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Summary

This paper investigates the skeletonization problem using
parallel thinning techniques and proposes a new one-pass
parallel asymmetric thinning algorithm (OPATA,). Wu and
Tsai presented a one-pass parallel asymmetric thinning
algorithm (OPATA,) that implemented 4-distance, or city
block distance, skeletonization. However, city block dis-
tance is not a good approximation of Euclidean distance.
By applying 8-distance, or chessboard distance, this new
algorithm improves not only the quality of the resulting
skeletons but also the efficiency of the computation. This
algorithm uses 18 patterns. The algorithm has beenimple-
mented, and has been compared to both algorithm
OPATA, and Zhang and Suen'’s two-pass parallel thinning
algorithm. The results show that the proposed OPATA, has
good noise resistance, perfectly 8-connected skeleton
output, and a faster speed without serious erosion.

Address reprint requests to S. Sitharama lyengar, Department of
Computer Science, 298 Coates Hall, Louisiana State University,
Baton Rouge, LA 70803, e-mail iyengar@bit.csc.Isu.edu.

The International Journal of High Performance Computing Applications,
Volume 14, No. 1, Spring 2000, pp. 65-81
[J 2000 Sage Publications, Inc.

1 Introduction

This paper studies the problem of binary image skeletoni
zation. Skeletonization is widely used in many image-
processing applications, such as character recognition,
chromosome analysis, and military route finding (Benton
and Brink, 1990). It provides a convenient and condensed
representation of image object information. Skeletons of
objects can preserve topological properties of the objects
(Benton and Brink, 1990) and reduce storage require
ments (Levine 1984). The skeletonization problem has
been studied extensively in the past 20 years. Manymeth
ods have been proposed in the literature. These methods
can be classified into two categories: distance transform
methods (Arcelli, Cordella, and Levialdi, 1981; Arcelli
and Di BaJa, 1985; Suzuki and Abe, 1986; Xia, 1989) and
parallel thinning methods (Chen and Tsai, 1990; Chin
et al., 1987; Holt et al., 1987; Mendel, 1993; Stefanelli
and Rosenfeld, 1971; Wu and Tsai, 1992; Zhang and
Suen, 1984).

Distance transformation was proposed for binary pic
tures in the Euclidean plane by Blum (1978). The idea is
that a fire line, which propagates with constant speed
from the contour of an object to its inside, will meet at
quench points that form the skeleton. Many discrete ap-
proximations of this fire propagation technique have been
reported. Basically, these approximations were realized
by sequentially tracing the object’s boundary pixels to
avoid going back to the area that had already burned (Ar-
celli and Di BaJa, 1985; Suzuki and Abe, 1986). Xia
(1989) further refined the technique to construct the next
fire front during the tracing of the current fire contour.
These algorithms perform efficiently in a sequential ma-
chine, and the skeleton obtained can be used to recover the
original objects. However, these algorithms have some
serious drawbacks. They are sequential in nature and not
easyto parallelize. Due to the properties of discrete space,
they cannot guarantee that the topology of the objects will
be preserved. In addition, the skeletons obtained are sen
sitive to local variations and noise (Xia, 1989).

The second type of algorithm is called a parallel thin
ning algorithm. These algorithms are parallel in nature.
They use local neighborhood patterns as sufficient condi
tions to determine whether a pixel is a contour pixel that
can be removed. This type of algorithm iteratively deletes
contour pixels that are removable. The patterns selected
should guarantee the connectivity of the resulting skele
ton. There are many algorithms of this type that are based
on the same principle. The differences are usually the sets
of patterns they use. The advantage of this type of-algo
rithm is that one can custom design the patterns to delete

Downloaded from hpc.sagepub.com at LOUISIANA STATE UNIV on March 26, 2011



http://hpc.sagepub.com/

certain end points and, thereby, omit certain details to p1, - - -, Pprin Figure 1a) and denoted byg(p). Also,

make the skeleton easier to interpret. This type of -algo Po, P2, Psa, and pg are referred to as the set of 4-
rithm can capture the structural information of objects. neighbors of, N'4(p). pg andpg are two pixels that
Some people have argued that the majority of parallel will be used to introduce asymmetry.

thinning algorithms are time consuming compared with Distance:Between two pixelp(X,, Yp) andd(Xy Yg),
distance transformation methods. Although it is true that where xp, Yp, Xg, andyq are coordinates, the 8-
parallel thinning algorithms have a complexity propor distance, or the chessboard distance, is defined as
tional to the size of images and the maximal thickness of

objects in the images (Xia, 1989), this is misleading be dy(p, a) = max(|x—x,|,1%, =Y.

cause these algorithms are constructed to take advantage

of parallelism. It is primarily the sequential versions of and the 4-distance, or the city block distance, is
them that can be time consuming. These versions can be

made more efficient by adopting the same contour-tracing d,(p, ) = K, = x| + iy, =V,

techniqgue employed by distance transformation ap
proaches. However, the drawback of this type of skele Connectednes® skeleton is considered to be 4(8)-

tonization is that it may not preserve as much detail as dis connected if between any two black pixplsandpy,
tance transformation methods. Therefore, the resulting there exists a paiypy . . . p,_,Pip;+ - - - Phsuchthat
skeletons may not be recoverable. P~ is @ 4(8)-neighbor of; for 1<i<n.

