
Vir V. Phoha
Louisiana Tech University

S. Sitharama Iyengar and
Rajgopal Kannan
Louisiana State University

Faster Web Page
Allocation with
Neural Networks

Exploiting the self-similarity of Web content, the self-

organizing neural network improves performance of

distributed Web server systems.

Internet traffic has doubled almost
every year since 1997, a growth rate
set to continue for some time.1 To

maintain quality of service, some heavi-
ly trafficked Web sites use multiple
servers, which share information through
a shared file system or data space. The
Andrews file system (AFS) and distributed
file system (DFS), for example, can facil-
itate this sharing. In other sites, each
server might have its own independent
file system.

Although scheduling algorithms for
traditional distributed systems do not
address the special needs of Web server
clusters well, a significant evolution in the
computational approach to artificial intel-
ligence and cognitive engineering shows
promise for Web request scheduling. Not
only is this transformation — from discrete
symbolic reasoning to massively parallel
and connectionist neural modeling — of
compelling scientific interest, but also of

considerable practical value.
Our novel application of connectionist

neural modeling to map Web page
requests to Web server caches maximizes
hit ratio while load balancing among
caches. In particular, we have developed
a new learning algorithm for fast Web
page allocation on a server using the self-
organizing properties of the neural net-
work (NN).

Current Approaches
to Request Routing
Figure 1 shows a multiple server system.
Requests come from various clients, and
the router pools the requests and directs
them to different servers.2 Each server, S1,
S2, ..., SN has a cache.

Four basic approaches to routing
requests among distributed Web-server
nodes exist:3

� client based,

18 NOVEMBER • DECEMBER 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

N
eu

ra
l

N
et

w
or

ks

� DNS based,
� dispatcher based, and
� server based.

In the client-based approach, requests can be rout-
ed to any Web server architecture, even if the
nodes are loosely connected or uncoordinated.
Embedded code in either the Web client (typical-
ly a browser) or a client-side proxy server makes
routing decisions. For example, Netscape spreads
the load among various servers by selecting a ran-
dom number i between 1 and the number of
servers and directs the requests to the server
wwwi.netscape.com. This approach is not easily
scalable, however, and few Web sites have dedi-
cated browsers to distribute the server load. A
combination of caching and server replication
could enhance performance.4 However, client-side
proxy servers require Internet component modifi-
cation that are beyond the control of many insti-
tutions that manage Web server systems.

The DNS can implement a large set of schedul-
ing policies by translating a symbolic name to an
IP address. UDP packet size constrains the DNS
approach to 32 Web servers per public URL,
although it scales easily from LAN to WAN dis-
tributed systems.

If a single dispatcher controls all routing deci-
sions, it can achieve finely tuned load balancing,
but failure of the centralized controller can disable
the whole system. Finally, the server-based
approach uses two levels of dispatching. First, a
cluster DNS assigns requests to Web servers, and
then each server can reassign the request to any
other server in the cluster. The server-based
approach can attain as good a control as the dis-
patcher approach, but the redirection mechanisms
typically increase user-perceived latency. To our
knowledge, only the Internet2 Distributed Storage
Infrastructure (I2-DSI) Project proposes a smart DNS
that can make routing decisions based on network
proximity information such as transmission delays.5

No approach incorporates any kind of intelligence
or learning in routing Web requests, however.

Neural Networks and Competitive Learning
Many artificial NN architectures display self-orga-
nizing properties: They can extract patterns, fea-
tures, correlations, or categories from input data and
code them in the output. Several researchers have
detected self-similarity in Internet traffic flows.6,7 We
can exploit NNs to take advantage of this self-sim-
ilarity to make smarter routing decisions.

