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ABSTRACT

This paper presents distributed adaptation techuiques for use in wireless sensor nelworks. As an example application, we
consider data routing by a sensor network in an urban terrain, The adaptation methods are based on ideas from physics,
biology, and chemistry. All approaches are cmergent belaviors in that: (i) perform global adapiation using only locally
available information, /##) have strong stochastic components, and i) use both positive and negative feedback to steer
themseives. We analyze the approaches’ ability to adapt, robusiness to internal errors, amd poOWer consumption,
Comparisons 1o standard wireless communications techniques are given.
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INTRODUCTION

In tlus paper we present four distributed adaptation methods for use by wireless sensor networks (WSNs) 1 Military
Operations m Urban Terrain (MOUT) scenarios. Urban scenarios are challenging since obstructions o radio
commumcations may cause the shortest path belween two points 10 not be a straight line. The chaotic nature of MOUT

usstons mieans paths are not relishle and are highly variable. Only transient paths may exist. In spie of this, tmely
comimumcations are required. Our approaches use local decisions to adapt to a constantly changing substrate, The msights
we gawed by testing these adaptation methods are being used to design and implement wireless routing protocels, The four
methods we analyze ase: (i) Spin Glass, i) Mulu-fractal, /i) Coulombic, and {nyy Pheromone,

1.9, Wireless Sensor Network (WSN) Definition

A WSN s a set of sensor nodes momnoring their environment and provuding users with timely data describing the region
under observation. Nodes have wireless communications. Cennalized control of this tvpe of network is undesirable and
unreahstic due to reliability, survivability, and bandwidth considerations [1]. Distributed control also has other advantages:
fii mereased stability by avoiding single points of failure, (1) simple node behaviors replace complicated global behaviors.
and (1) enhanced responsiveness to changing conditions since nodes react mmediately to lopological changes mstead of
waiting on central command. Our definition of 8 WSN does not preclude nodes being mobile.

1.2 WSN Applications

Consider the WSN application in [2), a surveillance network tracks multiple vehicles using a network of acoustic, seismic
and infrared sensors, For a MOUT application, it 1s essential that the user community have timely track mformauon. Figure
! shows an idealized MOUT terrain, Black squares are walls or buildings that block radio signals. White squares (known as
free cells) are open regions allowing signal transmission. Green (yellow) squares are choke points for signals that are open
(elosed). Finally, red squares are intermittent disturbances that occur at random throughout the sensor field. Random factors
are inseried to emulate common disruptions for this genre of network. Fach square capable of wansmission contains o
sensor node, This amounts to having a sensor field with a uniform density. This provides an abstzact example scenario
dpproximating situations likely to exist in a real MOUT situation. This allows us to examine multiple adaptation techniques
without bemng distracted by implementation details. Afrer evaluating adaptation at this abstract level, the msights ganed can
then be used to create more robust routing protocols,
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Figure 1. kdealized urban terrain. Blue ovalis the darz sink.

1i3; C) WSN Requirements

WSN - applications will typically require & large number of nodes to adequately determine the number, position, and
trajectories of the objects under observation, To be affordable, individual nodes will be inexpensive and thus unreliabie,
Power consumption is an important issue. Our goal is to design a WSN that is Fault tolerant, consumes minimal resources.
supports secure message passing, and adapts well to environmental changes,

L. SPIN GLASS

[sing model is the one of the most important models of statistical physics, Its various seneralizations have been used to
model and analyze many natural phenomena, ranging from biology to social science. Suppose that we have N mignes

spins, &,,1 = 1.2.3...N on a two-dimensional lattice with cach pointing to up (5, =+1) or down(s, =—1). Each spin
interacts with its neighbors and an overall external magnetic ficld. The quantum Hamiltonian energy for a confizuration of
spins &, { is given by:
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The first term in equation 1) represents the coupling energy berween each spin and external field, f{ is the coupling
constant with external field; the second term explains the interaction encrgy between all neighboring spins, K gives the
strength of spin-spin interaction, K is positive for ferromagmetic band and negative for anti-ferromagnetic bond. If & is
positive, spins with parallel directions have lower energy. Spins with anti-parallel directions have lower energy for negative
K,