Because_ our goal is to use skeletonization in military Neighbor sequencé sequence of 8-neighbor pixels of
vaton of sructuraliformation of ajects, Therefore, we P -2 iscalled aneighbor sequence o
focus on parallel thinning algorithms. For more detailed sv}l\slzeor:g'éfé%una ];i;éja;ﬁdél tﬁz;r;erthﬁ g;aiﬁlgka_

discussions on distance transformation methods, one can els. For example, Figures 1b and 1c contain neighbor

refer to Xia (1989). In the remainder of this paper, we will sequencepgp7Po and pspspepP7, respectively
present a new one-pass parallel thinning algorithm. This whereas in Figure 1dypsps is not a neighbor se-

new algprithm inherits fche asymmetrical feature of Wu quence becauge; andps are separated by a white
and Tsai's (1992) algorithm. However, based on the fact

ixel pg.
that, mathematically, 8-distance is a better approximation Sirﬁple ggthA path P is called a simple path if the re-
of Euclidean distance than 4-distance, we designed an 8- moval of any pixel from the path except end pixels
distance one-pass parallel asymmetric thinning algorithm will violate the 4(8)-connectedness of the path when
(OPATA,). The new algorithm not only improves the qual- 4-distance (8-distance) is used.
ity of the resulting skeletons but also speeds up the thin- Edge pixel:An edge pixel is a black pixel such that one
ning process. Our new algorithm has been implemented of its 4-neighbors is a white pixel.
and compfired to both Wu and Tsai's OPABRd Zhang Convex corner pixelA convex corner pixel is a black
and Suen’s (19_84) two-pa_ss_paralle_zl thmm_ng algorithm pixel such that two of its 4-neighbopsandp,,, are
(TPTA). In Section 3, we will first review the idea of par white pixels. Figure 1b is an example. A convex-cor
allel thinning algorithms, especially Wu and Tsai's ner pixel is an edge pixel.
OPATA,. Based on the observations on OPAT8ection 4 Concave corner pixelA concave corner pixel is a black
will present in detail our new algorithm OPATAThe ex pixel such that only one of its diagonal 8-neighbors is
periments and the comparisons of OPATith other white (all other 8-neighbors are black). Figure le is
thinning algorithms will be discussed in Section 5. an example.
End pixel:An end pixel is a black pixel such that only
2 Preliminaries one of its 4(8)-neighbors is a black pixel when 4-
_ _ _ _ distance (8-distance) is used.

A binary image is defined as a matibwhere each ele Contour: A contour is the set of edge pixels.
ment (pixel) is either 1 (black) or O (white). Objectsinthe  nterior pixel: An interior pixel is a black pixel that does
image consist of black pixels. not belong to any contours.

) ) o _ Interior: The interior is the set of interior pixels of an

Neighborsfor a pixelp inimageP, the 8-neighbors qi object.

are defined to be the eight pixels adjacenpt(py,
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Fig.1 4(8)-neighbors of a pixel

Thin object:Athin objectis an object that has no interior
pixels. A thin object is not necessarily a simple path.
For example, lines that are two pixels wide are not
simple paths.

3 Parallel Thinning Algorithms

Skeletonization is usually performed by iteratively re-
moving edge pixels along the contour of image objects.
The pixels erased must satisfy the following three criteria:

1. No end pixel is deleted.
2. No connectedness is violated.
3. No excessive erosion occurs.

Most of the proposed parallel thinning algorithms differ
only inthe way that they conduct the test to meet these cri
teria (Naccache and Shinghal, 1984). For the thinning al
gorithms before 1984, Naccache and Shinghal have given
adetailed review and comparison. Inthe past 10 years, the e
most widely cited algorithm is that of Zhang and Suen cOnduct the test to meet these criteria.”
(1984). This algorithm is called a two-pass algorithm be

cause in each iteration, there are two passes, or subitera

tions. In the first pass, the conditions to remove pp@ie

as follows:

“Most of the proposed parallel thinning
algorithms differ only in the way that they

1. Ithasaneighbor sequence of length between 2 and 6.
2. ltis a northwest edge pixel or a southeast convex
corner pixel.

The second pass deletes the southeast edge pixels and the

northwest convex corner pixels that satisfy condition 1
above. The use of a two-pass iteration imposes a bias in
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Fig. 2 Erosion problem: (a) the input image, (b) the de-
graded result from Zhang and Suen’s (1984) two-pass paral-
lel thinning algorithm, and (c) the result from a one-pass par-
allel asymmetric thinning algorithm

“Recently, much effort has been devoted to
developing one-pass parallel thinning
algorithms.”

which northwest edge pixels and southeast convex corner
pixels are preferred over other southeast edge pixels. This
type of bias avoids excessive erosion.

