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Abstract—Biological systems present remarkable adaptation,
reliability, and robustness in various environments, even under
hostility. Most of them are controlled by the individuals in a
distributed and self-organized way. These biological mechanisms
provide useful resources for designing the dynamical and adaptive
routing schemes of wireless mobile sensor networks, in which the
individual nodes should ideally operate without central control.
This paper investigates crucial biologically inspired mechanisms
and the associated techniques for resolving routing in wireless
sensor networks, including Ant-based and genetic approaches.
Furthermore, the principal contributions of this paper are as
follows. We present a mathematical theory of the biological com-
putations in the context of sensor networks; we further present a
generalized routing framework in sensor networks by diffusing
different modes of biological computations using Ant-based and
genetic approaches; finally, an overview of several emerging
research directions are addressed within the new biologically
computational framework.

Index Terms—Adaptive routing, ad hoc networks, ant-based
routing, ant colony optimization, biological computing, dynamic
routing table, genetic approach, sensor networks.

I. INTRODUCTION

THE MANUFACTURING of small and low-cost sensors
has become economically feasible due to modern elec-

tronic fabrication techniques. These sensors measure the phys-
ical parameters in the environment surrounding them and then
transform these acquired measurements into the signals which
can be processed to characterize the local phenomena associated
with the surroundings. Nowadays, a large number of sensors are
deployed wirelessly; hence, a wireless sensor network (WSN)
with communication capabilities plays an important role. There
are various applications of WSN. For example, the WSNs have
ubiquitous military and civil applications such as target field
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imaging, intrusion detection, weather monitoring, security and
tactical surveillance, distributed computing, ambient conditions
tracking for temperature, object movement, sound, light, inven-
tory control, and disaster management. Typically, WSNs con-
sist of hundreds or thousands of sensor nodes, and these sensor
nodes usually possess the capability of communicating with the
centralized sensor base station (BS) and each other. Since the
coverage of the individual sensors is geographically confined,
a greater number of sensors are often deployed to increase the
coverage region for the sensing accuracy.

Iyengar et al. recently explored several new routing schemes
for wireless sensor networks [1]–[10]. To broadcast the sensed
information among a WSN, usually a low-cost and fast routing
method is needed. Resource- and robustness-constrained
routing has been introduced in [2]–[4], [6], [7], and [10].
Graph theory and greedy search algorithm have been adopted
in [1], [8], and [9]. Adaptive routing has been discussed in [5].
However, those classical routing methods are employed by a
sensor node or a base station independently. More recently,
biologically-inspired cooperative routing has begun to draw
attention from many researchers [11], [12].

Many desirable characteristics, such as scalability and ro-
bustness, are exhibited in biological systems despite of indi-
vidual simplicity, wherein the global complex structures are typ-
ically flexible to adapt to a new environment and are robust to
resist occasional individual failures. For individuals, their be-
havioral capabilities are limited and their cognitive systems are
not powerful enough to acquire global knowledge. The collec-
tive behavior of biological species (e.g., ants) provide a natural
model for distributive problem solving without any extra cen-
tral control or coordination. The bottleneck of the current bio-
logically-inspired research is to investigate how the collective
complexity arises from the individual simplicity. Studies have
shown that self-organization and stigmergy are two key ideas
in swarm systems [13], [14]. The basic concepts of self-organi-
zation include positive feedback, negative feedback, fluctuation
amplification, and multiple interactions.

Consider the ant colony as an example to illustrate these con-
cepts: the action of disposing pheromone is a positive feedback
mechanism to recruit more ants such that more pheromones
are disposed on the shorter path; however, the evaporation of
pheromone is a negative feedback to reduce the pheromone
level; in this way, the shortest paths to the food source can be
found accordingly. Moreover, stigmergy is defined as the indi-
rect communication used by ants in nature to coordinate their
joint problem solving activities. Ants achieve stigmergic com-
munication by laying a chemical substance called pheromone
[15], [16] that induces changes in the environment which can
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Fig. 1. Example of ACO.

be sensed by other ants. In recent years, computer scientists
were able to transform the models of collective intelligence of
ants into the useful optimization and control algorithms [13],
[17]–[20]. For example, in the interesting and emerging field
of ant colony optimization (ACO) [15], [17], [18], [21]–[23]
a colony of ants is typically modeled as a society of mobile
agents [24]–[27]. ACO has been applied in many combinato-
rial optimization problems such as the asymmetric traveling
salesman problem [28], [29], graph coloring problem [30], and
vehicle routing problem [15]. In this paper, we will discuss
how ACO can be adopted for the efficient and robust routing
for wireless mobile sensor networks. First, we will focus on
the ACO approaches in network routing; for instance, the
genetic algorithm (GA) is a typical biologically-inspired search
procedure for finding the exact or approximate solutions to
optimization problems.