Spin glass, as a particular vanation of Ising model, contains bath ferromagnetic and anti-ferromagnetic bonds. In most
cases, spins point to random directions and no macroscopic magmetic field is formed due to cancellation among these litle
magnets. However, in some metal such as iron, a lot of little magnet vectors would alien wp, producing a permanent
perceptible macroscopic magnetic field. The phase transition between magnetization and non-magnetization is tuned by
kinetic factor, temperature. Energy minimization force dominates under low temperature and a macroscopic magnetization



forms. Entropy maximization force dominates under high temperature and magnetization was washed away, The probability
tor each possible microscopic spin configuration is defined by Boltzmann distribution function:
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E({5,}): Eneray of system in state {s.}.
E {I } ¢ Summation of energy over all possible states of the system,

K : Boltzmann Constant.
T : Temperature in Kelvin degree,

A simplified quantum mechanics Spin glass model, which still retains basic essence of the Ising model but simple enough o
b solved and sinlated by computer was derived from the real world of iron magnetism to get some insight into the routing
prohlem of WSN. In contrast to normal up and down spin directions; our sensor node viewed as little SpINS N 4 two-
dimenssonal urban warfare scenario can pomnt to eight different directions. It is different from classical physics in which a
little magnet can point to any directions it pleases. The non-zero encray difference associated with all directions is critical
for the large-scale system correlation [8],

We want to establish dynamic data routes from all sensor nodes to the data sink. Due to the radio transmission range limit.
data will be relayed to the data smk m a nwlti-hop manner. First, a dynamic potential ficld defining the minimum
transmission energy 1o reach data sink 15 established through local interactions. Then, potential ficld together with kinetic
factor defines spin direction of each cell by following Boltzmann distribution function. Nevertheless, the formidable
number of all possible configurations required in the denominator of the function bans us from strictly following Boltzmann
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distribution function. Simple brute force method would bring up to 8" possible configurations for a prid with A cells.
Instead, by using local information, only eight local configurations are caleulated in the denominator in our model. Such
simplification not only dramarically reduces computation load, but also excludes global information. For example. we use

TTn.] to represent potential energy value of node n;. Node #,, as one of cight neighbors of node #1,, has potential energy

value denoted as T s, |, Probahility for node 1, to point to neighbor # i+ Pn;;] s given by Equation (3):
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Efn ) : Energy gap for node » to point tw all us eight neighbors.

All eight probabilities add up to one. In our computer simulation. a random number is generated to see which direction
portion it resides in, Then, that direction is picked as the current spin direction, We repeat this decision process for each
sensor node 10 the lattice at each discrete time step. If we sweep the Tattice for a sufficiently large number of times, the
fraction of times for sensor nodes pointing to a specific dircetion will be closed 1o the calculated true probability.

In order to investigate how kinetic [actor tunes the overall macroscopic phase in Ising model. We look at the relative
probability of state A and state B;
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If KT is much larger than the energy gap ( D=F (.4 } - E {B ] ) berween state A and state B. the probability of taking either
spin direction would be approximately the same and system is in high entropy state. 1 the &7 is much lower than D, The
sensor node is far more likely to be in the lower energy state. Generally speaking, low temperature systems favor a beter
performance routing in terms of hop distance. 7 is important, because the shortest path is not the only important criteria. A
large 7 may reduce the power drain on choke points by taking longer routes. An extremely low T can protect the system by



reducing oscillations in the system. Moreover, T can be specificd on a per-repion basis, allowing flexible contral over the
terrain.
A sequence ol “snapshot” of the system will be captured and displayed as a time dependent process in our simulation