In previous work, we have used NNs’ competitive

learning to develop an iterative algorithm for image
recovery and segmentation.8,9 We applied Markov
random fields to develop an energy function with
terms corresponding to smoothing, edge detection,
and preservation. An update rule, a gradient descent
rule to the energy function, restores and segments
images. A. Modares and colleagues use a self-orga-
nizing NN to solve multiple traveling salesman and
vehicle routing problems.10 Their algorithm shows
significant advances both in the quality of solutions
and computational efforts for most of the experi-
mental data. K. Yeung and colleagues present a node
placement algorithm in shuffle nets that calculates
a communication cost function between a pair of
nodes. It develops a gradient descent algorithm to
place node pairs one by one.11

Special Considerations
for Web Server Routing
The Secure Socket Layer (SSL) encrypts client-serv-
er communication with a session key. Session keys
are expensive to generate, so each SSL request has
a lifetime of about 100 seconds and the client and
server use the same session key during its lifetime.
Routing multiple requests from a client to one serv-
er can save the overhead of negotiating a new ses-
sion key. With our competitive learning algorithm,

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2002 19

Faster Web Page Allocation

Router

Clients

Disk Disk Disk

S1 S2 Sn

HTTP
server

Cache

HTTP
server

Cache

HTTP
server

Cache

A common file system

Figure 1. Typical Web page request routing. Requests come from var-
ious clients. A router pools the requests and directs them to differ-
ent servers. Each server has a cache and might share a common file
system or have individual storage.

the NN naturally routes requests in this fashion.
IBM’s Network Dispatcher (ND) routes any two SSL
requests received within 100 seconds from the same
client to the same server.

In contrast, a simple round-robin scheme will be
inefficient because it requires the generation of
many session keys. The Web server load information
becomes obsolete quickly and is poorly correlated
with future load conditions.12 Because Web dynam-
ics involve high variability of domain and client
workloads, exchanging server load condition infor-
mation is not sufficient for scheduling decisions.
Hence, we need a real-time adaptive mechanism that
adapts rapidly to a changing environment.

Building Blocks of Our Model
As a foundation for the discussion of our model
and results, we introduce the key concepts of the
Pareto distribution, competitive learning, and
Kohonen’s algorithm.

Pareto Distribution
We can model Web traffic with a Pareto distribu-
tion. A heavy-tailed distribution, such as the Pare-
to, is asymptotically hyperbolic — irrespective of
the short-term distribution of a random variable x,
over the long run, the distribution function of x is
hyperbolic. The probability mass function of a
Pareto distribution is p(x) = γ kγx –γ–1, γ, k > 0 , x ≥
k, and its cumulative distribution is F(x) = P[X ≤ x]
= 1 – (k/x) γ.

Here k represents the smallest value of the
random variable and γ determines the distribu-
tion’s behavior. We can estimate the parameters

from historical data. For example, if γ = 2, the
distribution has infinite variance. If γ = 1, it has
infinite mean.13

Competitive Learning
In the simplest competitive learning network, there
is a single layer of output units S = {S1, S2, …, SN}.
Each output is fully connected to a set of inputs Oi

via connection weights wij. A brief description of
a competitive learning algorithm follows.

Let O = {O1, O2, …, OM} be an input to a net-
work of two layers with an associated set of
weights wij. The standard competitive learning
rule14 is given by ∆wi* j = η(Oj – wi*j), which moves
wi* toward O. The i* implies that only the set of
weights corresponding to the winning nodes (those
with the largest output) is updated. Alternatively,
∆wij = ηSi(Oj – wij), where

This is the adaptive approach taken by Kohonen in
his first algorithm (see Kohonen model below).15

The usual definition of competitive learning
requires a winner-take-all strategy. In many cases
this requirement is relaxed to update all of the
weights in proportion to some criterion. This form
of competitive learning is referred to as leaky
learning. Hertz and colleagues discuss various
forms of this adaptive processing for different
problems including the traveling salesman prob-
lem.14 It has become a standard practice to refer to
all of these as Kohonen-like algorithms.