This paper investigates robust biologically-inspired algo-
rithms and also draws the algorithmic profiles when these
algorithms are applied to wireless mobile sensor networks.
The rest of this paper is organized as follows. In Section II,
we provide a brief introduction to ACO which is based upon
the collective shortest-path searching behaviors in ant colonies.
According to the ACO principles described in Section II, we
investigate various flavors of the Ant-based routing algorithms
for sensor networks in Section III. In Section IV, we introduce
the GA that simulates the process of genetic selections and
the GA-based routing schemes for the wireless heterogeneous
networks. The concluding remarks are drawn in Section V.

II. ACO

In this section, a brief introduction to ACO is given and the
problem of stagnation which commonly appears in ACO is dis-
cussed. A review of the ACO-based routing algorithm is subse-
quently provided.

A. ACO

The ideas of using ACO to find an optimal path can be found
in [17] and [31]–[33]. Suppose that there are two ants and two
routes leading to a food source; and , such that the length
of is greater than the length of . Along the two routes,
there are six nodes: (nest), , and (food
source). At the beginning, both ants ( and ) are at the
starting point (nest) and they have to select one of the two
routes to reach the food , as depicted in Fig. 1.

An example of the procedure of finding the shortest path to-
wards the food by these ants is described as follows.

1) At , both ants have no knowledge about the location of
the food. Hence, they arbitrarily select one path from these
two routes. Suppose that ant chooses the route , and
ant chooses the route .

2) As moves along and moves along , the ants
leave some amount of pheromone along their paths
and , respectively.

3) Since reaches before . When tra-
verses to reach , the value of will be set equal
to 1, but has not reached and the value of
will be set to 0. To return to the nest from the food,
has to choose between and . At detects that

, and therefore, has a preference for route
. Suppose that chooses .

4) As traverses for the second time to reach
becomes 2. The incremental value of confirms again
that is the shortest path. When reaches

, and . Hence, is more likely to select path
to return to .

In this example, any ant at (respectively, ) will be
able to determine the optimal path once another ant reaches

(respectively, ). If an ant is at a choice point when there
is no pheromone, it makes a random decision to take either

or with a probability of 0.5 for each route. However,
when pheromone is present, there is a higher probability that
the ant will choose the path with the higher concentration of
pheromone. The previous example in Fig. 1 was presented by
Schoonderwoerd et al. [32] to illustrate the pheromone trail
laying and it was in turn adopted from [34]. In [34], Beckers et
al. described the pheromone trail laying by a type of ants known
as Lasius Niger, which dispose pheromone when traveling both
to and from the nest [15]. However, it is noted that there are
other types of ants that adopt the pheromone trail laying [35].
Furthermore, there are some other ACO approaches (e.g.,
AntNet [18], [36]) that used the privileged pheromone laying
(see Section II-B), in which ants only dispose pheromones
during their return trips.

B. Stagnation in Network Routing

Stagnation occurs when a network reaches its convergence
(or equilibrium state); an optimal path is chosen cooperatively
by all ants and this recursively increases an ant’s preference for
the optimal path . This may lead to the following problems:
1) the congestion of and 2) the dramatic reduction of the
probability of selecting other paths. These two issues are un-
desirable for a dynamic network because of the following rea-
sons: 1) may become nonoptimal if it is congested; 2) may
be disconnected due to network overload or failure; or 3) other
nonoptimal paths may become optimal due to the dynamical
changes in the network topology. Furthermore, Bonabeau et al.
have pointed out that the success of ants in collectively locating
the shortest path is only statistical [13]. If by chance, many of
the ants initially choose a nonoptimal path, other ants are more
likely to select such a nonoptimal path leading to the further re-
inforcement of the pheromone concentration along this nonop-
timal path [37]. This phenomenon is foreseeable but undesirable
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Fig. 2. Evaporation effect of ants’ pheromone disposition.