anirrgtinn. Our approach works differently from the standard technique for staristical physics simulation, Metropolis
algorithm, however, the underlying ides is similar.
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To gquannfy system adaptation we measure the mean distance from each node to the data sink. Fig 2 shows the mean
number of hops versus generation number (time step) for a low temperature system (Low T), high temperature system
(High T), and a system with a topological disturbance (Disturb). Topological disturbances correspond to choke points in
figure 1 opemng or closing. The system converges well when T is small, but not when T is large. Topological disturbances
are accommodated after a number of fuctuating generations. Fig 3 Further illustrates how mean distances are affected under
vanous temperatures. We observe that there 1s an abrupt rise in mean hops if temperature is raised above 300 Eelvin,
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The amount of message sent during routes ¢stablishment phase 1s quantified to evaluate the scalability of our routing model,
We also study how Spin glass model behaves under error conditions, Fig 4 demonstrates how system performance i terms
of mean hops is affected by error condition. Error conditions can either be that nodes randomly choose 2 spin direction
instead of following Boltzmann distribution function or nodes send incorrect potential values neighbors. We notice that
system 15 very sensitive to error condition, Performance drastically deteriorates as error begins to occwr even at very low
level of 1%. Fig 5 illustrates the communication cost versus error conditions, As expected, the amount of messazes
exchange increases largely due 1o crror message diffusion throughout the system. We conclude that although Spin glass
madel achieves high performance, the power consumption cost is high and error tolerance s very limited,
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M. MULTI-FRACTAL

Benoit Mandelbrot father of fractal(1970°s) first proposed the notion of fractal, which stands for an irregular peometric
object with an infinite nesting of structure at all seales, Examples of fractal objects in nature include coastline, cloud, river
and tree, Study shows that multiplicative iteration of random processes creates multi-fractal structure, while additive
processes generate mono-fractals [9]. Fractals are objects are characterized by “fractional dimension™ and “self-similariny™.
A single exponent can define mono-fractal, but Multi-fractal can only be depicted by a hicrarchy of exponents, People
usually call the nen-inleger exponent index to be fractal dimension.

The classic irreversible fractal growth model for gas and fluid is called Diffusion Limited Aggregation (DLA), first
introduced by Witten and Sander{WS5) in the early 1980s. Beginning with one foreign seed or even a line segment, random
walk of gas or fluid particles become immobilized upon contact with the seeds, if certain crystallization condition is
satisfied. Randomly diffusing particles keep sticking 1o each other and form an aggresate. The structure of this fractal is
affecied by many factors including crystallization growth inhibition exerted by the crystallization site to the nearby
particles. Interfacial surface tension and latent heat diffusion effects can physically explain this inhibition [10]. Such WS
like cluster examples can be found in metal electro-deposition experiments. Fig 6 illustrates a erystal structure formed from
a straight-line segment.

In our Multi-fractal routing model, data sink is set to be the single foreign seed. Each sensor node vibrates in the lattice
without randemly wandering around like gas or fluid particles do, however, we don’t exclude the mohility of sensor nodes,
A routing iree starts growing from the seed. A sensor node can possibly attach iself 1o the tree only i any tree nodes reach
its neighborhood. Based on the number of neighboring immaobilized tree nodes, a set of probabilities of joining the routing



tree 18 specified. Theoretically speaking, cells are less likely to join in the routing tree as the number of neighboring tree
nodes increases. Depending on different level of repulsion effect embedded in the crystallization inhibition parameters,
namely the probabilities sets, the growth rate and the routing tree structure can be controlled. Generally speaking, a sparse
tree with high region coverage grown in reasonable amount of time steps is desired, In order to select a probabilities set for
& good routing tee, a finess function is constructed to evaluate the quality of the routing trees. For tree | grown under a
certain probahilities set, fitness value is computed as:

C (5)
I35 |
T./b+N,
C. : repion coverage in percentage
1} : Discrete time steps.
1"'-."_r. : number of tree nodes.

b: constant used to normalize time steps and number of tree nodes. The higher the fitness value is. the better the routing tree
15. Constant & actually represents our tradeoff between sparsity and routing time.
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Fig7 shows the mean number of hops per generation number (time step) with and without topological disturbances (as for
the Spin Glass model in fig 2.). Communication cost as well as error tolerance are investigated as for the Spin glass,
Malfunctioning nodes are no longer restrained by desired Multi-fractal behavior. Twa principle malfunctions have been
modeled: 1) faulty nodes have the same probability of joining the tree or not 2) faulty nodes randomly choose neighber trec
node o attach o,
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Fig § shows how the error condition affects the routing performance. We notice that there 15 a shight increase in the mean
hops when random error comes into place, and then the mean hops begins to drop down by almost half and stay steadily
when error percentage goes up to 20 percent, We may ask does emor condition actually improves routing performance? In
fact, the shorter mean hops come with the cost of denser trees. Recall that we want a sparse tree, which covers most of the



region. However, the final tree consists of approximately 75 percent more tree nodes compared with the original zera-crror
tree. The finess of ervor conditioned tree is actually not ameliorated.