Although Zhang and Suen’s (1984) algorithm is good
at connectivity and contour noise immunity, there are
some disadvantages that need to be addressed. First, the
algorithm still suffers from excessive erosion in some ex
treme conditions, such as two-pixel-wide diagonal lines
(see Figure 2a). As shown in Figure 2b, when Zhang and
Suen’s algorithm is used to thin the image in Figure 2a,
the original structure is totally destroyed. Second, al
though two-pass algorithms run faster than four-pass al
gorithms by reducing the time for scanning the image, the
amount of time required to scan white pixels (which is a
waste) is still significant. When we applied Zhang and
Suen’s algorithm to thin mobility maps in our route plan
ner application, we noticed that, in some cases, half of the
running time was spent on scanning white pixels. Further
more, the resulting skeletons from Zhang and Suer’s al
gorithm are not of unitary thickness.

Several attempts have been made to overcome these
drawbacks. Liu and Wang (1986) restricted neighber se
guences to a length greater than three instead of greater
than two. The improved algorithm preserved structures
better but degraded the noise suppression feature. Holt
etal. (1987) modified Zhang and Suen’s (1984) algorithm
from two-pass to one-pass. In general, the number of
overall passes required to thin an image was reduced.
However, they used a neighbor region ot 5 that con-
tains 25 pixels, which is much bigger than & 3 neigh-
bor region. As aresult, the algorithm turned out to be con-
sistently slower than Zhang and Suen’s algorithm.
Another problem is that Holt et al.'s algorithm did not
guarantee the perseverance of original patterns (Mendel,
1993). Mendel modified both Zhang and Suen’s and Holt
etal.'s algorithms to better preserve the original pattern in
approximately the same amount of running time.

3.1 ONE-PASS PARALLEL
THINNING ALGORITHM

Recently, much effort has been devoted to developing
one-pass parallel thinning algorithms. The paper by Holt
et al. (1987) was one of the attempts. Chin et al. (1987)
came up with a more efficient one-pass algorithm that
used mainly 3 3 operators. The algorithm used eight 3

3 thinning patterns to remove edge pixels and two restor
ing patterns (a X 4 and a 4 x1) to preserve continuity.

Eight more patterns were employed to trim noise effects.
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Fig.3 Wu and Tsai’s (1992) 14 thinning patterns

However, a major problem with this algorithm is that it
generates biased skeletons. Convex corners are removed
faster than concave corners, as shown in Figure 7b. Linear
objects with a sharp turn generate skeletons that do not
run along the Euclidean medial axis at the turn.

Wu and Tsai (1992) designed a new set of matching
patterns that eliminated the need to distinguish between
thinning patterns, restoring patterns, and trimming pat
terns. The set of 14 patterns are shown in Figure 3. Inthese
patternsxindicates that the pixel can be either 0 oy ih-
dicates that in this pattern at least one ofykés 0, and ¢
indicates the current contour pixel that may be removed.
Each black pixel whose neighbor area matches one of
these patterns will be removed in the current pass.

This set of patterns was derived from the idea of asym
metry. When an objectis thinned to a thin object (two pix
els wide, generally), the pixels on one side of the object
are removed according to preset preferences, whereas the
pixels on the other side are retained. For example, patterns
(a) and (c) are used to thin vertical lines. When a vertical
line is not a thin object, both patterns will be used to thin
the contour on both sides of the object, with pattern (a)
thinning the right side and pattern (c) the left side. When
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the object is thinned to be a thin object, pattern (a) will
continue to thin the contour pixels on the right side,
whereas pattern (c) will leave the contour pixels on the left
side intact. In the same way, patterns (b) and (d) will pref
erentially remove contour pixels on the top over those on
the bottom for horizontal lines. Patterns (e) and (f) deal
with diagonal contours that go from the top left corner to
the bottom right corner, where pixels on top right side are
thinned whereas those on the bottom left side remain. Pat
tern (g) is a complement pattern for pattern (f), since the
condition in pattern (f), that the top right pixgl must be
black, excludes pattern (g). Patterns (h), (i), and (j), in a
similar way, thin the diagonal contour that goes from the
top right corner to the bottom left corner. As an example,
in Figure 3, patterns (e), (f), (h), and (i) are used to get the
resulting skeleton in Figure 2c from the input image in
Figure 2a. Patterns (k), (j), (I), and (n) were designed+to re
move noise.

