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Abstract—One of the most compelling technological advances of
this decade has been the advent of deploying wireless networks of
heterogeneous smart sensor nodes for complex information gath-
ering tasks. A wireless distributed sensor network (DSN) is a
self-organizing, ad-hoc network of a large number of coopera-
tive intelligent sensor nodes. Due to the limited power of sensor
nodes, energy-efficient DSN are essentially mulfi-hop networks.
The self-organizing capabilities, and the cooperative operation of
DSN allow for forming reliable clusters of sensors deployed near,
or at, the sites of target phenomena. Reliable monitoring of a
phenomenon (or event detection) depends on the collective data
provided by the target cluster of sensors, and not on any indi-
vidual node. The failure of one or more nodes may not cause the
operational data sources to be disconnected from the data sinks
(command nodes or end user stations). However, it may increase
the number of hops a data message has to go through before
reaching its destination (and subsequently increase the message
delay). In this paper, we focus on two related problems: computing
a measure for the reliability of DSN, and computing a measure
for the expected & the maximum message delay between data
sources (sensors) & data sinks in an operational DSN. Given an
estimation of the failure probabilities of the sensors, as well as the
intermediate nodes (nodes used to relay messages between data
sources, and data sinks), we use a probabilistic graph to model
DSN. We define the DSN reliability as the probability that there
exists an operating communication path between the sink node,
and at least one operational sensor in a farget cluster. We show
that both problems are #P-hard for arbitrary networks. We then
present two algorithms for computing the reliability, and the ex-
pected message delay for arbitrary networks. We also consider
two special cases where efficient (polynomial time) algorithms are
developed. Finally, we present some numerical results that demon-
strate some of the applications of our algorithms.

Index Terms—Clustering, distributed sensor networks, expected
message delay, expected network diameter, graph-theoretic al-
gorithms, multi-hop networks, probabilistic graph models,
reliability, wireless sensor networks.
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Acronyms!

DSN wireless distributed sensor network

GPS global positioning system

RBN radio broadcast network

MTTF mean time to fail

EU end-user node

BS base station

GW gateway node

iff if and only if

Notations

G(V,E) a DSN graph

v set of nodes representing DSN nodes

E set of edges, (i,j) € E iff i and j are one-hop neigh-
bors,i € V,j €V

S a sink node (EU or BS),s € V

T target set of sensors, T C V

Pv Pr{operation of node v € V — {s}}

Rel(G) Pr{there exists an operational path between s, and
an operational sensor t € T'}

8(G) expected length of a shortest operational path be-
tween s, and an operational t € T

AG) maximum length of a shortest operational path be-

tween s, and an operational t € T

I. INTRODUCTION

NE OF THE most compelling challenges for this decade
Ois to design optimal methods for exploiting the new
realm of distributed sensor networks (DSN). A DSN consists
of a large number of intelligent sensor nodes distributed over
a widely spread geographical area, providing real-time infor-
mation about environmental conditions. The sensors detect
& measure a certain (targef) phenomenon via its changing
parameters [3]-[5], [22], [24]. Typical applications of DSN
include military operations, area surveillance, environmental
monitoring, remote sensing, and global awareness. An impor-
tant feature of DSN is self-organizing capabilities that allow
random deployment of the sensors, and dynamic reconfigura-
tion of the network topology in the presence of sensor failures
or replacements [3], [4]. Another unique feature of DSN is
the cooperative effort of its nodes. A cluster-based network
architecture is used in implementing several collaborative
signal processing applications. To ensure high reliability and

IThe singular and plural of an acronym are always spelled the same.
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fault-tolerance, clusters of large numbers of low-cost sensors
are used redundantly together with methods for information
integration/fusion (aggregation), and synchronization [7], [10],
[16]. The sensors exchange data and/or autonomous agents
[25] via wireless links (radio packets). An intelligent sensor is
essentially a processing element that is equipped, in addition to
its sensing peripherals, with a radio transmitter/receiver. Tech-
nology advances now allow manufacturing low-power sensor
nodes with signal processing, wireless communications, power
sources, and synchronization, with better performance-to-cost
ratios [2], [26]. Each sensor can communicate with neighboring
sensors within a specified range R (assuming omnidirectional
antennas). Due to the limited power of the sensors, DSN
require multi-hop operation to avoid sending large amounts
of data over long distances [2], [24], [26]. Although the main
function of sensors is information gathering, sensors can act
as repeater nodes to relay (forward) messages toward the data
sinks (or end user) [3]. To reduce power consumption at the
sensor nodes, contention-free protocols have been proposed
(e.g. using Time-Division Multiple Access TDMA [3], [15]).

Due to the harsh nature of the DSN applications environment,
the sensors are subject to random failures due to different rea-
sons. Consider, for instance, parachuting sensors over an enemy
jungle. Failures are also caused by component wear out, power
failures, software bugs, and in some cases by natural catastro-
phes or radio jamming like in a war-case scenario. Reliable
monitoring of a phenomenon (or event detection) depends on
the collective data provided by the target cluster of sensors, and
not on any individual node. Therefore, the failure of one or more
nodes may not cause the operational data sources to be discon-
nected from the data sinks (command nodes or end user sta-
tions). However, operational sensors in the faulty sensors neigh-
borhood may still be able to communicate with end-users, al-
though, through a larger number of hops resulting in a larger
delay of the information. Many routing schemes have been de-
veloped [9], [12], [19], [29] which are fault-tolerant, such that
a message is guaranteed to reach its intended destination(s) as
long as an operational path exists.