Kohonen’s Algorithm
Kohonen’s algorithm adjusts weights from common
input nodes to N output nodes arranged in a 2D
grid, as Figure 2 shows, to form a vector quantiz-
er.14,15 After the trainer presents enough input vec-
tors sequentially in time, the weights specify clus-
ters or vector centers. These vector centers sample
the input space such that their point density func-
tions approximate the probability density functions
of the input vectors. The algorithm also organizes
weights such that topologically close nodes are sen-
sitive to physically similar inputs. Output nodes are
thus ordered naturally. This algorithm, described
below, forms feature maps of the inputs.

Let x1, x2 , …, xN be a set of input vectors, which
defines a point in N-dimensional space. The out-
put units Oi are arranged in an array and are fully
connected to the inputs via the weights wij. A com-

S
i

i =







1

0

for corresponding to
 the largest output
otherwise

20 NOVEMBER • DECEMBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Neural Networks

Output
Output
units

Oi

X1 X2 XN

Figure 2. Kohonen’s network. Input vectors xi map
to an array of output vectors Oi with the weight
functions wij.

petitive learning rule is used to choose a winner
unit i*, such that |wi* – x ≤ wi – x| for all i.

Then the Kohonen’s update rule is given by

∆wi = η h (i, i*)(x – wi
Old).

Here, h(i, i*) is the neighborhood function such
that h(i, i*) = 1 if i = i*, but falls off with distance
|r - r i*| between units i and i* in the output array.
The winner and nearby units are updated appre-
ciably more than those farther away. A typical
choice for h(i, i*) is

where σ is a parameter that is gradually decreased
to contract the neighborhood, and η (in the update
rule) is decreased to ensure convergence.

Using principles derived from competitive
learning, and building on earlier work on the
self-organizing properties of NNs,14 we propose
and evaluate an NN approach to routing Web
page requests in a multiple-server environment.
The scheduling algorithms for traditional distrib-
uted systems are not applicable to Web server
clusters because the loads from different client
domains are nonuniform, the real Web workload
is highly variable, and Web requests have a high
degree of self-similarity (see the sidebar, “Defin-
itions and Background”).

Conceptual Framework
Our model ensures high Web server performance
using NNs. Caching data at the client site can
improve Web site performance by reducing server
overloads. Cache capacity limits this approach,
however, which is also very inefficient for serving
dynamic Web objects. The data path may include
several layers of software and file systems, inter-
mediate processing steps, object fetches from
cache, and, finally, operating system layers of the
client machine. To handle increasing Web traffic,
we propose a technique to assign Web objects to
the server cache at the router level. This router can
be one of the servers or a dedicated machine act-
ing as a server.

Figure 3 (next page) presents a conceptual
framework of the proposed model. The object id
and request count of the most frequently accessed
objects are in the router’s memory. The actual
objects reside in the server’s cache.

The foundation of our model is the competitive
learning properties of the NN. Each server com-
petes to serve the object request. The server clos-
est to the request wins, and if the object is already
in the server’s cache, we strengthen the relation-
ship between the server and the object request. We
use a competitive basis algorithm to make rout-
ing decisions.

This approach is also related to Kohonen’s self-
organizing feature map technique,15 which facili-
tates mapping from higher to lower dimensional
spaces so that the relationships among the inputs are

 e

r ri i
−

−













*

,
2 2σ

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2002 21

Faster Web Page Allocation

Definitions and Background

A distributed Web server system, is any archi-
tecture of multiple Web server hosts that
can spread client requests to the servers.
The traffic load on the Web site is the num-
ber of HTTP requests it handles. A session
is the time a single user spends on a given
Web site. A session can issue many HTML
page requests. Typically, a Web page consists
of a collection of objects, and an object
request requires accessing a server. Any
access to a server for an object is defined as
a hit.We use site and Web site interchange-
ably to mean a collection of Web objects
meant to be served. An object is an entity
such as a Web page or image served by the
server. An object-id uniquely identifies an
object in a Web page. An object-id can be a
URL, a mapping of a URL to a unique

numerical value, and so on;however,we fol-
low only one method consistently.

