DB broken into words; query is searched 

 PatternHunter 
"  Generalized seeds used instead of words 

 BLASTZ, Lagan, SSAHA 
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Hidden Markov Model (HMM)"

•  States  
•  Transitions  
•  Transition Probabilities 
•  Emissions 
•  Emission Probabilities 

•  What is hidden about HMMs? 

Answer: The path through the model is 
hidden since there are many valid paths. 
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Profile Method"
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Profile Method"
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Profile Method"
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Profile HMMs"

STATE 1 END START STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 
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Profile HMMs with InDels"

STATE 1 END START STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 

•  Insertions 
•  Deletions 

INSERT 4 

DELETE 2 DELETE 3 DELETE 1 

INSERT 3 INSERT 4 

•  Insertions & Deletions 
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Profile HMMs with InDels"

STATE 1 END START STATE 2 STATE 3 STATE 4 STATE 5 STATE 6 

INSERT 4 

DELETE 2 DELETE 3 DELETE 1 

INSERT 3 

DELETE 4 DELETE 5 DELETE 6 

INSERT 4 INSERT 4 INSERT 4 INSERT 4 

Missing transitions from DELETE j to INSERT j and  
                                from INSERT j to DELETE j+1. 
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How to model Pairwise Sequence Alignment"

  LEAPVE 
  LAPVIE 

MATCH END START 

DELETE 

INSERT 

Pair HMMs 
•  Emit pairs of synbols 
•  Emission probs? 
•  Related to Sub. Matrices 

•  How to deal with InDels? 
•  Global Alignment? Local? 
•  Related to Sub. Matrices 
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How to model Pairwise Local Alignments?"

How to model Pairwise Local Alignments with 
gaps?"

Skip Module Align Module Skip Module START END 

Skip Module Align Module Skip Module START END 
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Standard HMM architectures"
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Standard HMM architectures"
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Standard HMM architectures"
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Profile HMMs from Multiple Alignments"

HBA_HUMAN   VGA--HAGEY 
HBB_HUMAN   V----NVDEV 
MYG_PHYCA   VEA--DVAGH 
GLB3_CHITP  VKG------D 
GLB5_PETMA  VYS--TYETS 
LGB2_LUPLU  FNA--NIPKH 
GLB1_GLYDI  IAGADNGAGV 
Construct Profile HMM from above multiple alignment. 
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HMM for Sequence Alignment"
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Problem 4: LIKELIHOOD QUESTION 
•  Input: Sequence S, model M 
•  Output: Compute the probability that S was 

emitted by model M 
•  Forward Algorithm (DP) 

Problem 3: LIKELIHOOD QUESTION 
•  Input: Sequence S, model M, state i 
•  Output: Compute the probability of reaching 

 state i with sequence S using model M 
•  Backward Algorithm (DP)  
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Problem 6: DESIGN QUESTION 
•  Input: Training Sequence S 
•  Output: Choose model structure M, and compute 

the parameters Θ  
• No reasonable solution 
• Standard models to pick from 

Problem 5: LEARNING QUESTION 
•  Input: model structure M, Training Sequence S 
•  Output: Compute the parameters Θ  
•  Criteria: ML criterion 

•   maximize P(S | M, Θ)    HOW??? 
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Iterative Solution to the LEARNING QUESTION 
(Problem 5)"

 Pick initial values for parameters Θ0  
 Repeat 

Run training set S on model M 
Count # of times transition i ⇒ j is made 
Count # of times letter x is emitted from state i 
Update parameters Θ 

 Until (some stopping condition) 
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Entropy"
 Entropy measures the variability observed in given 

data. 

 Entropy is useful in multiple alignments & profiles. 

 Entropy is max when uncertainty is max. 

∑−=
c

cc ppE log
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HMM for Sequence Alignment"
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G-Protein Couple Receptors"
  Transmembrane proteins with 7 α-helices and 6 loops; many subfamilies 
  Highly variable: 200-1200 aa in length, some have only 20% identity. 
  [Baldi & Chauvin, ’94] HMM for GPCRs 
  HMM constructed with 430 match states (avg length of sequences) ; 

Training: with 142 sequences, 12 iterations 
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GPCR - Analysis"
 Compute main state entropy values 

 For every sequence from test set (142) & random 
set (1600) & all SWISS-PROT proteins 
"  Compute the negative log of probability of the most 

probable path π 

∑−=
a

iaiai eeH log

( )),|(log)( MSPSScore π−=
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Entropy"
 Entropy measures the variability observed in given 

data. 