In this paper, we consider the problem of computing a mea-
sure for the reliability of DSN. We define the DSN reliability
as the probability that there exists an operating communica-
tion path between the sink node, and at least one operational
sensor in a farget cluster. We also consider the related problem
of computing a measure for a message delay in an operational
DSN. A related measure is the diameter of the network, which is
the maximum number of hops between any pair of source/sink
nodes.

We assume that geographical locations of the nodes are
known, either through Global Positioning System (GPS), or
through RF-based beacons [6]. Given the location information
of each node, and the transmission range, we can determine
the topology of the DSN. We use a probabilistic graph model
to represent a DSN subject to random failures; and using this
model, we investigate the complexity of the two problems, and
present methods for computing the reliability, and the expected
(and the maximum) message delay (in an operational network).
In Section II, we present the graph model, assumptions, and a
formulation of the problems. In Section III, we show that both
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problems are computationally intractable, in particular #P-hard
for arbitrary networks. Section IV describes the algorithms
for arbitrary wireless networks. In Section V, we consider two
special cases for which efficient algorithms are developed. In
Section VI, we present some numerical results demonstrating
an example application of our algorithms. Section VII contains
conclusions, and notes on future work.

II. THE DSN MODEL

A DSN is modeled by a probabilistic graph G = (V, E),
where every node in the network is represented by a node in
V. An edge exists between two nodes iff the two corresponding
sites are in the range of each other (one-hop neighbors). We as-
sociate with every node v € V an operational probability p,
(failure probability ¢, = 1 — p,,). We assume that the node fail-
ures are statistically independent. Fig. 1 shows a wireless net-
work, and the corresponding graph model. Probabilistic graph
models have been used extensively in the literature for studying
network reliability problems [1], [8]. In particular, the above
model has been used in [1] for studying radio broadcast network
(RBN) reliability problems. RBN is an old name for wireless
networks (in which nodes communicate through radio trans-
mitter/receivers). We assume that the node mean-time-to-fail
(MTTF) is relatively large compared to the message transmis-
sion time, the maximum propagation delay, and the time re-
quired by the network to adapt to topology changes due to fail-
ures. Although sensors are hardly repairable, sensors may be re-
placeable. In this case, we also assume a relatively large mean-
time-to-replace. Therefore, during the message transmission,
the state of the network is uniquely determined in terms of failed
nodes, and operating ones.

A cooperative DSN uses a fault-tolerant clustering protocol
[3], [17], [31] that is re-executed in the event of a topology
change. This protocol achieves the following goals:

. A cluster is composed of a number of sensor nodes,
which are deployed either inside the phenomenon, or
very close to it. The sensors within one cluster provide
a reliable source of data related to that phenomenon.
The failure of a sensor should not disrupt the network
operation.

. Each cluster has a cluster head which coordinates
transmissions within the cluster, and is responsible
for routing packets between sink nodes, and sensors
(cluster heads may have more functionality, e.g. lo-
cation awareness, and a longer-range radio [31]).
However, because the failure of a cluster head will
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Fig. 2. Clustering, data sink, cluster head, gateway, and sensor nodes.

cause the rest of the cluster to be disconnected from
the network, a cluster may be formed with more than
one head redundantly used by the end user or base
station.

. A virtual backbone is formed to connect cluster heads

to the data sinks (the end user stations or base stations).
In the remainder of the paper, we alternatively use the
terms data sink, and end user to refer to a node with
high power, and computational resources that can be
“a command center,” or “a base station,” or “an end
user station.” Nodes on the backbone that are neither
cluster heads, nor are data sinks, function as gateways,
and may belong to one or more clusters (see Fig. 2).

. We assume a contention-free protocol, such as
TDMA/FDMA-based protocol, Time Division Mul-
tiple Access/Frequency Division Multiple Access [3],
[15], and that redundant messages are detected, and
ignored.

Assuming identical processing time at all nodes, the message
delay between two nodes s & ¢ can be measured as the number
of hops. For example, if the message has to go through two
nodes to reach ¢, then the delay is three hops.

A. Reliability and Delay Measures for DSN

In a cooperative DSN, the reliable monitoring of a phenom-
enon is based on the collaborative operations of sensors within
the cluster. Therefore, the conventional end-to-end reliability
definition may not be applicable. The terms event-to-sink [28],
and sink-to-sensors reliability [23] have been recently proposed
in the literature. In [28], a reliable event-to-sink transport
protocol is proposed, where the reliability is measured as the
number of messages (packets) received by the sink in a prede-
termined decision interval. In [23], a brief discussion (a Poster)
about some reliability issues is presented. Motivated by the
above discussion, we consider the network to be functioning
(operational) if the end user station monitoring a certain farget
phenomenon has an operational bi-directional connection path
to at least one operational sensor in the cluster assigned to
that phenomenon. We call such cluster a target cluster. Further
we assume that within each cluster a set of sensor nodes are
considered critical to the monitoring operation (or event detec-