Fig. 3. Aging effect of ants’ pheromone disposition.

since it is inefficient if ants always choose such a stagnant path
that is nonoptimal.

To alleviate this stagnation problem, three main approaches
are utilized: pheromone control, pheromone-heuristic control,
and privileged pheromone laying. We will discuss these in the
following.

Pheromone Control: Pheromone control provides several
methods to reduce the influences from past experience and en-
courages the exploration of new paths or the paths that were pre-
viously deemed nonoptimal. We address some methods here.

1) Evaporation Method: to reduce the misleading effect of
the past experience, an approach called evaporation in [18]
is typically used in conjunction with ACO. The evapo-
ration method prevents the pheromone concentration in
the optimal paths from being too high for ants to explore
other (new or better) alternatives. In each iteration of this
method, the pheromone values at all vertices of the paths
are discounted by a factor. An example of the evaporation
is shown in Fig. 2. Suppose that at some iteration ,
all ants converge on a path and dispose of a very high con-
centration of pheromone (represented by a thick line). In
the next iteration , the pheromone concentration is
reduced by some factor (represented by a thinner line), and
at , the pheromone concentration is further reduced.

2) Aging Method: past experience can also be reduced by
controlling the amount of pheromone disposed by each
ant according to its age. This approach is known as aging
[32]. In the aging mechanism, an ant disposes less and less
pheromone as it moves from node to node (see Fig. 3).
Aging is simply based on the fact that “old” ants are less
useful in locating the optimal paths since they may have to
spend a longer time to reach their destinations. Both aging
and evaporation include a decaying factor of the routing
preference. Hence, if a favorable path has not been chosen
recently, its preference will gradually diminish. With the
continuous update of the history for the pheromone dispo-
sition, both aging and evaporation increase the chance to
discover new paths that were previously deemed nonop-
timal.

3) Limiting and Smoothing Pheromone Method: Stuzle and
Hoos mitigated stagnation by limiting the maximum al-
lowable amount of pheromone in every path [38]. With an
upper limit on the amount of pheromone for every
link in a network, the preference of an ant for choosing
optimal paths over nonoptimal ones is reduced [39]. This
approach prevents the situation of generating a constantly
dominant path. A variant of such an approach is called
pheromone smoothing [39]. In the pheromone smoothing
scheme, the amount of pheromone evolved from

along a link between node and node is
updated as follows:

(1)

where is a number between 0 and 1. According to (1),
as a smaller amount of pheromone
is reinforced along the link . Although not identical,
the pheromone smoothing method is similar to the evap-
oration method in some respects. While the evaporation
method adopts a uniform discount rate for every path, the
pheromone smoothing method leads to a relatively greater
reduction in the reinforcement of pheromone concentration
on an optimal path. Therefore, the pheromone smoothing
method seems to be more efficient in combating the stag-
nation problem.

Pheromone-Heuristic Control: Another approach to mitigate
the stagnation is to configure ants so that they do not solely rely
on sensing pheromone for their routing. This can be accom-
plished by configuring the probability function for an ant to
choose a link using a combination of both pheromone con-
centration and heuristic function . As noted in [22] and
[28], an ant selects a link probabilistically using and
as a functional composition for . In a network routing,
is a function of the costs associated with link . The value
of may be determined by the linking information such as
queue length, distance, and delay. In [22] and [39], is deter-
mined by the queue length and as

(2)

where denotes the set of all available interconnecting nodes.
In [39], at time is characterized as

(3)

where and specify the respective adjustable weights of
and . Hence, the routing selection of ants can be tuned ac-
cording to the different values of and . If , ants prefer the
paths with higher pheromone concentrations, and a higher value
of increases the chance for ants to choose the paths having
higher concentration values. In general, different values of and

are selected to fit the different states of a network. A lower
value of is generally preferred when the pheromone concen-
tration along the paths may not necessarily reflect its optimality.
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Examples of such situations include the initial stage after set-
ting up a new network (before the network stabilizes), and when
there are frequent changes in the network status due to either
link (or node) failure or insertion of new links (nodes). How-
ever, as a network becomes stable, a higher value of is pre-
ferred. Furthermore, recent research in [39] has demonstrated
that dynamically altering the values of and corresponding to
the changes in the network status may improve the performance
of ants’ cooperative routing.