The algorithm presented by Wu and Suen is a pattern
match algorithm. In parallel, all black pixels are checked
against the 14 patterns. When any pattern matches a pix
el’'s neighbor setting, the pixel is whited out (changed
fromvalue 1to 0). This procedure continues untilno more
pixels can be thinned.

The advantages of Wu and Tsai's (1992) algorithm are
its quickness and uniqueness. To our knowledge, it is one
of the fastest parallel algorithms currently in use. The
algorithm is unique. It treats all 14 patterns in the same
way. It is also noise insensitive. It produces perfect 8-
connected skeletons, and the resulting skeletons are quite
isotropic in terms of city block distance. However, this al-
gorithm inherits the major problem from which Chin
etal’s (1987) algorithm suffers, namely, that the resulting
skeletons are biased, cutting corners. As a result, these
skeletons do not preserve the structures of original objects
aswellasthose from Zhang and Suen’s (1984) algorithm.

4 OPATA,

Both Chin et al’s (1987) algorithm and Wu and Tsai's
(1992) algorithm suffer from the different thinning speed
at convex corners and concave corners. This resultsin de
terioration of the skeleton’s structural features. The prob
lem comes from their discrete approximation of the
Euclidean distance. Both algorithms implemented the
city block distance (4-distance) approximatidp The

city block distance from a convex corner pixel to a back
ground area is always 1. Thus, the pixel is always consid
ered to be an edge pixel and may be thinned in the current

pass. A concave corner pixel, on the other hand, has a city
block distance of 2 from the background area and can be
come an edge pixel only in the next pass. Figure 4b is an
example where a convex corner is removed in the first
pass and a concave corner is removed in the second pass.
Figure 4a is the input image with five convex corners and
one concave corner. In Figures 4b and 4c, a number in a
pixel square indicates the pass in which the pixel is
thinned.

This problem can be solved if we adopt the chessboard
distance (8-distance). Both convex corner pixels and con
cave corner pixels have a chessboard distance of 1 and are
thinned at the same speed. For example, in Figure 4b, all
edge pixels and the concave pixel hayequal to 1 and
are removed in one pass. The result is a perfect skeleton
(Figure 4c).

The patterns used by Wu and Tsai's (1992) OPAEA
move edge pixels including convex corner pixels. How
ever, concave corner pixels are not edge pixels and, thus,
cannot be removed by those 14 patterns. To develop an al
gorithm that has the chessboard distance approximation,
we have to find a way to recognize concave corner pixels
and to find the condition necessary to preserve connected-
ness when these pixels are removed.

4.1 LOCATING A CONCAVE CORNER

To recognize a concave corner pixek 3 patterns are not
the correct choice. Thex33 patterns that could be used to
locate a concave corner are those four patterns obtained
from the rotation of Figure 5a. However, these four new
patterns enhance noise if they are combined with the 14
existing patterns. Figure 5 is an example. In Figure 5c,
pixels with black dots are part of a rectangular object with
a white noise pixel at the center of its bottom. Applying
the 14 patterns in Figure 3 along with the foux 3 pat
terns from the rotation of Figure 5a once, the original
white noise pixel becomes two new white noise pixels
(see Figure 5d). The problem is that the pattern shown in
Figure 5b is not a member of the thinning pattern set.
However, this pattern cannot be added to the thinning pat
tern set because it always preserves the kind of white
noise shown in Figure 5c. Thusx3 patterns fail to pro
vide enough information to locate a concave corner.

5 x 5 patterns could be used in this case because they
provide more information. However, they require one to
check a much larger neighborhood.

Each concave corner pixel has two adjacent edge pix
els. For example, in Figure 5a, concave corner pixels

Downloaded from hpc.sagepub.com at LOUISIANA STATE UNIV on March 26, 2011



http://hpc.sagepub.com/

Seleloer| __—riiiL
1[3 1 1 1
WAL AL 1 7 1 i L
Conwex corner Hk
000 d.—1 1| [1 [ 1] |1
ogle L IERE Hﬂnncnvcmrnm’ 11N
dg:].
() (b) (c)
Fig. 4 The d, and d, approximations of the Euclidean distance
&880 858 se8 e
LI LRI A A AL
80 8% seee
1111 111[1] e|e ee ese «e o o
1|1 1lc]1l] @|lee |eee
1110 1071

(a) (5] (c] (d]

Fig.5 3 x 3 patterns are not suitable for locating a concave corner pixel

two neighboring edge pixelg, andp,. When these two
pixels are checked against the patterns and found to be
edge pixels, itis possible to identify concave corner pixels
such as pixetin Figure 5a by a few additional checks. For
example, if a pixel and its 8 3 neighbors match the pat
tern in Figure 3a and if pixegd, is a black pixel, then pixel
p, will be a candidate for a concave corner pixel. Simi
larly, if pixel p, is a black pixel, themp, is another candli
date. Because a concave corner pixel has exactly two ad
jacent edge pixels, a pixel marked twice as a concave
corner candidate is a concave corner pixel. For example,
in Figure 5a, the concave pixels a concave corner can
didate when either pixed, is checked against the pattern
in Figure 3c (or 3h) and when pixp] is checked against
the patternin Figure 3a (or 3h). Therefore, pixisla con
cave corner pixel. This method provides a means to locate
concave corner pixels.