We also investigate how error condition impacts the communication cost, Fig 9 demonstrates that error condition incurs
considerably larger communication events; nevertheless, the extra communication cost is comparably much lower than thar

of Spin Glass model under the same error circumstance. It indicates that Multi-fractal model is more error resilient in terms
of performance and power,

IV, COULOMBIC MODEL
The Coulombic model is o preprocessing step for use with the pheromone algorithm discussed in section V. The
pheromone model requires data sources to he evenly distributed throughout the network to conserve bandwidth. The
Coulombic model was been designed to fulfill this task. Initially data packets find the data source nearest to the node they
are occupymg. Pheromone routing is then used to maintain efficient routes between data sources and sinks. A similar
approach applied to sensor node placement for sensing coverage is in [3].
The Coulombic model is roughly based on charged particle interactions defined by Coulomb’s Law as stated here:

F=g/*q/ (4r g,d"), (2)

where I is the amount of force on each particle, gl is the net charge on particle I, g2 is the net charse on particle 2, g0 is
the constant permittivity of free space, and d is the distance berween the two particles.

We utilize two properties of Coulomb's Law: (i) the relationship between distance and force and (ir) the mdependent
nature of each pair of parlicle interactions, The sccond property allows the approach to rely solely on local information
and peer-to-peer interactions,

The mapping of the Coulombic model to our abstract network representation follows. Data sources are particles with
¢qual charge and polarity. Distance 15 measured as the number of hops between data source pairs. The sensor nodes,
called free cells, act as vessels throush which force can be transmitted. Since repulsion can attain the goal of evenly
distributing data sources, we require only one polarity, and hence there is no concept of attraction in this model.

An example output from the algorithm 15 provided in Fig. 6. In this example checkered objects are data sources, pink
cells are data sinks, grey arcas are walls (similar in concept to Fig, 1), and white regions are free space. The miagnitude
of force is indicated by the intensity of the color blue in the free cells.
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Fig. 6. Quipul from algorithm

The global behavior of having well distributed data sources emerses from the local node behaviors of all sensor nodes in
the network, When examining communication behavior there are three different groupings of cells in the algorithm. Dara
sources comprise one of these groups, They are responsible for generating force into their neighbors. Free cells form the
second group; in essence these cells transmit foree in manner similar to Coulomb’s Law, namely that the original force
gensrated from the data source dies out with increasing distance. These cells calculate their force by adding a percentage
of the force from their neighbors, The third group is composed of walls and other obstacles. These cells do not take part
mn the transmission of force.



Relying upon local information to track the origin of force without incurring the huge overhead of recording which
component of foree is due to which data source has caused us to break the force down into a horizontal and a vertical
component each of which has a polarity, The force generated from a data source bpon its neighboring cells depends
upon their relative orientation. Fig. 7 provides a pictorial representation of how the aleorithm implements this idea. To
determine the net force upon a particular cell it adds a percentage of the force from its neighbors keeping the horizontal
and vertical components separated. This allows the force from multiple data sources ta merge together and cancel cach
other out, and hence the routing data is ereatly simplified.
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Fig. 7. Data source exhibiting farce upon its neighbors (Change)

How the desired behavior of having the data sources move away from cach other may not be immediately abvious and
requires further explanation. For a data source to be in equilibrium (i.e. it is sufficiently far away from any other data
source) the net force that is calculated from adding up the force values from its neighbors will be close 1o zero, 1 there
15 another data source nearby then the aggregate force will not be close to zero. and the data source will use this
miormation to move away from the other data source. As an éxample consider the two data sources in Fig. 6 that are in
the upper right corner. Fer the data source on the right observe how the force on immediately on its left is much less
than the force on the right. This is because the right data source is generating a negative horizontal component in ils lefi
neighbor, while the left data source is generating a positive component in this cell, causing some cancellation of force.
The result is that the net force acting upon the right data source will have a positive horizontal component. The right data
source will then determine that it should move to the right,