Privileged Pheromone Laying: One of the early enhance-
ments for the ACO algorithm is to mitigate the stagnation by
adopting the policy of the privileged pheromone laying [18],
[40]. Experiments in [18] and [40] demonstrated that by permit-
ting a selected subset of ants which have the privilege to dispose
larger amounts of pheromone than others, the time for the ants’
routing to converge to a solution reduces significantly. In this
approach, the following two important questions are addressed:
1) the evaluation for the quality of the solution for ants and 2) the
number of ants to be selected to dispose extra pheromone and
the surplus amount of pheromone those ants are permitted to
dispose. One of the simplest approaches to assess the quality
of the solutions for ants is to just compare their forward-trip
durations. Alternatively, employing a fitness-landscape (FDC)
approach, Stuzle and Hoos compared the forward-trip time of
each ant with the optimal forward-trip time [38].

In the FDC, the destination node records the optimal for-
ward-trip time (based on the observation) and the solution
of an ant is assessed by a nonlinear function specifying how
close the forward-trip time of an ant is to . To illustrate this
concept, a simple example is shown in Fig. 4. In Fig. 4(a), orig-
inating from different sources, three ants , and ar-
rive at the destination, each via a different path. Following the
FDC approach, at the destination, the optimal forward-trip time
is recorded (based on the previous observation), and all of the
forward-trip times of ants , and are compared with

. In this example, since arrives first at the destination, its
forward-trip time is closest to . For the case in which ar-
rives at the destination with a smaller forward-trip time, the orig-
inal value of will be updated accordingly. Consequently,
will dispose the largest amount of pheromone on its return trip
via the same path from which it came. Since arrives after ,
and arrives after , on their return trips via the same paths
they came from, will dispose more pheromone than , but
less than [shown in Fig. 4(b)].

In summary, the FDC function evaluates the fitness of a so-
lution by comparing the solution of each ant with respect to the
optimality. Since the solutions are compared (the fitness of each
path is evaluated) before ants dispose their pheromone, Stuzle
and Hoos have found that using the FDC analysis, more accurate
results can be obtained [38]. In their approach, since the amount
of disposed pheromone corresponds to the time delay of the trip,
an ant will dispose less pheromone along a path that is longer or
congested. Consequently, this reduces the chance of ants inten-
sifying a stagnant path that is nonoptimal or congested. In the
previous example, all three ants dispose pheromone in different
amounts on their return trips. In other approaches, such as [41],
only a subset of ants dispose pheromone, and in [38], only the
best ant disposes pheromone on its return trip, which restricts
the number of ants to make their return trips.

Fig. 4. (a) Three ants arrive at the same destination through different paths.
(b) These ants dispose different amounts of pheromone on their return trips (de-
noted as the circles with different sizes).

III. ACO-BASED ROUTING ALGORITHMS

Recently, some ACO-based routing algorithms (often re-
ferred as “Ant-based” [15], [31] or “ant-like” [17]) have
emerged for the employment with circuit-switch and voice-ap-
plication networks [31], wired networks [18], mobile ad hoc
networks, and sensor networks [21]. Although these dif-
ferent biologically-inspired routing algorithms are designed
in different ways to satisfy various objectives, they share the
common ACO mechanisms, such as pheromone updating rules
and transition rules. Typically, the pheromone level represents
the preference of the selected route, which is communicated by
the ants. Different design aspects or metrics can be reflected
by the pheromone updating and transition rules. In this section,
we will review some important algorithms to demonstrate how
ACO is used for routing in a network, and how the pheromone
updating and probabilistic transition rules are formulated there-
upon. We will first study the routing problem in the traditional
wired network and then extend our studies to the wireless ad
hoc networks.