Fig. 3. DSN graph.
tion). We call such sensors target sensors. Based on the above
assumption we define the reliability of DSN as follows:
Definition 1: For any end user node monitoring certain
(target) phenomena, the reliability of a DSN is the probability
that there exists an operational path between the end user node
(sink node), and at least one operational target sensor in the
target cluster. O
Definition 2: (DSN Reliability Problem DSNREL): Given a
DSN graph G = (V,E), a sink node s, a target set of sensors
T C V, and an operational probability p, for every v € V —
{s}, compute the probability that there exists an operational path
between s, and any operational target sensor t € T, denoted by
Rel(G). O
Definition 3: The expected message delay between a sink
node, and the target phenomenon in an operational DSN is the
expected value of the number of hops between the end user
node, and any operational sensor in the target set of sensors in
the corresponding target cluster given that the network is oper-
ational (i.e. given that there exists an operational path). O
Definition 4: (Computing Sensor Message Delay
CSMD): Given a DSN graph G = (V,E), a sink node s, a
target set of sensors T C V, and an operational probability
py for every v. € V — {s}, let [ be the length of a shortest
operational path between s, and an operational t € T, compute
the expected value of [ (denoted by 6(QG)), and the maximum
value of [ (denoted by A(Q)). O
To illustrate the definitions, we consider a simple DSN with
an end-user node (EU), one intermediate base station (BS), one
gateway node (GW), and a target cluster with two heads & two
target sensor nodes. Let the two cluster heads be H1, and H2
with operational probabilities Py, and Py respectively; and
the two target sensors be S1, and S2 with operational proba-
bilities Pg1, and Pg, respectively. Although base station nodes,
and the gateway nodes are usually more reliable, compared to
the sensor nodes, we may assume that BS, and GW have the
operational probabilities Pp, and Pg respectively. Therefore,
the reliability of the DSN represented by the graph G in Fig. 3,
Rel(G), is

Rel(G) = Pp (Pu1 (1 — (1 — Ps1)(1 — Ps2))
+(1 = Pr1)PaPr2Ps2)

Note that, in this example, we assume that the operation of
either S1, or S2 is critical to the operation of the network; and
that H1, and H2 are relaying only data to the sink, besides their
coordination function as cluster heads.

The minimum delay is 3 hops (ES-BS-HI-S1, or
S2). The probability of having a delay of 3 denoted by
P(3) = Pe(Pu1(1 — (1 — Ps1)(1 — Pg2)).
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The maximum delay is 4 (ES-BS-GW-H2-S2). The prob-
ability of having a delay of 4 denoted by P(4) = Pgp(1 —
Pu1)Pc Pua Pso.

The expected delay given that the network is operational is
(3P(3) 4+ 4P(4))/Rel(G).

As a numerical example, let PB = 1, Py = Pyo = Pg =
0.6, Pg; = Pgp = 0.5

Rel(G) =0.522, AG)=4
(3 x0.45+ 4 x 0.072)
(0.4540.072)

The expected delay measure tells us that most of the time the
delay will be 3 hops per message, and on average, for a measure-
ment that requires 1000 messages, the expected delay is 3138
hops.

§(G) = =3.138"

III. CoMPLEXITY OF DSNREL AND CSMD
A. Complexity of Computing the Reliability of DSN (DSNREL)

The complexity of DSNREL follows from the complexity
of computing the two-terminal reliability of a wireless network
(2REL), which has been shown in [1] to be #P-complete even
when restricted to the case of equal operation probabilities. The
#P class contains the counting version of problems in NP [8],
[13]. The 2REL problem is described as follows. The network
is modeled by a graph G = (V, E), where every site is repre-
sented by a node v € V, and an edge (i,7) € E iff i & j can
directly communicate with each other. Given a graph model for
a wireless network G = (V, F), and a pair of nodes s & t, com-
pute the probability that there exists at least an operational path
from s to .

Theorem 1: Computing the reliability of a DSN (DSNREL)
is #P-hard.

Proof: Suppose we have an efficient algorithm for
DSNREL. We transform an instance of computing the two
terminal reliability of a wireless network (2REL) to DSNREL.
The 2REL problem is transformed into DSNREL by con-
sidering s to be the end user node, and t to be its target
cluster. The target cluster contains one sensor node with
operational probability = 1. However, 2REL has been shown
in [1] to be #P-complete, which is a contradiction. O

B. Complexity of Computing Sensor Message Delay (CSMD)

Given a graph G = (V, F), a sink node s, and a target sensor
set T', let P(l) be the probability that the shortest operational s,
t-path is of length [, 1 <1 < n — 1, where t € T, (n = |V]).
Let P(o0) be the probability that there exists no path of oper-
ating nodes between s & ¢, i.e. s & t are disconnected, therefore
P(o0) is given by the equation

l=n—1
P(so)=1- Y P(). (1)
=1
The expected message delay § between the sink node s, and T,
given that there exists an s, ¢-path, can then be computed by

P(l)

3

~

1
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Fig. 4. Transforming v in G;.

Note that the message always takes the shortest available
path; duplicate messages arriving afterward are discarded. If
more than one shortest paths exist, the message takes arbitrarily
any one of them depending on the routing schemes used. We
show in the following section that computing 6 for an arbitrary
network is a computationally intractable problem, in particular
CSMD is #P-hard.