N servers—identified as S1, S2,…,SN—
service Web object requests. The Web-
server cluster is scalable and uses one URL
to provide a single interface to users. For
example, a single domain name can be asso-
ciated with many IP addresses, and each
address can belong to a different Web
server. The collection of Web servers is
transparent to the users.

Each Web page request is identified as
a duplet <Oi, Ri> where 1 ≤ i ≤ M. Oi is the
object identifier of the object requested,Ri

is the number of requests for the object
served so far, and M is the total number of
objects present at the site.

Self-similarity is usually associated with

fractals, the shapes of which are similar
regardless of magnification. For example, a
coastline has similar structure at a scale of
one mile, 10 miles, or 200 miles. In case of
stochastic phenomenon, such as a time
series, self-similarity means that the object’s
correlational structure remains unchanged
at different timescales. Both Ethernet and
Web traffic are self-similar.1,2

References
1. W.E. Leland et al.,“On the Self-Similar Nature of

Ethernet Traffic (extended version),” IEEE/ACM

Trans. Networking, vol. 2, no. 1, Jan. 1994, pp. 1-15.

2. M. E. Crovella and A. Bestavros,“Self-Similarity in

World Wide Web Traffic: Evidence and Possible

Causes,” IEEE/ACM Trans. Networking, vol. 5, no. 6,

Dec. 1997, pp. 835-846.

mapped onto highly reliable outputs. In Kohonen’s
algorithm, the generated output neurons are very
close to the winning neurons based on the topology
structure. In our model, connection strength between
the object requests and the server is analogous to
weight connections between the two layers of Koho-
nen’s model. The input layer consists of the object
request and the output layer consists of the servers.
In addition to mapping the input space of Web
object requests to the weight space, we use this prop-
erty to assign the object requests to the servers.

Description of the New Model
In our neural placement model, we define two lay-
ers in the network, the input layer W and the out-
put layer S. W contains M nodes, where each
object is assigned a node. The object request count,
Ri, is applied as the input to the node correspond-
ing to the object in the W layer. Layer S has N
nodes, one for each server, and each node, j, is
assigned to a server Sj. The weight wij connect
snode i in the input layer to node j in the output
layer. This weight forms a connection strength
from an object <Oi, Ri> to a server Sj. Figure 4
illustrates this architecture.

We approximate the number of input nodes (M)
from the number of objects, such as images, HTML
pages, and sound clips, in a given Web site. Adding
or deleting input nodes (new objects) does not
affect the model’s existing structure. We add or
delete links from the affected input node alone,
without changing the remaining links or weights.
In our simulations, the number (M) of objects
ranged from 150 to 1,050.

Kohonen’s algorithm maps the inputs’ topolog-
ical structure onto the weights. In our model, we
map the page popularity structure of the Web
object requests to the weight structure between the
input and output layers and use competition to
transfer the request to the winning server cache.
At the same time, we add a load-balancing factor
in the decision process to equitably allocate object
requests among server caches.

Mathematical Formulation
Using Competitive Learning
We formulate the problem of assigning Web
objects to the servers as a mapping for the place-
ment of <Oi, Ri> ∈ W onto a server space S as

∅k : W → S, such that Oi ∈ W → Sj ∈ S;
(i = 1, M and j = 1, N)

We include an object classification condition such
that the NN model distributes the objects Oi equal-
ly among the servers Sj, and at the same time it
maximizes the server cache hits. We have two
objectives:

� Increase the number of hits, in the sense that a
server gets the same object request it previous-
ly served. As our simulation results show, this
improves Web site performance by allowing
fast response and loading of dynamic Web
objects.

� Distribute the object requests equitably among
servers.

Our algorithm achieves both goals by learning
both the previous requests and the object request
distribution.