A. ACO in Wired Nets

Ant-based control (ABC) is a pioneering routing algorithm
designed for use with circuit-switched telephony networks [15].
In ABC, each network node preserves a routing table where
each row corresponds to the destination nodes and each column
corresponds to a neighbor. Once such a table is established, each
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entry denotes the next-hop probability associated with each des-
tination. The packets can be modeled as the ants traverse the net-
work and update the routing tables at every node in accordance
with the age of the arriving ant (the duration for the packet sur-
vival in the net). The chance of an ant’s arrival at a node (the
arrival rate of a packet) decreases with the age of the ant (the
packet survival duration). The reciprocal of an ant’s age can
be deemed as the pheromone concentration, although there is
no explicit pheromone formulation. Thus, if an ant arrives at a
node, the chance of an ant’s arrival is governed by the normal-
ized probabilistic transition rule for the new cell entry as

(4)

where is the previous probability for an ant’s arrival and
and are the design parameters. This

ABC mechanism facilitates a potential solution to the dynamical
routing problem and performs very well for British Telecommu-
nications Networks [15].

AntNet in [18] solved the routing problems in wired net-
works, in which each node preserves the probabilistic entries
in a routing table like the aforementioned ABC scheme. In an
actual network operation, the next-hop node with the highest
probability among all is always chosen. Each node periodically
sends an exploration agent called forward ant to the randomly
selected destinations. The forward ants record their arrival times
and the node identities in a stack when every node is visited. An
ant reaching its destination is immediately converted to a back-
ward ant and it returns to the source node following the path in
reverse. Then, each intermediate node updates its routing tables
according to the information extracted from the backward ants.
For example, the probability of the route with shorter round-trip
time will be increased due to the frequent travels of the ants.

Algorithms that were inspired from real ants’ behavior in
finding the shortest paths have recently been successfully ap-
plied to several discrete optimization problems [34], [39]. For
all ACO-inspired algorithms presented before 1998, a set of arti-
ficial ants collectively solve the problems through a cooperative
method. This method is mediated by the indirect communication
of the information the ants concurrently collect while the corre-
sponding solutions are based on stochastic policies. Similarly,
in AntNet, the algorithm proposed by [18], a set of distributed
agents (ants) collectively solve the adaptive routing problem
concurrently. Agents update the routing tables and the local
models of the network status via indirect and noncoordinated
communication of the information they collect during the explo-
ration of the network. To ensure a meaningful validation of their
algorithm performance, a realistic and complete simulation en-
vironment in terms of networking characteristics, communica-
tion protocols, and traffic patterns are established in [18]. They
focus on the Internet Protocol (IP) datagram networks with an ir-
regular topology and consider three real and artificial topologies
with an increasing number of nodes and several paradigmatic
temporal and spatial traffic distributions [18]. AntNet manifests
the best performance and the most stable behavior for realistic
situations. In many experiments, AntNet almost always outper-
forms other network systems.

B. ACO in Global Positioning Systems (GPSs)

In [17], a novel routing algorithm called GPS/Ant-Like
Routing Algorithm (GPSAL) based on GPS and mobile soft-
ware agents, is introduced. The GPSAL imitates the ants’
behavior for the routing in a mobile ad hoc network (MANET).
The network system comprises MANET with mobile hosts
that can communicate with each other using wireless links.
The GPSAL algorithm in [17] has been compared to the loca-
tion-aided routing (LAR) algorithm for MANET. Simulation
results show that GPSAL induces less overhead than LAR.

The idea of the GPSAL algorithm is described as follows.
Whenever a mobile node wants to join MANET, it senses the
medium to find out a neighbor node, say . Once a neighbor
node is identified, the mobile host sends a request packet to

to ask for its routing table which will be sent back to the host.
From this instant, the new mobile host can start routing and send
packets in MANET. The routing protocol is based on the phys-
ical location of a destination host stored in the routing table.
If there is an entry in the routing table for the host the best
possible route is selected using a shortest path algorithm. The
route, composed of a list of nodes and the corresponding times-
tamps, is attached to the packet which is sent to the first host in
the list. If host is not found in the routing table, the mobile
node sends a message to the nearest static node, if available, for
finding the destination node. Otherwise, the data packet is not
delivered. Therefore, each host, upon receiving a packet, com-
pares the routing information present in the header with that in
its routing table. The entries that have older information than
that in the received packet are updated. This is performed by
comparing the timestamp field in the received packet header
and that in the routing table. Furthermore, each intermediate
node can change the route to a destination node when there is
a better route. How to update the routing table is an important
aspect for MANETs. It is obvious that better routes can be de-
termined whenever a host has new dynamic information about
the network configuration. Routing information can be obtained
both locally and globally. Local information is obtained from
a neighbor node that periodically broadcasts to update the in-
formation of the network configuration. Global information can
be disseminated more rapidly using the mobile software agents
modeled as ants in the following.