We investigate the complexity of computing the expected
delay in a DSN by considering the special case of an end
user node (s) with one target sensor node (T = {t}) with
operational probability = 1. Further, we consider the more
restricted case of computing 6 where nodes have equal op-
erational probabilities. For a given wireless network G, the
two-terminal reliability Rels(G) is the probability that there
exists an s, t-path of operating nodes in G. Therefore

Relo(G) = 1 — P(o0) = z_: P() 3)
=2

assuming P(1) = 0, i.e. s & t can not communicate directly.
The probability P(2) can be computed in polynomial time using
the equation P(2) = 1 — ¢*, where k is the number of s, ¢-paths
of length 2. This number can be computed in a polynomial time
by successively finding the shortest path in G using standard
techniques (e.g. breadth first search [14]). If this path has length
2, we delete it, and repeat the process until no more s, ¢-paths
of length 2 can be found.

Theorem 2: Computing Rels(G) (2REL) is polynomialy re-
ducible to computing 6.

Proof: An instance of 2REL consists of a probabilistic
graph G = (V, E,p), |V| = n, with two distinguished nodes s
(source), and ¢ (destination). Each node in V — s — ¢ is assigned
an operation probability p; we assume that p is a rational number
of length ©(n). The failure probability is denoted by ¢ = 1 — p.
Given an instance of 2REL, we transform it into computing ¢
as follows. We consider the set of graphs G1,Ga,..., Gy 4,
where G;, 1 < i < n — 4, is constructed from G by replacing
every vertex v € V — {s,t} by a complete graph of d, ver-
tices, each with operational probability p;, where d,, is the de-
gree of v (see Fig. 4). We select the probability values such that
O0<pr<p2<...<ppa<l

Every operational path in G of length [ corresponds to an
operational path in G; of length [ + [ — 1 = 2[ — 1, because
of the additional [ — 1 edges. Let P;(l) denote the probability
that the shortest path in G} is of length /.

Then

Pi(3) = piP(2)



ABOELFOTOH et al.: COMPUTING RELIABILITY AND MESSAGE DELAY FOR COOPERATIVE WIRELESS DSN 149

and

Pi(2l — 1) = (p) 7t P(l), for3<i<n-—1.

Let 6 be the expected message delay for G, and §; be the ex-
pected message delay for G;. Applying (2) to G

l=n—1 l=n—1

5y P(ly= > IP(I).
=2 =2

Hence
l=n—1
(6-2)P(2) = (L =0)P(). “4)
=3
Similarly, for G
l=2n-3
(6 =3)P:(3) = > (I=8)Pi(l). (5)
=5

Substituting for P;(1) in terms of P(l), we get

l=n—1
(6; — 3)pi P(2) = (20 — 1 = &)ptP(l).  (6)
1=3

Having algorithms for computing 6 and P(2), we can obtain
from (4) & (6) a system of n — 3 linear equations in P((), 3 <
I < n—1(n— 3 unknowns) as follows:

First, we construct the graphs G; through G,, 4 as described
earlier. Second, we compute P(2), and apply the algorithm for
computing ¢ & 67 through §,, 4. The coefficient matrix is non-
singular; because p; < py < ... < pn_4, the resulting co-
efficient matrix is a variation of the Vandermonde matrix with
nonzero determinant [20]. Hence, there exists a unique solu-
tion that can be found in polynomial time using Gaussian elim-
ination, and back substitution. We assume the given probabil-
ities are rational numbers which allow doing the computation
on integers of length ©(n). Once the set of coefficients P(1),
2 <1 < n — 1 are known, we can compute Rels(G) using
3). O

Corollary 3: Computing ¢ is #P-hard.

Proof: The proof follows from Theorem 2, and the fact
that 2REL has been shown in [1] to be #P-complete. Y

In the next section of the paper, we present two new algo-

rithms for CSMD in arbitrary networks.

IV. ALGORITHMS FOR COMPUTING DSN RELIABILITY AND
SENSOR MESSAGE DELAY

A. Problem Statement

Given a DSN graph G = (V, E), an end user (sink) node s, a
set of target sensor nodes 7" C V, and an operation probability
py for every vertex v € V — s, compute the probability that
there exists an operational path between s, and an operational
node t € T'(Rel); and, the expected, and the maximum length
of that path (6 and A respectively).

Sensors

Fig. 5. DSN graph G.

First, we design an algorithm based on complete state enu-
meration which can be applied to a graph or a subgraph with a
limited size.