This algorithm must assure that the speed at which force propagates through the region is significantly faster than the
rate al which the data sources can move, to ensure that data sources are using steady state information, This requirement
was derived after observing that it required n generations for the force penerated by the data sources to cover an n*n
region of space.  The algorithm performs this by requiring data sources to wait n generations in between successive
moves,

Since the notion of path length is meaningless within the context of this model a different metric than what has been
used with the other models discussed within this paper was developed to characterize the performance of the Coulombic
model. We define this metric as the mean distance of all of the free cells in a particular scenario from their closest data
source. Fig. 8 shows this metric for various parameter sets, The DR (TR) parameter controls how rapidly forces
dissipate (diffuse) in the system for cach generation of the algorithm. Parameter sertings indicated with squares
itriangles and x°s) are optimal {suboptimal),
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To guarantee that the Coulombic model convergss 1o a steady state and data sources do not oscillate ceaselessly, the
charge diminish rate parameter was introduced. Because of this parameter the charge associated with each data source
decreases with cach time step. After enough generations have passcd the charge of each data source will hiave reached
2ero and steady state behavior can be guaranieed. The occurrence of steady state can be predicted using the following
equation:

.
N=In(T.)/ -CDR, 1)

where ™ is the number of generations needed to attain steady state, Ts 15 the Stopping Threshold parameter explamed
subsequently, and CDR 15 the Charge DHminish Rate parameter. The purpose of the stopping threshold parameter s 1o
determine when the charge on a data source 1s considered to be zero (i.e. fully diminished), The effects of the charge
diminish rate as well as (he stopping threshold parameters are illustrated in Fig. 9. This graph indicates thar the choice of
the charge dinminish rate should be higher than 01 for the algorithm to finish in-a imely manner, and that the choice of 2
stopping threshold 15 of minar consequence in comparison 1o the choice of charge dinumsh rate.
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Not surprisingly thee charge diminish rate parameter has direct control over the power consumption of the model. This
relationship is illustrated in Fig. 10. This parameter also has an impact on performance as Fig. 11 indicates. Our resulis
indicate that for this model performance and power have an antagonistic relationship. A low (high) charge diminish rate
vields high (low) performance and high (low) power consumption. It is important to note that while a charge dimmish
rate of zero would yield optimal performance, however the model would not be guaranteed to ever reach a steady state
and hence power consumption would be unbounded. Increasing this parameter beyond .08 changes both power and
performance by very smiall amounts, As  result a good parameter setting for both power and performance metrics is in
the vicinity of .04,



The pheromone model used s based on how ants forage for food and is related 1o the routing algorithm in [4]. Data
sources (sinks) are modeled as ant nests (food). Messages are ants, The pheromone that the ants release is stored i the
sensor nodes distributed throughout the network, Ants altempt 1o find paths between the nests and food sources, They
release two different phéromones: (7} search pheromone when they look for food and (i1} return pheromone when they
have food and retum to the nest,

There are two mechanisms for ant movement. The first is that they follow a random walk. The second is that they scarch
for the opposite pheromone of the one they currently release. Ants searching for food tend to follow the highest
concentration of return pheromone. Ants returning to the nest tend to follow the highest concentration of search
pheromone. This is modeled as a probability distribution where cach ant is more likely to move following the pheromone
gradient rather than randomly,

The approach in [4] was designed for wired nelworks. Qur scenario is more similar to an open field In our mitial
implementation a pathology was noticed where ants moving to and from the data sink would eluster together and never
reach their destinations. To counleract this, we caused the ants 1o be repulsed by the pheromone they currently cmit, A
parameter was created denoting the relative suwength of repulsion and attraction. This compels ants not to stay 1n one area
and solved the pathaology.