The route discovery can be accelerated using mobile software
agents modeled as the ants which are responsible for collecting
and spreading more up-to-date location information of the mo-
bile hosts. When a host receives an ant’s message, it compares
the routing table present in the ant’s packet with its routing table
and then updates the entries that have older information therein.
When this ant leaves a node, it carries the newest routing table
from the underlying nodes it has already visited plus the current
one. This crucial dynamic process can lead to a good routing
performance.

C. Swarm Intelligence Using Stigmergy in Ad Hoc Networks

A new approach for an on-demand ad hoc routing algorithm
(ARA), which is based on swarm intelligence, is presented in
[21]. ACO algorithms are a subset of swarm intelligence and
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rely on the ability of simple ants to solve complex problems co-
operatively. The important observation is, that the ants do not
need any direct communications for the solution process; in-
stead, they communicate with each other by stigmergy. The no-
tion of stigmergy means the indirect communication of the con-
cerned individuals through changing their environment. Several
algorithms which are based on the ACO incentives were intro-
duced in recent years to solve different problems. For utilizing
the characteristics of stigmergy, an ACO-based routing scheme
ARA for MANET was introduced in [21]. Its route discovery
mechanisms are similar to dynamic source routing (DSR). In
[21], the route discovery is performed by flooding forward ants
to the destination as well as establishing the reverse links to
the source. The routes’ maintenance in ARA does not need any
extra particular messages in transmission. Once the pheromone
loci have been established for the source and destination nodes,
the data packets are used to maintain the path. In ARA, the
pheromone updating rule resembles the rule formulated in the
following equation for ACO:

(5)

where is the pheromone trail from node to is the
decay factor and is the quantity of pheromone laid on
edge by ant . Consequently, the transition probabilities
for a node to choose the next-hop is expressed as

(6)

In [18], a routing scheme for MANET has been proposed
which combines the on-demand routing capability of the ad
hoc on-demand distance vector (AODV) routing protocol with
a distributed topology discovery mechanism using ant-like
mobile agents. The proposed hybrid protocol reduces the route
discovery time and the end-to-end delay by providing high con-
nectivity without much sacrifice of network capacity. Since the
proactive routing protocols in the MANETs, such as destination
sequenced distance vector (DSDV), require the knowledge of
the entire network topology, they are not very effective highly
dynamic networks, the updated topology information needs
to be frequently propagated throughout the dynamic network.
These frequent broadcasting operations limit the achievable
network capacity for actual data communication. The on-de-
mand routing schemes like AODV and DSR require the actual
data transmission to be delayed until the route is selected. Due
to this long delay, a purely reactive routing protocol may not
be proper for real-time data communications. Therefore, the
Ant-AODV hybrid routing protocol has been proposed.

The integration of Ant-based routing and AODV routing pro-
tocols will overcome some of their inherent disadvantages. The
hybrid scheme enhances the node connectivity and decreases
the end-to-end delay as well as the route discovery latency. The
route establishment in the conventional Ant-based techniques
depends on the ants’ visiting the nodes. If a node attempts to
send data packets to a destination for which it does not have
enough routes, it will have to relay the data packets in its sending
buffer long enough until an ant arrives and presents a route to

that destination. In addition to this drawback, there is no local
connectivity maintenance as in AODV for the implementation
of the Ant-based routing algorithms so far. Hence, it is possible
for a source to keep sending packets even though the failure
of the link occurs but is not recognized. This leads to a large
number of unsuccessful transmissions due to the packets con-
tinually getting lost.

On the other hand, the AODV scheme takes too much time
for the connection establishment due to the processing delay
for the route discovery. The deployment of ants in AODV in-
creases the node connectivity (the number of destinations for
which a node has unexpired routes) and also reduces the amount
of route discovery. Even if a node launches an RREQ for a des-
tination that does not have enough viable routes, the probability
of its receiving the replies quickly (as compared to AODV) from
the neighboring nodes is high due to the increased connectivity
of all the nodes, which results in a reduced route discovery la-
tency. As ant agents update the routes continuously, a source
node can switch from a longer route to a newer and shorter
route identified by the ants. This leads to a considerable decrease
in the average end-to-end delay as compared to both AODV
and Ant-based routing individually. Ant-AODV protocols uti-
lize the route error messages (RERR) to inform the upstream
nodes of any local link failure similar to AODV. The routing
table in Ant-AODV is common to both Ant-based routing pro-
tocol and AODV. Frequent HELLO broadcasts are also under-
taken to maintain a neighbor table. This table is used to ran-
domly select the next-hop (avoiding the previously visited node)
from the list of neighbors by the ant agents.