Of all the 14 patterns used in Wu and Tsai's (1992) al
gorithm, only patterns (a) to (f), (h), and (i) are related to
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the detection of concave corners. When a pixel matches
one of these patterns, at most two more checks are re
quired to decide whether one of its 4-neighbors is & con
cave corner candidate. The detection of concave corner
pixels for pattern (a) has been discussed in the previous
paragraph. A similar technique can be applied to patterns
(b), (c), (d), (), and (i). Patterns (e) and (h) require a dif
ferent treatment. In pattern (e), for examgeis an un
specified pixel that can be either 0 or 1. In addition to the
conditionp, =1 (orp, = 1), to make pixep, (or p,), a conr

cave cornerp,, must also be 1 so that the object is at least
two pixels wide. Thus, for pattern (e), two checks are
needed to determine a concave corner. To summarize, the
following is the checklist for these eight patterns:

Pattern (a): If pixelp; = 1 thenpg is a concave corner
pixel

If pixel p3 =1 thenpy is a concave corner pixel

Pattern (b): If pixelpz = 1 thenp, is a concave corner
pixel

If pixel ps = 1 thenpg is a concave corner pixel

Pattern (c): If pixelps = 1 thenp, is a concave corner
pixel

If pixel p; =1 thenp, is a concave corner pixel

Pattern (d): If pixelp; = 1 thenp, is a concave corner
pixel

If pixel p; =1 thenpg is a concave corner pixel

Pattern (e): If pixepy = 1 andps = 1 thenpg is a concave
corner pixel

If pixel ps=1andps=1thenp,is aconcave corner pixel

Pattern (f): If pixelp; = 1 thenpg is a concave corner
pixel

If pixel ps = 1 thenp, is a concave corner pixel

Pattern (h): If pixep7 =1 andp; = 1 thenpgyis a concave
corner pixel

If pixel p;=1andps =1 thenpgis a concave corner pixel

Pattern (i): If pixelp; = 1 thenp, is a concave corner
pixel

If pixel ps = 1 thenpy is a concave corner pixel

To locate a concave corner pixel, a marker is intro
duced for each pixel. As discussed above, each concave
pixel c is visited by both of its neighboring edge pixels
(e.g., Figure 5a). When the corner is first found to be a
concave corner candidate (suppose by pixah this ex
ample), its marker is set. Thus, when the second neighbor
ing edge pixel (pixep,) also finds that pixetis a concave
corner candidate while the marker has already been set,
the corner will be designated as a concave corner pixel.

4.2 PRESERVING CONNECTEDNESS

Not all the concave corner pixels detected are eventually
thinned in a pass, since this would lead to discontinuity
due to the symmetric feature of one-pass algorithms. To
preserve connectedness, an asymmetric treatment for
convex corners over concave corners is needed. For ex
ample, Figure 6a is the general situation after pixed
recognized as a concave corner pixel. The pixels marked
by 0, 1, andk are the neighboring pixels that have already
been checked when both of pixed 4-neighbor edge pix

els are processeximeans that the pixel is either 0 or Lac
cording to a particular situation. Thex® area with heavy
shadow is examined when the pixel to the right of pixel

is processed. At the time we process the pixel below pixel
c, the area with light shadow is checked. The pixels
markedu have not been checked and are still unknown. If
all of theseu pixels are white pixels, the removal of pixel

will cut the object into two halves, which is not desired. In
general, we have the following observations:

Remark I: If an objectis a thin object (less than two pix
els wide), the removal of concave corner pixels would
introduce discontinuity.

Because for three-pixel-thick (or four) diagonal lines, all
the interior pixels are concave pixels and can all be re-
moved in one pass, it is sufficient to state the following:

Remark II: Three-pixel-thick (or four) diagonal lines
will be removed in a single pass if all concave corner
pixels are deleted.