To evaluate this algorithm’s performance we measure the number of hops an ant needs to make a round trip from its nest
to a food source. Fig. 13 plots this metric versus the repulsion ratio. A ratio of approximately 90% works best. To
evaluate the algorithm’s power consumption we have used the same metric as was used in previous sectioms, namely
how often each cell changes its state. Fig. 14 shows how varying the repulsion ratio effects the power consumption of
the algorithm. Analysis of this graph indicates that increasing the repulsion ratio beyond 90% has a positive effect on
power and that a ratio of 90% (which yields optimal performance) also yields the highest power consumption.
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The rate at which a data source (ant nest} generates ants is controlled by a parameter setting. This parameter denotes the
probability that a data source will spawn an ant i any particular generation, Fig. 15 shows how varying this parameter
alfects performance; a spawn frequency at or above 25% yields good performance. We have also evaluated how spawn
frequency affects power as is seen in Fig. 16. Power increases quite rapidly for spawn frequencies below 25%. Heyond
this point the rate that power increases hecomes quite small,
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We have evaluated this algorithm for several different error conditions to determine its robustness. These error
conditions are: (i) Haywire Random (a random selection of ants will move randomiy for a random amount of tme); (i)
Haywire Weighted (a random selection of ants will follow the opposite pheromone), and (7ii) Haywire Cells (& random
selection of cells will produce a random amount of pheromone). How these error conditions affect performance 1s
illustrated in Fig. 17, Notice how up to 50% of ants affected with haywire random ends up increasing performance. The
effects af haywire cells and haywire weighted are pretty similar, in that they reduce performance pretty drastically up o
about 25%, where further hits to performance begin to level off. Tn Fig. 18 we show how these error conditions affect the
power consumption of the algorithm. The effect of haywire random on power is pretty minimal. There is a shght
decrease in power around 50% for this parameter. The power consumption for haywire cells is quite dramatic, anything
beyond 25% is near maximum power consumption. The decrease in power consumption attributed to haywire weighted
can be atiributed to how this behavior tends to cause the ants to conglomerate into groups and not move, which has the
side effect of reducing communication.
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It has been our experience that mcorporating a random component into these algorithms usually results in improved
performance. The manner in which we have included randomness into this algorithm is by having the ants occasionally
move random insiead of utilizing the pheromones. The performance impact of this method 15 presenred in Fig. 19, We
have determined that a parameter value of about 25% is best for improving performance. We have also evaluated the
random movemen! capabality on power consumption. The results are provided in Fig, 20, We have determined thar
power consumplion and the random movement parameler are unrelated,
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Fig. 20, Effect of random ant movement on power

A parameter known as diffusion rate has been concocted so that the algorithm can control how readily the pheromone in
one cell spreads to its neighboring cells. This parameter's effect upon performance is provided in Fig. 21, From our

experience a setting of .1 works best. The effect of diffusion upon power is illustrated with Fig. 22. This graph indicates
that a diffusion rate of below .2 is good for power.
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Fig, 21, Effect of diffusion on performmance Fig. 22. Effect of diffusion on power

We have included another method to help increase performance. This method is known as evaporation. In each
generation of the algorithm & certain percentage of the ant pheromone evaporates (i.e. it disappears). The purpose of
developing this technigue was an atiempt 1o reduce the power of the algonithm. As Fig, 23 indicates evaporation heyond

05 begins to adversely affect performance. Interestingly enough parameter settings below 05 improve the algorithm’s
performance,

We have analyzed evaporation based on power as well. Not surprisingly increasing the value of this parameter helps to
reduce the power of this algorithm, Unfortunately, any parameter setting that would result in significant power savings
comeides with greatly decreased performance. As a result we find a setting of .01 to be optimal.
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Fig. 23, Effect of evaporation on performance

Fig. 24, Effect of evaporation on power

VL PROTOCOL COMPARISON AND DISCUSSION
Many routing protocols have been propesed for WSNs. The Link State (LS} routing algorithm requires global
knowledge about the network. Global routing protocols suffer serious scalability problem as network size increases [6]
Destination-Sequenced Distance-Vector algorithm (DSDV) is an iterative., table-driven, and distributed routing scheme
that stores the next hop and number of hops for each reachable node. The routing table storage requirement and periodic
broadeasting are the two main drawbacks to this protocol.|6] In Dynamic Source Reuting Protocol (DSR), a complete
record of traversed cells is required to be carried by each data packet. Although no up to date routing information is
maintained in the intermediate nodes' routing table, the complete cell record carried by cach packet imposes storape and
bandwidth problems. Ad-Hoc On Demand Distance Vector Routing Algorithm (AODV) alleviates the overhead problem
in DSR by dynamically establishing route table entries at intermediate nodes, but symmetrie links are required by
ADDY, Cluster-head Gateway Switch Routing (CGSR) use DSDV as the underlying routing scheme to hicrarchically
address the network. Cluster head and gateway cells are subjeet to higher communication and computation burden and
their failure can greatly deteriorate our system [5]. Greedy Perimeter Stateless routing algorithm (GPSR) clamms o be
highly efficient in table storage and communication overhead. However, it heavily relies on the self-describing
geographic position, which may not be available under meost condidons. In addition, the gready forwarding mechanism
may prohubit a valid path to be discovered if some detouring is necessary [7].
The Spin Glass and Multi-fractal models are related 1o the table-driven routing protocols by establishing routes from
every cell to data sink(s). These protocols ensure timely data transmission on demand without searching for the route
each time. The Ant Pheromone model is related 1o the packet-driven protocols. Ants can be viewed as packels traversing
from data sources to data sinks. All of the models we presented are decentralized, using only local knowledge at each
node. They dynamically adapt to topological disturbances (path loss). Storage requirements for the routing fable of Spin
Cilass and Multi-fractal are low compared with most other protocols, while the Ant Pheromone's storage réquirements
are even lower than these two,
The Temporally Ordered Routing Algonthm (TORA} is a source initiated and distributed routing scheme that shares
some properties with the Spin Glass model. Tt establishes an acvelic graph using height metric relative to the data sink
and also has local reaction to topological disturbances [5].
The kinetic factor in our Spin Glass model and the frequency of ant generation in the Ant Pheromone model provides the
system with flexibility in controlling routing behaviors under various conditions. Route mumintenance overhead is
maoderately high lor the Spin Glass model.
The Multi-fractal approach, as a probabilistic space-filling curve, has very light computation and communication load,
and overhead is saved in route discovery and maimtenance. This is at the cost of a higher distance to the data sink(s),
Bouwte maintenance overhead for the pheromones is low due to the reduced number of nodes involved in each path. Since
the Mult-fractal model strives to cover the sensor field by using as few cells as possible, the sparse routing tree sparse
conserves energy. The shortest routes to the data sink are not found using the Multi-fractal model.
On the other hand, Spin Glass model is more sensitive to internal errors since any possible error may diffuse throughout
the network. The Muolti-fractal and Ant Pheromone models are very resistant 1o intemal errors, The time required for the
Anl Pheromone algorithm fo converge to a steady state is much longer than required by the ather two adapiations. For
appheations requiring short data paths, the Spin Glass model is preferred.  For overhead sensitive applications that
require gquick deplovment, the Multi-fractal model {5 a better candidate, 1f ¢rror resilience and low overhead are the



principle requirements, then the Ant Pheromone model is appropriate. Hybrid methods or switching between methods at
different phases may be useful.

VIL CONCLUSION
The purpose of our work is to develop adaptive networking methods for ad hoc WSNs. We performed analyzed the
algorithms based on resource consumption, fault tolerance. number of nodes required, sensitivity 1o algorithm
parameters, and critical points where phase changes oceur
This conference paper summarized some of our results, We are now using these insights to design wireless routing
protocols in conjunction with researchers at the University of Wisconsin, Two applications are foreseen for these
adaplive protocols.
One application is for the system 1o tolerate mtermittent hibernation by a non-negligible subser of the WSN nodes. This
should significantly prolong the lifetime of the system.
The other application is to maintain multiple routes o a single data sink. This should both prolong the system lifetime
and support information assurance requirements.
In addition to this, we are continuing our analysis of system adapsation. A unilving ahstraction 15 being considercd that
contains these approaches as a subsel It may then be possible to analytically derive local behaviors to maintain globally
desirable system attributes,
Qur approach is to consider and test the adaptation problems of the system at an abstract level first, Insights sained a1
this fevel can then be used in protocol design and implementation. We are currently designing the protocols for
implementation and testing with standard network tools like NS-2,
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