The server k for a given object is selected as fol-
lows. An object’s request count is applied as input
to its corresponding node. The NN model chooses
a server to forward the request to based on the
lowest value of the request count mod to the
weight connecting to that server. Thus,

|Ri – wik | = minRi – wij | where j = 1, N (1)

22 NOVEMBER • DECEMBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Neural Networks

Server1 ServerN

1

4 5

6

Client

<O1, R1>
extractor

2

2

3

Neural network
model

Control parameters
, α, Kη

Router

Figure 3. A conceptual framework of our model. A client requests an
object (1). The router extracts the request count for the object and
applies it as an input to the neural network (2). The NN determines
which server to forward the request to (3). The router forwards the
request to the server (4). The server presents feedback to the router
(5) and sends an object response to the client (6).

To avoid dealing with very large numbers, it is
better to use Ri/Σ Ri instead of Ri. Learning is
achieved by updating the connection strength
between object and winning server using the
update rule

∆wik = η Λ(Ri, wik, K) (Ri – Wik) +
αK (∑Wiτ – N Wik) (2)

Here, the parameters η, α, and K determine the
strength of controlling the maximum hit or bal-
ancing the load among the servers. Λ(Ri, wik, K) is
given by

where g = (Ri – Wik), and

and

d = (Ri – Wij), j = 1, N.

Now, by integrating Equation 2 and performing
some algebraic manipulations, we get the energy
function8

(3)

Because the update rule in Equation 2 is of the
form ∂E/∂wik, it is a gradient descent rule for the
energy function in Equation 3.

Heuristics on Parameter Selection
The neighborhood function Λ(Ri, wik, K) is 1 for i
= k and falls off with the distance |Ri – wij|. Ideal-
ly, we should select the neighborhood such that
the servers with the highest mean hit count for a
given object, or servers that serve related objects
are close together.

The first term on the right-hand side of Equa-
tion 3 pushes the request count Rk toward wik so
our scheme directs requests for objects in server
Si’s cache to it. This increases the likelihood that
the router will route subsequent requests for an

object to the same server Si,, thereby increasing
the hit ratio. The second term on the right ensures
that no one server will be overloaded — that is, the
object requests are distributed evenly among the
servers. By properly balancing the parameters η,
α, and K, we can direct the flow of traffic in an
optimal fashion. η, α, and K are related as follows:

A higher value of η (hence lower αK) stresses
object hits, whereas a higher value of αK empha-
sizes balancing among the servers. We have
achieved close to 100 percent hits using small val-
ues of α and still had good load balancing among
servers.

The Algorithm and Its Distinctive Features
Figure 5 (next page) provides an outline of our
algorithm.

Our approach has several distinctive features.
First, it maps the self-similarity of Web traffic to
the self-organizing property of the neural model.
A Web object request must be allocated to a serv-
er. A learning rule optimizes the allocator, where-
as the network adapts to unpredictable changes
using the competitive learning framework. The
learning process produces stable responses. Sec-
ond, the learning rule’s associated energy function
captures global knowledge about server load. The
learning rule is a gradient descent function to this
energy function; we make local decisions about
load balance based on global knowledge.

Furthermore, the algorithm creates a balance
between conflicting requirements to equitably dis-
tribute Web requests among servers and simulta-
neously maximize hit ratio. Finally, though the

η

α
∝ 1

K

E K e

w w w w w

d d
K K

m k

i j i j i j i j i j
m k

= +

+ − + +()

−

− + −

∑

∑

η

α

ln

.