D. Adaptive Stigmergy-Based Routing for Wireless Networks

A biologically inspired algorithm is presented to route the
messages in mobile wireless ad hoc networks. An adaptive algo-
rithm, dubbed Termite, using stigmergy has been proposed to re-
duce the amount of control traffic needed to maintain a high data
throughput [38]. The disposed stigmergy will have an influence
on the adaptive routing table. The termite environment requires
the contents of all routing tables. The movement of packets is in-
fluenced at each node and the communicating nodes observe this
influence and update their own tables accordingly. The routing
robustness is achieved through the use of multiple paths; each
packet is routed randomly and independently.

Termite is a routing protocol for wireless mobile ad hoc
networks based on the principles of swarm intelligence [42].
This framework is used to define the rules for each packet
to follow, which result in emergent routing behaviors. Other
additional advantages include reduced control traffic as well
as quick route discovery and repair. As packets are dispatched
from a source to a destination, each packet follows a preference
(bias) towards its destination while the packet will follow the
updated preference (not necessarily identical to the forward
trip) back to its source. This bias is known as pheromone.
Pheromone is laid on the communications links between nodes
along the paths. Packets are attracted towards strong pheromone
concentration but the next hop is always randomly decided if
there is no pheromone. Following a destination pheromone
trail and disposing the source pheromone along the same trail
increases the likelihood of the packets to retrieve the reverse
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path back to the source. This is positive feedback. In order to
prevent the old routing decision from influencing the network
memory, an exponential pheromone decay is introduced as
negative feedback. Pheromone increases linearly per packet,
but decreases exponentially over time. Like real pheromone, the
artificial pheromone concentration decreases with time to avoid
a fast convergence of pheromone on the network edges. In the
termite routing, an exponential decay equation is adopted as

(7)

where is the elapsed time, is the pheromone in the net-
work memory, and is the current update.

E. Distributed ACO Routing Algorithm (ADRA)
in Ad Hoc Networks

An Ant-based distributed route algorithm for ad hoc net-
works (ADRA) has been proposed in [29]. The ants travel
across the network between randomly picked pairs of nodes.
As they move, they dispose of the simulated pheromones as
a function of their traveling distance from their source node,
the quality of the link, the congestion encountered on their
journey, the current pheromones the nodes possess, and the
nodes’ moving speeds. The node changes the pheromones by
itself according to the quality and age of the link by evaporating
the pheromones. The ants select their path at each intermediate
node according to the distribution of the simulated pheromones.
In order to accelerate the convergence rate of the congestion
and shortcut problem, the proposed method in [29] assigns
the parameters with different weight values to update the
probability routing table. The performance of this algorithm
is measured by the packet loss ratio, control overhead, and
end-to-end packet delays. The ADRA system is shown to result
in fewer call failures than other methods and exhibit many
attractive features for distributed network control.

There are several advantages of the ADRA algorithm: 1) the
algorithm can improve the convergence rate of the Ant-based
routing in an ad hoc network; 2) the control overhead introduced
by a large number of ants can be reduced; 3) the congestion
problem and the shortcut problem can be alleviated quite
well; 4) the network load balance can be achieved; and 5) the
end-to-end delay of the packet transmission can be mitigated.
Essentially, endowing several separate quality-of-service (QoS)
parameters with different weights to update the pheromone
strengths and the probability routing tables, ADRA efficiently
implements the distributed scheme for the optimal route selec-
tions and reselections via intermediate nodes and thus balances
the network traffic [26], [43]. Through the control of the
pheromone strength in accordance with the QoS parameters,
ADRA can properly distribute the traffic prior to the probable
congestion and accelerate the convergence of the solution to the
congestion problem with the help of congestion repression ants,
i.e., anti-ant. Similarly, the shortcut problem can be solved by
introducing the shortcut reinforce ant, i.e., enforce-ant. When
an intermediate node’s load exceeds its predefined congestion
threshold, it will send a congestion-control anti-ant to its
upstream neighbor nodes to modify their probability routing
tables. Upon receiving an enforce-ant or an anti-ant, the node

updates the routing table accordingly to reinforce the good
route and avoid the congested one.