B. Algorithm 1

A state of the network is defined as a subset S C V', where all
nodes in S are operating, and all nodes in V' — S are failed. The
probability of a state S'is P(S) = [[,cs Po [Lev_s(1 —Pw)-
Let n = |V|. The network has 2"~! possible states. If the state
contains an (operating) s, t-path, for any operating t € T, then it
is called a pathset. Otherwise, u & T are disconnected, and the
state is called a cutset. Each pathset contributes to exactly one
of the path probabilities P(l), 1 < I < n — 1. Note that, con-
sistent with our assumption that the routing methods discover
any operational path, and use one of the available shortest paths,
more than one pathset may contribute to the same P([). All cut-
sets contribute to P(co). Therefore we can compute Rel, and §
using the following algorithm:

Algorithm 1:
Begin {ENUMERATE}
1. for [=1 ton—-1 do P(l)=0.
2. Enumerate all states of G and
for each state S
if S contains at least one operating
teT
find the length of the shortest s,
t-path
if one exists
let the length be I, P(I) = P() +
P(S)
endfor
3. Substitute for P(l), 1<I<n-1, in (2)
and (3) to compute Rel and §.
4. Compute A = the maximum value of | for
which P(I) # 0.
End {ENUMERATE} Y

Complexity: For each state, the algorithm uses breadth-first-
search to find the length of the shortest u, ¢-path. The search
stops when an operational node ¢ € T is reached, if one exists.
Therefore, the time complexity is O(m2"~1), where n is the
number of nodes, and m is the number of edges.

An Example: Consider the graph G in Fig. 5. G has 2* states.
Table I illustrates only the possible operational states (pathsets).
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TABLE 1
ENUMERATION OF THE STATES OF G
State probability length of shortest path
Sl PA P11 PR P12 2
S2 PaPrigePm 2
S3 PA PT19BQT2 2
S4 Pa P11 PBQT2 2
S5 PAqri P P12 3
Let
Py =P =0.9, Pri=Pr;=0..
P(2) = P(S1) + P(S2) + P(S3) + P(S4) = 0.45
P(3) =P(S5) =0.9 x 0.5 x 0.9 x 0.5 =0.2025
Rel(G) =0.45 4+ 0.2025 = 0.6525
2 x 0.45 4+ 3 x 0.2025
o= (0.45 I 0.2025) ) =203
A=3.

This example clearly shows the simplicity of the algorithm. Fur-
thermore, it shows that computing A & 6 for the induced sub-
graphs formed by clustering can be possibly done in a reason-
able time for clusters of limited size.

C. Algorithm 2

In this computational sequence, we avoid enumerating all net-
work states as is described in Algorithm 1. Instead, we recur-
sively generate shortest s, t-paths. New paths are generated re-
cursively by considering the two states of each vertex on the
current path: failed state, and up (or operating) state. This tech-
nique is based on the following factoring theorem, which is anal-
ogous to the factoring theorem used for computing Rels(G) [1],
[8]. Let P(, G) be the probability that the shortest (operating) s,
t-path in G is of length [. Then, by considering the two states of
any vertex v in V' — s, we have the following factoring theorem:

Theorem4: P(l,G) = p,P(l,Gev)+q,P(l,G—v), where
G e v denotes the network G with node v operating (always up),
and G — v denotes the network with node v failed (or equiva-
lently deleted).

Proof: The probability P(l,G) is the sum of all probabil-
ities of pathsets where there exists at least one operating target
sensor node ¢ € T', there exists an operating s, t-path, and the
length of the shortest operating s, ¢-path is [. The pathsets can
be partitioned into two subsets P,, and Py, where v is oper-
ating (up) in P,, and failed in Py. Now P, is the probability
that the shortest s, ¢-path in G is of length [ given that v is op-
erating, and Py is the probability that the shortest s,t-path in G
is of length [ with v failed. Therefore, P,, = p, P(l, G e v), and
Py = q,P(l,G —v). d

Now, consider a shortest s,t-path (s,v1),(vi,v2),...,
(vi—1,t). We have

P(l,G) =pu, P(I,G ®v1)+qy,
P(l,G) = q, P(l,G—wv1)
+pm (pvzp(laG.vl .1}2)—|—qv2P(l7G.’U1—U2))

P(l,G—’U1>
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Similarly, by applying Theorem 3 [ — 1 times, we have

P(l,G)=qy, P(l, G—v1)+ Dy, v, P(I, Govy —v3) +- - -
+ Do, Doy Do, @i P (1, Govy 0. @01 —v;) 4+
+ Doy Doy Por_ Q=1 P (1, Govy 0vs.. @05 —v1_1)
+ Do, Do+ Py Pt (7).

Therefore, given a shortest s, t-path (s,v1), (vi,v2),...,
(vi—1,t), we can add Py, Py, - - * Pu,_, Pt (increment) to P(l, G),
then recursively compute further terms in the above equation.
Based upon the above formulation, the second algorithm has
the following steps:

Algorithm 2:

Begin {FACTOR}
1. for =1 ton—-1 do P(l)=
2. GeneratePath (G,1)

3. use (2) and (3) to compute Rel and
0.

4. Compute A = the maximum [ such that
P(l) £ 0.

End {(FACTOR} Y

Where procedure GeneratePath is defined as follows:

procedure GeneratePath (G: graph, M: mul-
tiplier)
begin
1. Find a shortest s, t-path in G
If not found Exit
else Let this path be
(s,v1),(v1,v2),..., (vi—1,v = t)
2. Initialize an empty sequence of ver-
tices U
Initialize IncP =M.
3. For v=wv1 to v do
If v is not marked up then
IncP = IncP x p,

add v to U
endfor
4. P(l) = P(l) + IncP
5. Let the sequence U be wuj,us,...,ux

Call GeneratePath(G — uy,qu1 * M)
if k=1 exit;

mark wi; up

Call GeneratePath(G — ug, pu1 * quz * M)
mark us up

Call GeneratePath(G—usz, pu1*pu2*qusxM)
mark up_1 up

Call GeneratePath(G — uk,pu1 * Pu2* . -

Dup_y * Quy, ¥ M)
end procedure {GeneratePath}. Y

Remarks on the Correctness: The correctness follows from
the above formulation based upon factoring theorem for P(I)
(Theorem 4). Each recursive call corresponds to computing a
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Fig.6. Anexample graph for illustration of path generation using Algorithm 2.