 Entropy is useful in multiple alignments & profiles. 

 Entropy is max when uncertainty is max. 

∑−=
c

cc ppE log
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GPCR Analysis"
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Entropy"
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GPCR Analysis (Contʼd)"
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Applications of HMM for GPCR"
  Bacteriorhodopsin 

"   Transmembrane protein with 7 domains 
"   But it is not a GPCR 
"   Compute score and discover that it is close to the regression line. Hence not 

a GPCR. 
  Thyrotropin receptor precursors 

"   All have long initial loop on INSERT STATE 20. 
"   Also clustering possible based on distance to regression line. 
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HMMs – Advantages"

  Sound statistical foundations 
  Efficient learning algorithms 
  Consistent treatment for insert/delete penalties for alignments in the form of 

locally learnable probabilities 
  Capable of handling inputs of variable length 
  Can be built in a modular & hierarchical fashion; can be combined into libraries. 
  Wide variety of applications: Multiple Alignment, Data mining & classification, 

Structural Analysis, Pattern discovery, Gene prediction. 
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HMMs – Disadvantages"

  Large # of parameters. 
  Cannot express dependencies & correlations between hidden states. 
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Patterns in DNA Sequences"
 Signals in DNA sequence control events 

"  Start and end of genes 
"  Start and end of introns 
"  Transcription factor binding sites (regulatory elements) 
"  Ribosome binding sites 

 Detection of these patterns are useful for  
"  Understanding gene structure 
"  Understanding gene regulation 
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Motifs in DNA Sequences"
  Given a collection of DNA sequences of promoter regions, locate the 

transcription factor binding sites (also called regulatory elements) 
"   Example: 

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html 
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Motifs"

http://weblogo.berkeley.edu/examples.html 
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Motifs in DNA 
Sequences"

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html 



07/14/11 Q'BIC Bioinformatics 46 

More Motifs in 
E. Coli DNA 
Sequences"

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html 
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http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html 
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Other Motifs in 
DNA 

Sequences: 
Human Splice 

Junctions"

http://www.lecb.ncifcrf.gov/~toms/sequencelogo.html 
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Gene 

Gene-Specific TF	

Binding Sites	


TATA Box	
CAT Box	


Basal TF	

Binding Sites	


coding region!
upstream region!

Transcription Regulation!
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Prokaryotic Gene Characteristics"
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Motifs in DNA Sequences"
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Single Gene Activation!

Gene	  

Gene 
TF binding site 

TF	   Transcription Factor 

TF	  
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Multiple Gene Activation!

Gene 
TF binding site 

TF	   Transcription Factor 
TF	  

TF	  
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Transcription Regulation"

[ Goffart et al. Exp. Physiology (2003) ]!
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Problem: Given the upstream regions of all genes in the 
genome, find all over-represented sequence signatures.�

Basic Principle: If a TF co-regulates many genes, then all these 
genes should have at least 1 binding site for it in their 
upstream region.�

Motif-prediction: Whole genome"

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

Binding sites for TF 
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Motif Detection (TFBMs)"
 See evaluation by Tompa et al. 

"   [bio.cs.washington.edu/assessment] 
 Gibbs Sampling Methods: AlignACE, GLAM, 

SeSiMCMC, MotifSampler 
 Weight Matrix Methods: ANN-Spec, Consensus,  
 EM: Improbizer, MEME 
 Combinatorial & Misc.: MITRA, oligo/dyad, 

QuickScore, Weeder, YMF 
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M-step: Build a new profile by using every m-
window, but weighting each one with value zij.  

Initialize: random profile 

EM Algorithm!

E-step: Using profile, compute a likelihood value zij 
for each m-window at position i in input 
sequence j.   

Stop if converged 
MEME [Bailey, Elkan 1994] 

Goal: Find θ, Z that maximize Pr (X, Z | θ) 
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Gibbs Sampling for Motif Detection"