IV. GENETIC ROUTING ALGORITHM

In this section, we will discuss the genetic algorithms which
are used for GA-based routing in wireless sensor networks
[44]. In [45], a mobile agent-based paradigm for data fusion
in the distributed sensor networks is presented. By utilizing a
simplified analytical model for a distributed sensor network, a
route computation problem for the mobile agent is formulated
in terms of the maximization of the received signal strength,
normalized by the path loss and the energy consumption.
Because the implementation of the proposed routing algorithm
is an NP-hard problem, it becomes impossible to develop
a polynomial-time algorithm to compute an optimal route.
Hence, two-level GAs were proposed to solve this problem by
employing two-level genetic encoding and genetic operators.
Simulation results have been presented for the comparison
between the GA-based routing and the existing LCF and GCF
heuristics. Various advantages of the GA algorithm, such as
computational complexity, network structure, and route quality,
are discussed in [45].

Genetic algorithms are categorized as global search heuris-
tics. Genetic algorithms are a particular class of evolutionary
algorithms which rely on techniques inspired by evolutionary
biology, such as inheritance, mutation, selection, and recom-
bination. Genetic algorithms are implemented using computer
simulations in which a population of abstract representations
(also called chromosomes, the genotype or the genome) of can-
didate solutions (called individuals, creatures, or phenotypes)
are transformed into an optimization problem. Basically, the so-
lutions are coded and quantized as binary strings consisting of
0’s and 1’s, but other codebooks are also allowable. The evolu-
tion usually starts from a population of randomly generated indi-
viduals. In each subsequent generation (iteration), the fitness of
every individual in the population is evaluated and multiple in-
dividuals are stochastically selected from the current population
according to their fitness and modified to form a new population
by possible combinations and mutations. The new population is
then used in the next iteration of the algorithm. Nowadays, ge-
netic algorithms are widely adopted in computer science, engi-
neering, economics, chemistry, physics, mathematics, and other
fields.

Ad hoc sensor networks, comprising a large number of ran-
domly deployed wireless sensors, have recently attracted in-
terest. These networks require a self-organized configuration
after deployment and the ad hoc heuristic methods for such
a configuration have been proposed with regard to many as-
pects of the networking performance [46]. However, system-
atic approaches for a self-organized configuration remain un-
clear. In [47], a first attempt to take a systematic approach using
GAs was presented and it focused on the problem of heteroge-
neous networks to optimize global functional properties through
local adaptive rules. Almost all work on the ad hoc sensor net-
works has so far involved homogeneous networks where all
nodes transmit messages at the same power level so as to create
a symmetric connectivity. It is possible to construct heteroge-
neous networks by allowing the nodes to transmit at different
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power levels. Such heterogeneous networks lead to improve-
ments in network lifetime, power efficiency, and routing. How-
ever, heterogeneous networks are difficult to build, mainly be-
cause the optimal power level for each node depends on the
node location and spatial context, which are not known before
any deployment. A few heuristic schemes focused on improving
power consumption have been proposed in the literature, but the
issue has not been investigated sufficiently within a generalized
framework. In [47], a GA is used to generate a set of hetero-
geneous sensor networks that are characterized by low short
paths and minimal congestion. This experiment shows that the
adapted networks using this heuristic produce significant im-
provement over the homogeneous networks. More importantly,
the results validate that the GA approach can be used in other
self-organizing systems.

V. CONCLUSION

The goal of this paper is to provide a comprehensive overview
of biologically-inspired algorithms governing important routing
problems in wireless mobile sensor networks. Biologically-in-
spired collective intelligence has been studied and some biolog-
ically-inspired methodologies are investigated, including ACO
approaches and GAs. The implementations of these methods for
routing in various dynamical and heterogeneous networks are
investigated. These biologically-inspired routing mechanisms
can have various advantages over the conventional centralized
schemes in congestion avoidance, end-to-end delay mitigation
decreases, processing delay, and computational complexity re-
duction.
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