*
*

,

, , , , ,
,

2

1 1 1
2

4

Ψ d K e

d d
K K

j

,

*
* *() =
−

()∑ 2

Λ

Ψ
 (, ,)

,

*
* *

R w K
e

d Ki ik

g g
K K

= ()

−
()2

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2002 23

Faster Web Page Allocation

W

S

Object request <O1, R1>

New object

S1 S2 SN

O1 O2 OM

WMNW11

Figure 4. Neural architecture to direct Web page requests.Weights
wij connect input layer nodes to output layer nodes.

algorithm currently uses a winner-take-all strate-
gy, we can incorporate leaky learning by defining
a neighborhood of servers whose weights we wish
to update. Proportional weights can help us
account for server interconnection and dependen-
cies between objects on closely connected servers.

Experimental Results
Our model incorporates the characteristics of Web
traffic and its inherent self-similarity with a heavy-
tailed distribution of the type P[X > x] ~ x -γ as x →
∞ for 0 < γ < 2. Our results correspond to a Pareto
distribution, with probability density function p(x)
= γ k γ x –γ–1, where γ = 0.9 and k = 0.1.

We conducted the simulations in two separate
environments.

� At the Louisiana State University Networks Lab,
we simulated Web traffic using a Pareto distri-
bution on a single PC.

� At the Computer Science laboratory at
Louisiana Tech University, the simulation envi-
ronment consisted of a network of five IBM
PCs. We used one PC as a dedicated Web serv-
er written in Java specifically for this experi-
ment; another as a proxy server; and the three
remaining PCs as clients, with Microsoft Inter-
net Explorer (IE) and Netscape browser settings
pointed to the proxy server for all requests.
Each client PC simulated 300 clients by creat-
ing separate threads (using Java) for each
client. We implemented the neural model on
the PC running the proxy server.

We compared the performance of our algorithm
with round-robin (RR), round-robin 2 (RR2), and a
special case of the adaptive time-to-live (TTL) algo-
rithm. RR2 partitions a Web cluster into two class-
es — normal domains and hot domains — based on
domain load information. RR2 applies a round-
robin scheme to each domain separately.12 To reduce
the skew on Web objects in our adaptive TTL imple-
mentation, we assign a lower TTL value when a
request originates from a hot domain, and a higher
TTL value when it originates from a normal domain.

Table 1 summarizes the characteristics of our
simulations.

The comparison charts in Figures 6 and 7 relate
only to the RR scheme and our NN-based algo-
rithm. The hit ratios for adaptive TTL varied wide-
ly with Web object size and distribution, but never

24 NOVEMBER • DECEMBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Neural Networks

Table 1. Simulation characteristics.

Sample size Number of Web objects ranged from 150 to 1,050.
We collected statistics at 50-object intervals.

Number of servers Statistics were collected for 4, 8, 16, and 32 servers
Web page distribution Uniform and nonuniform (Pareto)
Algorithms NN, round-robin and round-robin 2, and adaptive

time-to-live

Initialize M to the number of objects and N to the number of servers;
Initialize with random values the weights {wij} between the page requests and the servers and select
parameters η, α, and K.
While (server available) //Service page requests until server is running.

{ //begin while//
Calculate |Ri – wik| and using Equation 1 select server Sk;
if (<Oi, Ri> is in the cache of Sk)

{
Update the weight using Equation 2
//This is a hit so we want the algorithm to strengthen this connection//

}
else
{

Find the correct server Sj using |Rj – wij|
Update the connection weight for this server using Equation 2
// In this case this is a miss-hit so we want the algorithm to learn the
//correct response by strengthening the appropriate weight //

}
} //end while //

Figure 5. Algorithm for routing Web page requests in a multiple-server environment. The algorithm distributes Web
requests equitably among servers and simultaneously maximizes hit ratio.

ranged higher than 0.68.
As Figure 6 shows, the NN competitive learn-

ing algorithm performs much better than both RR
schemes when input pages follow a Pareto distri-
bution. As the number of input objects increases,
our algorithm achieves a hit ratio close to 0.98,
whereas the RR schemes never achieve a hit ratio
of more than 0.4.