term in (7). A multiplier is used to reflect the states of vertices
factored upon so far. The multiplier is multiplied by ¢, for a
deleted vertex, and by p,, for an operating (up) vertex. Step 3 de-
termines the set of vertices on the new found s, ¢-path which are
not already marked up so that a vertex can not be factored upon
twice. Any shortest s,t-path found at step 1 must have at least one
unmarked vertex. Otherwise, this path would have been found
in an earlier call. But this is impossible because every recursive
call differs from the originating call by deleting one vertex on
the current shortest s, ¢-path.

Complexity Analysis of Algorithm 2: Let the number of
shortest s, t-paths be 7, and the number of s, t-cutsets be
n. Algorithm 2 requires time O(m n. n,). To see this, note
that in step 1, the procedure call is terminated if no s, ¢-path
exists. However, the number of ways an s, t-path is generated
is exactly the number of ways the set of shorter s, ¢-paths
fail. An upper bound on the latter number is the number of s,
t-cutsets (n.). Therefore, for most practical cases, the number
of states generated (corresponding to procedure calls) by Al-
gorithm 2 is expected to be substantially less than 2°~! (the
number of network states). For example, consider the graph in
Fig. 6. Algorithm 2 generates only 42 states compared to the
211 (= 2048) states which would be generated by Algorithm 1.

The path probabilities computed by Algorithm 2 are

P(4) = papepapt
P(5) = qapgpcpepapt + qapspePeqapipt + PadsPePePapt
T PaqvPcPeqdP;Pt + PaPblddPcPeD;jPt
P(6) = qupfqcpgprpipiPt + QaPfPedePgPrPiPjPe
+DPaQocP PgPRDiDiPt + PaQoDcdePFPgPRPiD; Pt
+PaPbqdqcPFPgPRPiP;i Pt +PaPoqdPceD fPgPRDiP; Dt -
Among the 42 states generated, only 12 states contain oper-
ational paths. Exactly 1 state contributes to P(4), 5 states con-

tributes to P(5), and 6 states contributes to P(6). Note that 6 is
the maximum number of hops in a shortest (minimal) s, ¢-path.

V. EFFICIENT ALGORITHMS FOR RESTRICTED CLASSES

Although the problem of computing the reliability, and ex-
pected message delay for an arbitrary DSN graph has been shown
in Section III to be #P-hard, polynomial time algorithms can still
be developed for some restricted cases. In this section, we con-
sider two such cases, namely, disjoint paths, and interval graphs.
These cases provide examples of the general idea of exploiting
the special architecture of the network topology to develop
efficient algorithms (i.e. polynomial in the size of the network).

\4

(@
() ©.
e‘ ®
(O)—(D)
(b)
Fig. 7. (a) 6 nodes in line, r = 0.4R, (b) An interval graph G.

A. An Algorithm for Disjoint Paths

We consider the case where the sink node is connected to
the target cluster through multiple disjoint paths. Based on the
assumption that a message from sink (s) to a target sensor node
(t) always takes the shortest available s,t-path, for any two paths
P, and P' of lengths I, and I respectively, P is used iff [ is
less than ['. As mentioned earlier, if more than one shortest path
exist, the routing scheme chooses arbitrarily any of them.

Suppose that the set of shortest s, t-paths are Py, Ps, ..., Py
where P; N P; = & for ¢ # j, (i.e. vertex disjoint paths), and
length of P; is less than or equal the length of P; for ¢ < j. Note
that P; is the shortest s, t-pathin G — {P; U...U P;_1}. In this
case, the probability that path P; is the shortest available oper-
ating s,t-path is the probability that all paths P; through P;_;
are failed, times the probability that P; is operating (¢ > 1).

The probability that a given path P; is operating is the product
of the operational probabilities of its vertices = [[, ¢ p. Po-

T_h¢ {)robability that all paths P; through P;_; are failed is

;;zl (1 - HUGPj pv)

Therefore a simple algorithm can be developed where the set
of shortest paths are generated in order of their lengths. The
probability of each path is then computed, and added to the cor-
responding P(l) in (2). Generating each path requires ©@(m)
time. An upper bound on the number of disjoint paths is n — 2.
Hence the algorithm requires O (nm) time.