One method to avoid these problems is to stop thinning
concave corner pixels when that portion of an object is
thin. To determine whether the corner area is thin, all of
the pixels markedin Figure 6a, except the one at the-bot
tom right corner, need to be checked. This requires 10
more checks, which is quite expensive. Because our goal
is to preserve connectedness in an efficient manner, we
further relax the condition to only 4 checks. Pattern (o)
(Figure 6b) is one of the four new patterns we add to the
thinning pattern set to guarantee that no connectedness is
violated when a pixel is thinned. In pattern (®ndicates
the pixelis unspecified, thatis, it can have a value of either
0 or 1. The reason we designate pixels (0, 0), (0, 2), (1, 1),
and (2, 0) as unspecified is that once pixels (0, 1), (0, 3),
(1,0),and (3, 0) are all black pixels, pixels (1, 2) and (2, 1)
will not be thinned in this pass no matter what values pix
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Fig. 6 (a) An example of concave corner pixel detection, (b) a pattern for removing concave corners, (c) an example that intro-
duces discontinuity when a check for object pixel at (0, 2) replaces the check for object pixel (0, 3), (d) an example that introduces
discontinuity when the check for object pixel at (0, 3) is dropped, (e) an example that introduces discontinuity when the checks for

object pixels at (0, 1) and (1, 0) are replaced by the checks at (0, 0) and (1, 1)

els (0, 0), (0, 2), (1, 1), and (2, 0) have. Connectedness at
this pointis preserved by pixels (1, 2) and (2, 1) even when
concave corner pixa is removed. Pattern (0) is the pat-
tern to be used in the situation like Figure 6a. Three other
patterns, (p), (q), and (s), are required to make the-algo
rithm complete. They are from the rotation of pattern (o).

In pattern (o), the four checks for black pixel at (0, 1),
(1,0), (0, 3),and (3, 0) are minimal. Ifthe check at (0, 3) is
replaced by a check at (0, 2) for a black pixel, Figure 6¢ is
acounter example. The area surrounded by dashed linesis
checked against the modified pattern (0). In a single pass,
the four pixels crossed by the curve will be thinned. (The
left-most pixel and the right-most pixel are edge pixels.
The other two pixels are both concave corner pixels.) The
object will be divided into two. If we simply dismiss the
check at (0, 3), Figure 6d is another counter example.
Therefore, pixel (0, 3) has to be a black pixel. Based on the
same argument, pixel (3, 0) has to be checked. If the
checksat (1, 0) and (0, 1) are replaced by a single check at
(0, 0), Figure 6e is a counter example.
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Table 1
Algorithm OPATA

el
= o

12.
13.

© 0N OALDNRE

Input: A binary image |,
Output: The skeleton S of /, after thinning
i=0;
do {
flag = false; i= i+ 1,
for all (pixel pin/_; {
I(p) = 1,4(p);

if (p =1 && p's neighbors match one of the patterns from (a) to (n)) {

p=0; flag = true;

for (p, is a concave corner candidate next to p)

if (p, is not marked) mark p,;
else

if (p.'s neighbors match pattern (0)) p, = 0;

}
} while (flag);
S=1,

“To locate concave corners, a marker
matrix is needed as an intermediate data
structure.”

Therefore, when a pixel is found to be a concave corner
pixel, four more checks are required to guarantee con-
nectedness. If all of these four pixels are black pixels, the
concave corner pixels will be removed.

4.3 THE NEW THINNING ALGORITHM

Based on the above discussion, our OPAT# con-
structed in the following way. In each pass, Wu and Tsai’s
(1992) 14 thinning patterns are employed to thin convex
corner pixels and other edge pixels. When a pixel matches
pattern (a)-(f), (9), or (i) (and thus is going to be thinned),
the identification procedure described in Section 4.1 is
applied to locate concave corner pixels among its four 4-
connected neighbors. If a concave corner pixel is found, it
will be checked against patterns (0), (p), (q), or (s) to en
sure connectedness. When a match is found, the concave
corner pixel is removed. To locate concave corners, a
marker matrix is needed as an intermediate data structure.
Each pixel in an image has its corresponding marker. A
pseudocode description of the algorithm is given above.
Inthe algorithm (Table 1),,i=1, 2,3, ..., istheinter
mediate result after theh pass. Step 4 processes all pixels
simultaneously. Step 5 copies the intermediate thinned
image from the — 1 pass. The search for edge pixels that
can be thinned is performed in step 6. Step 8 uses the con
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dition listed in Section 4.1 to determine whether any’sf the parallel implementation of TPTA is beyond the scope
4-neighbors is a concave corner pixel candidate and then of this paper.

processes each one that is found. Step 11 checks the
neighbors ofp, against pattern (0). The algorithm stops
when no more pixels can be thinned.

Let B(l) be the number of black pixels in imageBe- We implemented the proposed algorithm (OPAT#ong
cause edge pixels and concave corner pixels are removed with Zhang and Suen’s (1984) TPTA and Wu and Tsai’s
from imagel,_, to getimage,, B(/,_,)=B(l) fori=1, 2, (1992) OPATA,. All three algorithms were programmed
3, ..., and the B(is keep decreasing. Because an image using the decision tree method. Based on the sets of _tem
has a finite number of black pixels that can be thinned, Plates for OPATAand OPATA, we developed the deci

eventually, the algorithm will stop whes(/,_,) = B(). sion trees for both algorithms. Using the decision trees,
Theoreiically since o ' the algorithms determine whether a pixel is an edge pixel

that should be removed. This paper concentrates on the
dg(p, q) < d,(p, ) advantages of OPATAversus OPATA The detailed im
plementation will be presented in a future paper. Here, we
focus on experimental results that compare these thinning
algorithms.

The experimental results confirm the improvement of
our new algorithm over the two existing algorithms in
both the quality of the results and the speed. In this sec
tion, we will compare the qualities and the speeds of these
three methods.

A comparison of the results from the three algorithms
over several binary images are shown below. All the input

5 Experiments

for any two pixelpandgin animage, the 8-distance from
an object pixel to the background is at most the same as its
4-distance, and most of the time the 8-distance is smaller.
Therefore, a thinning algorithm that implements 8-
distance, such as OPATAwill require an equivalent, if
not smaller, number of passes to converge. This fact is
verified in the experiments discussed in Section 5. Also,
an 8-distance thinning algorithm better preserves the
structural features of objects. However, since the removal

of a cohncetlet clornetr ;(;quwes extradefffort (at m(;]st ﬁlN(?[ images are displayed as shadow areas. The corresponding
more checksto locate the corners and rour more Checks 1o gy q1atons are shown in black color. In all of the following

ensure connectedness), each pass of OPiTéxpected figures, (a), (b), and (c) are the results of our OPATAU

to take slightly longer than a corresponding pass of and Tsai's (1992) OPATAand Zhang and Suen’s (1984)

OPATA,. _ TPTA, respectively. The comparisons focus on five as-
When implemented in parallel, the markers may be ac- pects of the algorithms:

cessed concurrently by a pixel’s four 4-connected neigh-
bors. This causes the problem of read/write conflict.
However, this problem can be solved. If the algorithm is
implemented on single instruction multiple data (SIMD)
architectures, then, assuming that each processing unit
processes a pixel, the conflict problem can be avoided if
all the processing units check their 8-neighbors in the
same order, thatig,, p,, P,, P, P.. Ps: P, thenp,. Hence, no

The preservation of structures of original objects
Erosion of the resulting skeletons

Noise resistance

8-connectedness of the resulting skeletons
Localization

agrwbnE

i ltinle | . Figure 7 shows the significant difference between 4-
concurrent access will occur. On multiple instruction  gigtance and 8-distance based thinning algorithms with

multiple data (MIMD)_ platforms, each marker has to b_e regard to the preservation of the structure of a corner. The
treated as a shared piece of data and accessed exclusively..

The order in which the pixel's four 4-connected neighbors mpgt Image is 24 501in Q|men3|on. OPATAwhich is an
8-distance—based algorithm, produces a skeleton that per
check and change the marker has no effect on the result.
. fectly captures the corner feature. The output from
OPATA, and OPATA are both one-pass algorithms. L S
. . e OPATA, has a significant deterioration at the corner be
Their implementations differ in the sets of templates they 2 . S
) . . cause it implements 4-distance. The small deterioration
use. The SIMD implementation and MIMD implementa of TPTA in this case comes from its special treatment for
tion described above can naturally be applied to OPATA P

X . L corners.
However, the parallel implementation of TPTA is differ . .
ent because it is a two-pass algorithm. The two passes The skeletons of the letter H (Figure 8) provide another

have to be implemented in sequence. The discussion of excellentexample where OPATANd TPTA get the same
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Fig. 7 The difference between 8-distance thinning and 4-
distance thinning

results that well capture the structure of the letter H,
whereas the skeleton from OPAJAisses at the corners.

TPTA has been found to have serious erosion prob
lems. OPATA overcomes this problem using asymmetric
patterns. OPATAsuccessfully inherits this useful feature.
Figure 9 is a typical case. In Figure 9c, which is the result
from TPTA, the skeleton of the letter X deteriorates to a
three-pixel-long bar. In contrast, the results from OPATA
(Figure 9b) and OPATA(Figure 9a), which are the same
in this case, preserve the original structure. Figure 2-is an
other example of both OPATAaNd OPATA's ability to
resist erosion.

Figure 10 is a bar of 15 pixels wide and 46 pixels long.
Noises are added to it along its edges and at its corners.
The results indicate that all three algorithms are good at
resisting noise on the edges. For the noise at the corners,
TPTA has the best performance, which suppresses all but
one kind of corner noise (at the top left corner). OPATA
and OPATA fail to suppress corner noise. However, there
is a trade-off between good erosion resistance and good
noise suppression. One way to reduce corner noise for
OPATAs is to have a preprocessing stage to smooth corner
noise.

Figure 11 is the result of a comparison on localization.
Theoretically, 8-distance is a better approximation of
Euclidean distance than 4-distance. As aresult, the output
of an 8-distance medial axis transformation has a better
localization than that of a 4-distance transformation. The
results from the experiment support this argument. In all
the figures, the synthetic object is shown as the back-
ground. Figure 11a presents the 4-distance medial axis (in
light gray) along with the Euclidean medial axis (in dark
gray). Figure 11b shows the comparison of the output
from an 8-distance medial axis transformation (in light
gray) with the Euclidean medial axis. The black pixels are
the common pixels for both axes in a figure. The 8-
distance medial axis is closer to the Euclidean medial axis
than the 4-distance medial axis.

Figures 11c, 11d, and 11e are the output from TPTA,
OPATA,, and OPATA (in dark gray) in comparison with
the 8-distance axis, the 4-distance axis, and the 8-distance
axis (in light gray), respectively. All three algorithms are
able to extract the major segment of the corresponding
medial axis, 8-distance for TPTA and OPATAnd 4-
distance for OPATA Because the 8-distance medial axis
is closer to the Euclidean medial axis, TPTA and OPATA
have better localization.

However, all three algorithms fail to obtain the
branches that lead from the main axis to the rectangular
corners. These results are reasonable because all these al
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Fig.8 The letter H Fig.9 Another example of erosion
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gorithms are customized to trim these branches and-to ex
tract clear and simple skeletons. If necessary, we can cus
tom design these algorithms to obtain the real medial axis.
Replacing patterns (e), (f), (h), and (i) with pattern3,(e'
(), (h"), and (i) in Figure 12, the output of OPATA
matches the 8-distance medial axis perfectly (Figure 11f).
In any of these patterns, at least one “z” pixel has to be
black.

Figures 13 and 14 are two more examples that show

the high quality of the skeleton produced by OPATK
both examples, OPATAand OPATA get perfect 8-
connected skeletons that are unitarily connected. How
ever, the results of TPTA are not unitary; rather, the pixels

are 4-connected in some place. In Figure 14, one can see
that the noise suppression of TPTA is better than that of
OPATA,, whereas the result of OPAT/ noisier than that

of the OPATA.

We implemented all three algorithms in C on a DEC
station 5000/240. Table 2 gives the times for the examples
discussed earlier. For a given method and a given image,
Fig. 10 Noise suppression the running time shown in the table, which is given in-mil

]

(=] il

Fig. 11 A comparison of localization for parallel thinning algorithms: (a) The 4-distance medial axis and the Euclidean medial
axis, (b) the 8-distance medial axis and the Euclidean medial axis, (c) the output of TPTA and the 8-distance medial axis, (d) the out-
put of OPATA, and the 4-distance medial axis, (e) the output of OPATA, and the 8-distance medial axis, (f) the output of the modified
OPATA, and the 8-distance medial axis

g |0 |0 g |1 |1 x |1 |= 010 [=
1 |c |0 0 (c |1 1 |c |00 0 1ec |1
x |1 |= 0|0 |= g (0 (0O g (1 |1

(") (£7] (h') (1]

Fig. 12 Patterns to extract detail skeletons
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o 1 |

KN
RN
RN

Fig. 13 A Chinese character Fig. 14 A walking man
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Table 2

A Comparison of Running Times (the last three lines give running time/passes)

Time/Passes  Corner Letter H Erosion Noise Chinese Character Walking Man
Size 24 x 30 40 x 40 8x9 50 x 30 40 x 50 55 x 65
TPTA 15.08/14 34.41/14 0.98/8 21.01/14 13.91/6 47.97/12
OPATA, 11.64/9 27.30/9 0.35/2 15.58/8 10.04/4 35.54/8
OPATA, 10.59/7 25.08/7 0.35/2 16.17/8 10.09/4 33.94/6

“This proposed algorithm has the feature
of good noise resistance, better
localization, and unitary 8-connected
skeleton output.”

liseconds, is the average time over 100 repeated execu
tions. The number of passes is the number of times the
program scans over the image in the thinning process. The
results show that OPATAand OPATA are significantly
faster than TPTA in all cases. When OPAT#quires
fewer passes than OPATAoes, OPATAIs faster. When
both require the same number of passes, ORASA
slightly faster, since the search for concave corners takes
extra time.

6 Conclusions

In this paper, we have proposed a new one-pass parallel
asymmetric thinning algorithm called OPAABecause

of the implementation of the chessboard distance (8-
distance), the resulting skeletons preserve the topological
information and structural information of the inputimage
better than those from 4-distance thinning algorithms. In
our cross-country route-planning system, this feature is
very important. It significantly improves the selection of
optimal paths. In addition, OPATASs faster than many
other thinning algorithms as a result of reducing both the
number of passes and the actual running time. This pro
posed algorithm has the feature of good noise resistance,
better localization, and unitary 8-connected skeleton out
put. Recently, this algorithm was used successfully in an
automated battlefield analysis system.
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