For the NN algorithm, lower hit ratios (0.86)
with fewer objects is attributed to some learning
on the part of the algorithm, but as the algorithm
learns, the hit ratio asymptotically stabilizes to
0.98 for a larger number of objects.

For uniform distribution of input objects, the
NN algorithm performs much like it does for
nonuniform distribution and much better than the
RR schemes (see Figure 7).

Table 2 shows that RR never achieves a hit ratio
higher than 0.32, whereas NN achieves hit ratios
close to 0.98. In the worst case (minimum hit
ratio), NN does not fall below 0.85, whereas RR
schemes go as low as a 0.02 hit ratio.

The NN algorithm’s performance improves con-
siderably with increased traffic, whereas the per-
formance of RR remains the same or worsens
slightly. This result holds true irrespective of the
number of servers. This results from pushing an
object toward the same server based on the learn-
ing component in Equation 2. For a nonuniform
distribution (Pareto distribution), our algorithm
performs considerably better for lower and higher
traffic rates, irrespective of the number of servers.
Similar results hold for a uniform distribution.

For the nonuniform Pareto distribution, which
closely models real Web traffic, our algorithm’s
improved performance for large numbers of Web
objects is a very attractive result. Our simulation
results show an order-of-magnitude improvement
over some existing techniques.

Conclusion
We are currently developing methodologies to
include Web page metadata in our algorithm to fur-
ther improve our approach. The metadata is part of
the feature vector used to train the NN, and for new
requests it is helpful in directing the requests to the
appropriate Web servers.

References

1. K.G. Coffman and A.G. Odlyzko, Growth of the Internet,

tech. report, AT&T Labs–Research, www.dtc.umn.edu/

~odlyzko/doc/oft.internet.growth.pdf.

2. A. Iyengar and J. Challenger, “Improving Web Server Per-

formance by Caching Dynamic Data,” Proc. Usenix Symp.

Internet Technologies and Systems, Usenix Assoc., Berkeley,

Calif., 1997, pp. 49-60.

3. V. Cardellini, M. Colajanni, and P. Yu, “Dynamic Load Bal-

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2002 25

Faster Web Page Allocation

Table 2. Maximum and minimum hit ratios
for RR and NN with input size

and number of servers.

Distribution Round Robin Neural Network

Uniform, max (0.31,150,4) (0.98,1050,4)
Uniform, min (0.03,1050,32) (0.85,150,32)
Nonuniform, max (0.32,150,4) (0.98,1050,4)
Nonuniform, min (0.02,1050,32) (0.86,150,32)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

1,0
50

Number of page requests

RR performance
with 4 servers
NN performance
with 4 servers
RR performance
with 8 servers
NN performance
with 8 servers
RR performance
with 16 servers
NN performance
with 16 servers
RR performance
with 32 servers
NN performance
with 32 servers

H
it

ra
tio

Figure 6. Performance for a nonuniform input data distribution. The
page placement algorithm using competitive learning (NN),
achieves high hit ratios for four server configurations and outper-
forms the round-robin (RR) scheme.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15
0

25
0

35
0

45
0

55
0

65
0

75
0

85
0

95
0

1,0
50

NN performance
with 8 servers
RR performance
with 8 servers
NN performance
with 16 servers
RR performance
with 16 servers
NN performance
with 32 servers
RR performance
with 32 servers

RR performance
with 4 servers
NN performance
with 4 servers

H
it

ra
tio

Number of page requests

Figure 7. Performance for a uniform input data distribution. The NN
scheme outperforms the RR scheme for all configurations, similar to
the nonuniform input distribution case.

ancing on Web-Server Systems,” IEEE Internet Computing,

vol. 3, no. 3, May/June 1999, pp. 28-39.

4. M. Baentsch, L. Baum, and G. Molter, “Enhancing the Web’s

Infrastructure: From Caching to Replication,” IEEE Internet

Computing, vol. 1, no. 2, Mar/Apr. 1997, pp. 18-27.