B. Interval Graphs

Consider the case where network nodes are deployed along a
line, or a thin rectangular area with width w << R (the radius
of the coverage area). In this case, the network can be represented
by an interval graph. A graph G is an interval graph iff G is the
intersection graph of intervals on the real line [11]. The impor-
tance of interval graphs arises from the remark that they repre-
sent special cases of wireless topologies where the range of trans-
missions (R) can be represented by intersection of intervals on
the real line (X-axis). Let the X-coordinate of a vertex v be X[v].
Then, for each vertex v, we associate the open interval (X[v] —
R/2; X[v] + R/2) on the X-axis. The interval is centered around
v, and has length R. In the corresponding interval graph, we add
an edge between two vertices I, and j iff their corresponding in-
tervals intersects. Clearly two intervals I, and I, corresponding
to nodes v, and w intersect iff | X [v] — X[w]| < R. Therefore, an
edge (v, w) exists iff v & w are in the range of each other. Con-
sider, for example, the set of nodes V. = {s,a,b,c,t1,t2} laid
along a line (X-axis) with equal separation = r (see Fig. 7(a)).
Let the radius of transmission coverage be R = 2.5 X r. The
corresponding interval graph is shown in Fig. 7(b).
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1) Definitions: A vertex v is called simplicial if the set of
vertices adjacent to v induces a complete subgraph (clique).
Every interval graph has at least two simplicial vertices. An or-
dering o = (v1,v3,...,v,) of vertices of a graph G is called
a perfect elimination sequence if each vertex v; is a simpli-
cial vertex of the induced graph G — {vy,vs,...,v;_1}. Every
interval graph has a perfect elimination sequence which can
be computed in linear time together with the set of maximal
cliques of G [11], [27]. A property of any interval graph G
is that the maximal cliques of GG can be linearly ordered such
that the maximal cliques containing any one vertex occur con-
secutively [11], [14]. For the case of a DSN, o starts with the
source node s (v; = ), and ends with the set of target sensor
nodes 7. This can be easily seen if we remark that any vertex
that appears in o before s, or after 7', is irrelevant. The per-
fect elimination sequence (o), and the set of maximal cliques
(C) for the graph G in Fig. 7(b) are 0 = {s,a,b,c,t1,t2},
C = {{s,a,b},{a,b,c}, {b,c,t1}, {c, t1,t2}}. The following
algorithm employs a dynamic programming technique based on
the perfect elimination sequence, and the set of maximal cliques.

2) Algorithm:

Input: an interval graph G = (V,E,P),

a sink node s, a target set T, V =
{v1,v2,...,0,}, vi =8, v,=teT.

P = {p17p27"'7pn}' where p; =
operational probability of wv;, p; =1.

Output: Rel(G), MG), 6(G), the DSN reli-
ability, the maximum and the expected
delay of G.

Notation: Let right(i), and left(i) be the two
end points of the interval corresponding
to
v;. A property of the sequence ¢ is that
for any two vertices ¢, and j in o,
right(i) < right(j)

& 1 < j. Let P(i,l,k) be the probability
that the shortest path from s to w; has
length [ hops

given that only vertices up to (and in-
cluding) v, are allowed. We denote the
minimum

shortest path length from s to wv; by
Min(i), and the maximum shortest path
length by

Max(i).

Steps:

0. (pre-processing step). Find o, and the
corresponding set of maximal cliques
Ci,....,Ch,, 2<m<n-1 (m=1 for a com-
plete graph). Re-label the set of ver-
tices in the
same order they appear in o. The fol-
lowing steps assume that the set of ver-
tices V are
labeled in exactly the same order they
appear in the perfect elimination se-
quence o.

Mark all vertices in V —{s} as ‘new’.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005

1. For every vertex v; in Ci1—s: P(i,1,1) =1,
mark v; as ‘old’, Min(i) = Max(i) =1.

2. For ¢=2 to m, do

2.1. Let the set of vertices in C. marked
‘new’ be N.

2.2. For every vertex z in N

2.2.1 mark z as ‘old’.

Let the set of vertices (in (C.) marked
‘old’ that appear before z in o be O.
Let O = {01,0,...,0}, where k is the

cardinality of O.
Let Min(O) be the minimum of Min(v)
over all vertices v in O, and
Maz(O) be the maximum of Maz(v).

2.2.2. For 7=1 to k
2.2.2.1. Order the subset (of 0O)
0; ={01,04,...,0,} in ascending

order of left(v), and let the sorted
set be m = {rl,n2,...,7j}
2.2.2.2. For | = Min(O) to Maxz(O) do

P($7l+ 1771'3') :Pwlp(ﬂ'hl»y) + q7r1p7r2P(7r27lvy)
+---+q7r1Q7r2---p7rjP(7rjal7y>7

where y is the highest order
vertex that precedes (C, in o

(i.e. precedes all vertices in
C.) .

3. Let the set of target sensors T =
{t1,...tm} be ordered as they appear in
o; let y be
the highest order vertex preceding tl in
o; and let Lmin, and Lmax be the
minimum path length, and the maximum
path length respectively, to any target
sensor in T (with nonzero probabili-
ties).

For L = Lmin to Lmax

P(L) = pth(t17 L7 y) + QtlptZP(t27 L7 y)
+...F qt1 - - - qtm—lptmp(tm7 L7 y)
4. Compute Rel =3 /77" . P(L)
max L max
5. Compute § = Lermin LP(L)) 31 20 in P(L),
A = Lmazx.
End.

L max

Correctness and Complexity: The correctness of the above
algorithm can be verified using the following remarks.

1. For a given maximal clique, the path probabilities of
a ‘new’ vertex z depend only on path probabilities of
vertices in the old set (O) that precede it in o. This is
necessary because, for any vertex y that follows x in
o, there exists no shortest path of the form (s,...,y,
x,...,t) because le ft(z) is less than or equal left(y).

2. The path probabilities expressed by the terms summed
up in the right hand side in Step 2.2.2.2. do not include
any vertex in the O set.

3. Ordering the vertices by their left end (7 set in Step
2.2.2.1) implies that the probability terms are exhaus-



ABOELFOTOH et al.: COMPUTING RELIABILITY AND MESSAGE DELAY FOR COOPERATIVE WIRELESS DSN 153

N =30 Area = 1000 x 100

e e oo o o8
——175| ¢ +—+—* S 7>
= n 8 —a—s—B—8 38 8 0
=200 A -
—&—250 148
——275 9 —9 oo 0 —0 06090 3 °
@
—=—300 28
—e—350 10
i 400 | ¢ . y r T ; T T T T T 0
——500| 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 045 0.4
operational probability
Fig. 8. Expected delay vs. probability for different sensor ranges.
1 -
0.9 *E p :=
—
> 8? o e ——175
Z 06 A& A~ —=-200
205 { &~ —a— 250
‘s 04 - —=—275
x 0.3 —*
0.2 +—# —*—300
0.8 —e—350
T l6 T T T l\ T T T T 1 _'_400
TP PL LI PL P | —500

p

Fig. 9. Reliability vs. p for different sensor ranges.

tive & disjoint for all paths to = through the O set. The
same remark applies to step 3.

An easy upper bound on the complexity of the algorithm is
O(n?).

VI. NUMERICAL RESULTS

In this section, we present sample numerical results obtained
by applying Algorithm 2 (based on factoring) to some exam-
ples. The main reason for including such numerical results is to
show that, although the algorithm has an exponential worst-case
complexity, it still can yield results for networks with a relatively
large number of nodes in a few minutes time. As expected, an
implementation of Algorithm 1 did not yield results in a rea-
sonable time for a DSN with more than 25 nodes. Recall that
Algorithm 1 is based on state enumeration of the network. For
a network of 25 nodes, the number of states enumerated is 224,
The numerical results have been obtained using a C program on
a PC, and the maximum experiment time was about 3 minutes
(for a DSN with 40 nodes distributed randomly over an area
of 2000 by 1000 meters, and transmitter/receiver range =
200 meters). In Fig. 8, we display the computed expected delay
of an operational network (expected number of hops), between
the furthest pair of nodes (s & t), for 30 nodes distributed ran-
domly over an area of 1000 by 100 meters. The delay is com-
puted for different operational probabilities, and different cov-
erage ranges (175-500 meters). We chose to compute the delay
between the furthest pair of source-destination nodes because it
can be used as an estimation of the expected diameter of the net-
work. Fig. 9 shows the probability of having an operational path
for the same network of Fig. 8. For example, for a sensor range

N= 40 Area = 2000 X 1000

——200
—&— 250
—a— 300
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—%—400
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Fig. 10. Expected delay vs. probability for different sensor ranges.

of 175 meters, and p = 0.75 for the operational probability of
the sensor node, from Fig. 9, the probability of having an opera-
tional path between s & t is 80%. From Fig. 8, the expected path
length (delay) will be about 7 hops. As expected, as the range
of the sensor nodes decreases, the average delay increases, and
the reliability decreases.

It has been noticed from different experiments run on DSN
with random distribution of nodes that the effect of the opera-
tional probability of a node is not as significant as the effect of
the range. This is illustrated in the example DSN in Fig. 10. This
may suggest that minimizing the delay requires using sensors
with larger ranges. However, the sensor range is proportional
to at least the square of the sensor power [26], which requires
much more expensive sensor nodes.

VII. CONCLUSION

In a cooperative wireless sensor network, clusters of sensors
are deployed near the target phenomenon to provide information
to sink nodes or end user stations. The reliable monitoring of
events at the sink is based on the collective information provided
by the cluster, and not on any individual sensor node.

In this paper, we investigate the problem of computing prob-
abilistic measures for the reliability of multi-hop wireless dis-
tributed sensor networks, and the expected & maximum mes-
sage delay in an operational network. We assume that nodes are
subject to random failures with known failure probabilities. This
problem is important in the context of the topology analysis of
DSN, where it is required to relay a large number of messages
within a given time interval to far end-points. We show that both
problems are computationally intractable for arbitrary networks,
in particular #P-hard. We present two algorithms for arbitrary
networks. Naturally, these algorithms are exponential in the size
of the network. However, it can be applied (as demonstrated in
our numerical examples) to graphs of limited size; in our tests,
we applied a second algorithm to networks of up to 40 nodes.
Note that the clustered organization of a DSN implies that an
intra-cluster delay will be affected only by the cluster size, and
similarly, the delay between backbone nodes will be affected
only by the backbone size. The second algorithm requires poly-
nomial time in the number of pathsets & cutsets, which may be
substantially smaller than the number of network states. Also
we present efficient algorithms for two restricted cases, namely
disjoint paths, and interval graphs.
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In this paper, we assume bidirectional links, and shortest-path
routing algorithms. For future work, networks with asymmetric
links, or different transmitter/receiver ranges (which requires di-
rected graph models), and other routing schemes may be inves-
tigated. Also, efficient algorithms for computing the expected
delay, and other related performance measures may be sought
for other restricted topologies of DSN.
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