5. M. Beck and T. Moore, “The Internet2 Distributed Storage

Infrastructure Project: An Architecture for Internet Con-

tent Channels,” Proc. 3rd Workshop WWW Caching, Man-

chester, UK, 1998, pp. 2141-2148.

6. M. Grossglauser and J.-C. Bolot, “On the Relevance of

Long-Range Dependence in Network Traffic,” IEEE/ACM

Trans. Networking, vol. 7 no. 5, Oct. 1999, pp. 629-640.

7. W.E. Leland, M.S. Taqqu, and D. V. Wilson, “On the Self-Sim-

ilar Nature of Ethernet Traffic (Extended Version),” IEEE/

ACM Trans. Networking, vol. 2, no. 1, Feb. 1994, pp. 1-15.

8. V. Phoha, Image Recovery and Segmentation Using Com-

petitive Learning in a Computational Network, doctoral dis-

sertation, Texas Tech Univ., Lubbock, 1992.

9. V. Phoha and W.J.B. Oldham, “Image Restoration and Seg-

mentation Using Competitive Learning in a Layered Net-

work,” IEEE Trans. Neural Networks, vol. 7, no. 4, July

1996, pp. 843-856.

10. A. Modares, S. Somhom, and T. Enkawa, “A Self-Organiz-

ing Neural Network for Multiple Traveling Salesman and

Vehicle Routing Problems,” Int’l Trans. Operational Re-

search, vol. 6, 1999, pp. 591-606.

11. K. Yeung and T. Yum, “Node Placement Optimization in

Shuffle Nets,” IEEE/ACM Trans. Networking, vol. 6, no. 3,

June 1998, pp. 319-324.

12. V. Cardellini, M. Colajanni, and P. Yu, “DNS Dispatching

Algorithms with State Estimators for Scalable Web-Server

Clusters,” World Wide Web J., vol. 2, no. 2, July 1999, pp.

101-113.

13. V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of

Poisson Modeling,” IEEE/ACM Trans. Networking, vol. 3,

no. 3, June 1995, pp. 226-244.

14. J. Hertz et al., Introduction to the Theory of Neural Com-

putation, Lecture Notes on Computer Science, vol. 1, Addi-

son-Wesley, Boston, 1991.

15. T. Kohonen, Self-Organization and Associative Memory,

3rd ed., Springer-Verlag, Berlin, 1989.

Acknowledgments
We thank Ashok Chigide and Wen Tian for their help in carry-

ing out the simulations, and Sunil Babu for help in drawing the

figures.

Vir V. Phoha is an associate professor of computer science at

Louisiana Tech University in Ruston. He received an MS

and a PhD in computer science from Texas Tech Universi-

ty. His research interests include Web caching, Web min-

ing, network and Internet security, intelligent networks,

and nonlinear systems. He is a senior member of the IEEE

and a member of the ACM.

S. Sitharama Iyengar is a distinguished research master award-

winning professor of the Computer Science Department at

Louisiana State University in Baton Rouge. He received an

MS from the Indian Institute of Science and a PhD from Mis-

sissippi State University. He is presently a chaired professor

and chair of the department at Louisiana State University. His

research interests include high-performance parallel and dis-

tributed algorithms and data structures for image processing

and pattern recognition, and distributed data-mining algo-

rithms. He is a fellow of the IEEE, the ACM, and the American

Association of Advancement of Science.

Rajgopal Kannan is an assistant professor of computer science

at Louisiana State University in Baton Rouge. He obtained

a BTech degree in computer science and engineering from

the Indian Institute of Technology–Bombay and a PhD in

mathematics and computer science from the University of

Denver. His research interests include ATM, multicast

switching and protocols, optical switching networks, dis-

tributed sensor networks, and game theoretic models for

network design and control.

Readers can contact the authors at phoha@latech.edu,

{iyengar,rkannan}@bit.csc.lsu.edu.

Neural Networks

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib

