
D
ata fusion is a paradigm for integrating data from
multiple sources to synthesize new information
such that the whole is greater than the sum of its
parts. This is a critical task in contemporary and

future systems that have distributed networks of low-
cost, resource-constrained sensors [1], [2]. Current
techniques for data fusion are based on general
principles of distributed systems and rely on
cohesive data representations to integrate
multiple sources of data. Such methods do not
extend easily to systems in which real-time
data must be gathered periodically by coopera-
tive sensors, where some decisions become more
critical than other decisions episodically.

There has been extensive study in the areas of mul-
tisensor fusion and real-time sensor integration for time-criti-
cal sensor readings [3]. A distributed sensor data network is a
set of spatially scattered sensors designed to derive appropri-

ate inferences from the information gathered. The develop-
ment of such networks for information gathering in unstruc-
tured environments is receiving much interest, partly
because of the availability of new sensor technology that is

economically feasible to implement [4]. Sensor data
networks represent a class of distributed systems

that are used for sensing and in-situ processing
of spatially and temporally dense data from
limited resources and harsh environments, by
routing and cooperatively processing the
information gathered. In all these systems, the
critical step is the fusion of data gathered by

sensors to synthesize new information.
Our interest is in developing paradigms of data

fusion for sensor-actuator networks that perform engi-
neering tasks. We use automation systems as an illustrative
example. Automation systems represent an important, high-
ly engineered, trillion-dollar business in the United States.
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The real-time and distributed nature of these systems, with
the attendant demands for safety, determinism, and pre-
dictability, represent significant challenges and, hence, these
systems are a good example. An automation system is a col-
lection of devices, equipment, and networks that regulates
operations in a variety of manufacturing, material- and peo-
ple-moving, monitoring, and safety applications.

Automation systems evolved from early centralized sys-
tems to large distributed systems that are difficult to design,
operate, and maintain [5]. Current hierarchical architectures,
the nature and use of human-computer-interaction (HCI)
devices, and the current methods for addressing and configu-
ration increase system life-cycle costs. Current methods to inte-
grate system-wide data are hardcoded into control programs
and are not based on an integrating framework. Legacy archi-
tectures of existing automation systems are unable to support
future trends in distributed automation systems [6]. Current
methods for data fusion are also unlikely to extend to future
systems because of system scale and simplicity of nodes.

We present a new integrating framework for data fusion
that is based on two systems concepts: a conceptual frame-
work and the goal-seeking paradigm [7]. The conceptual
framework represents the structure of the system, and the
goal-seeking paradigm represents the behavior of the system.
Such a systematic approach to data fusion is essential for
proper functioning of future sensor-actuator networks [8]
and SmartSpace [9]. A SmartSpace is a new approach to HCI
that has been ushered in by the emerging trends in pervasive
computing. It is an intelligent, integrated environment that

gathers automation systems data, facilitates multiple users to
simultaneously interact with an automation system, and
facilitates holistic human decision-making by integrating sys-
tem-wide data. In the short term, such techniques help to
infuse emerging paradigms into existing automation architec-
tures. We must bring together knowledge in the fields of sen-
sor fusion, data and query processing, automation systems
design, and communication networks to develop the founda-
tions. While extensive research is being conducted in these
areas, we hope that researchers in related areas will venture
into this emerging and important area of research [2].

Automation Systems
An automation system is a unique, distributed, real-time sys-
tem that comprises a collection of sensors, actuators, con-
trollers, communication networks, and user-interface devices.
Such systems regulate the coordinated operation of physical
machines and humans to perform periodic and precise tasks
that may sometimes be dangerous for humans. Examples of
automation systems are: a car-manufacturing factory, a bag-
gage-handling system in an airport, and an amusement park
ride. Part, plant, and process are three entities of interest. 

◗ A part is a basic unit passing through the automation sys-
tem that receives attention from the plant and processes.

◗ A plant comprises a collection of stations, mechanical
fixtures, energy resources, and control equipment that
regulates operations by using a combination of
mechanical, pneumatic, hydraulic, electric, and elec-
tronic components or subsystems. 
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Fig. 1. Major aspects of an automation system.
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◗ A process specifies a sequence of stations through
which a part must traverse and operations that must
be performed on the part at each station.

Figure 1 shows the major aspects of an automation sys-
tem. All five aspects, namely input, output, logic processing,
behavior specification, and HCI, must be designed, imple-
mented, and commissioned to successfully operate an
automation system. Sensors and actuators are transducers
that are used to acquire inputs and set outputs, respectively.
The controller periodically executes logic to determine new
output values for actuators. HCI devices are used to specify
logic and facilitate operator interaction at runtime.

The architecture of existing automation systems is hierar-
chical, and the communication infrastructure is based on pro-
prietary technologies that do not scale well. Ethernet is
emerging as the principal control and data exchange net-
work. The transition from rigid, proprietary networks to flex-
ible, open networks introduces new problems into the
domain of automation systems, and security is a critical prob-
lem that demands attention.

System Characteristics
Automation systems operate in different modes. For example,
“k-hour-run” is a mode that is used to exercise the system with-
out affecting any parts. Other examples of modes are “automat-
ic,” “manual,” and “semiautomatic.” In all modes, the overriding
concern is to achieve deterministic, reliable, and safe operations.
The mode of the system dictates the degree to which humans
interact with the system. Safety checks performed in each of
these modes usually increase with the degree of user interaction.

Communication traffic changes with operating mode.
For example, when the system is in automatic mode, limited
amounts of data (a few bytes) are exchanged; such data
flows occur in localized areas of the system. In this mode,
small disruptions and delays in message delivery can be tol-
erated. When there is a disruption (in part, plant, or pro-
cess), however, large bursts of data will be exchanged
between a large number of nodes across the system. Under
such conditions, disruptions and delays significantly impair
system capabilities.

Because of both the large capital investments required and
the changing market place, these systems are designed to be
flexible with respect to part, plant, and process. Automation
systems operate in a periodic manner. The lack of tools to
evaluate performance makes it difficult to evaluate the sys-
tem’s performance and vulnerability. These systems are high-
ly engineered and well documented in the design and
implementation stages. Demands for reconfigurable architec-
tures and new properties such as self-organization require a
migration away from current hierarchical structures to loosely
coupled networks of devices and subsystems. The dominant
language that is currently used to specify control behavior is
called Ladder and it is a part of the IEC 61131-3 specification.
Most of the language editors that are used to specify such con-
trol behavior provide support for both online and offline pro-
gramming, debugging, and monitoring activities.

Operational Problems
Hierarchical architecture and demands for backward com-
patibility create a plethora of addressing and configuration
problems. Cumbersome and expensive implementations and
high commissioning costs are a consequence of such config-
uration problems. Figure 2 shows a typical configuration of
input and output (IO) points connected to controllers.

Unique addresses must be assigned to every IO point and
single structural component in Figure 2. These addresses are
typically related to the jumper settings on the device or chassis;
thus, a large number of addresses are related and structured by
manual naming conventions. In addition, depending on the set-
tings on device or chassis, several items in software packages
must also be configured manually. Naturally, such a landscape
of addresses leads to configuration problems. State-of-the-art
implementations permit specification of a global set of tags and
maintain multiple links behind the scenes. While this simplifies
the user’s chores, the underlying problems remain. The current
methods of addressing and configuration will not extend to
future systems that are characterized by large-scale, complex
interaction patterns and emergent behaviors.

Current methods for commissioning and fault recovery are
guided by experience and based on trial and error. User-inter-
face devices display localized, controller-centric data and do
not support holistic, system-wide decision making. Predictive
nondeterministic models do not accurately represent system
dynamics and, hence, approaches based on such models have
met with limited success. The current practice is a template-
based approach that is encoded into Ladder programs. These
templates recognize a few commonly occurring errors.

Despite these operational problems, automation systems
are a benchmark for safe, predictable, and maintainable sys-
tems. HCI devices are robust and reliable. Methods for safe
interaction, such as the use of dual palm switches, operator
level debouncing, and safety mats, are important elements of
any safe system. Mechanisms that are used to monitor, track,
and study trends in automation systems are good models for
such tasks in general, distributed systems.

Benefits of Data Fusion
Data fusion can alleviate current operational problems and
support the development of new architectures that preserve
the system’s characteristics. For example, data fusion tech-
niques based on the foundations discussed in this article can
provide a more systematic approach to commissioning, fault
management (detection, isolation, reporting, and recovery),
programming, and security management. Data fusion tech-
niques can be embodied in distributed services that are
appropriately located in the system and such services sup-
port a SmartSpace in decision making [9].

Foundations of Data Fusion
The principle issue for data fusion is to manage uncertainty.
We accomplish this task through a goal-seeking paradigm. A
conceptual framework simplifies application of the goal-
seeking paradigm in the context of a multilevel system, such
as an automation system.
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Representing System Structure
A conceptual framework is an experience-based stratification
of the system, as shown in Figure 3. We see a natural organi-
zation of the system into levels of a node, station, line, and
plant. At each level, the dominant considerations are depict-
ed on the right. There are certain cross-cutting abstractions
that do not fit well into a hierarchical organization. The
neighborhood of a node admits accessible nodes that are not
necessarily in the same station. For example, there may be a
communications node that has low load that could perform
data fusion tasks for a duration when another node in the
neighborhood is managing a disruptive fault. Similarly, ener-
gy resources in the environment affect all levels of the system.

A conceptual framework goes beyond a simple layering
approach or a hierarchical organization. The strata of a concep-
tual framework are not necessarily organized in a hierarchy.
The strata do not provide a service abstraction to other strata
like a layer in a software system. Instead, each stratum impos-
es performance requirements for other strata to which it
relates. At runtime, each stratum is responsible for monitoring
its own performance based on the sensed data. The system will
perform as expected as long as the monitored performance is
within tolerance limits specified in the goal-seeking paradigm.

Representing System Behavior
We represent the behavior of the system using the goal-seek-
ing paradigm. We briefly review the fundamental state tran-

sition paradigm and certain problems associated with this
paradigm before discussing the goal-seeking paradigm.

STATE TRANSITION PARADIGM

The state-transition paradigm is an approach to modeling
and describing systems based on two key assumptions: first,
that states of a system are precisely describable; and second,
that the dynamics of the system are also fully describable in
terms of states, transitions, inputs that initiate transitions,
and outputs that are produced in states.

A state-transition function S1 : Zt1 ⊗ Xt1,t2 → Zt2 defines
behavior of the system by mapping inputs to a new state.
For each state, an output function S2 : Z ti → ψ t i , where Xt1,t2

is the set of inputs presented to the system in the time inter-
val between t1 and t2; ψi is the set of outputs produced at
time ti; Zt1 and Zt2 are states of the automation system at
times t1 and t2, respectively; and ⊗, the Cartesian product,
indicates that the variables before the arrow (i.e., inputs
Xt1,t2 and Zt1) are causes for change in the variables after the
arrow (i.e., outputs Zt2).

To understand such a system, one needs to have complete
data on Zt1 and Xt1,t2 and knowledge about S1 and S2 . This
paradigm assumes that only a lack of data and knowledge pre-
vents us from completely predicting the future behavior of a
system. There is no room for uncertainty or indeterminism.
Such a paradigm (sometimes called the input–output or stimu-
lus-response paradigm) can be useful in certain limited circum-

38 IEEE Instrumentation & Measurement Magazine December 2003

Fig. 2. Connecting input–output points to controllers.
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stances for representing the interaction between two systems; it
can be erroneous if it is overextended. There is no consistent or
uniform definition of a state, and contextual information that is
based on collections of states is ignored. In such circumstances,
the specifications in a state-transition paradigm are limited by
what is expressed and depends heavily on environmental influ-
ences that are received as inputs. While it appears that the state-
transition paradigm is simple, natural, and easy to describe,
such a formulation can be misleading, especially if the true
nature of the system is goal seeking.

GOAL-SEEKING PARADIGM

A goal-seeking paradigm is an approach to modeling and
describing systems that explicitly supports uncertainty man-
agement by using additional artifacts and transformations.
The system can choose actions from a range of alternate
actions, �, in response to events occurring or expected to
occur. These actions represent a choice of decisions that can
be made in response to a given or emerging situation.

There is a range of uncertainties, �, that impact the suc-
cess of selected decisions. Uncertainties arise from two
sources: first, from an inability to correctly anticipate inputs,
either from the automation system or from users; and sec-
ond, from an incomplete or inaccurate view of the outcome
of a decision, even if the input is correctly anticipated. For
example, an operator may either switch the mode of the sys-
tem from “automatic” to “manual” by mistake, malicious
intent, or poor training. Assuming that the user made appro-
priate choices, the outcome of a decision can still be uncer-
tain because a component or subsystem of the automation
system may fail just before executing the decision.

The range of consequences, � , represent outcomes that
result from an implementation of system decisions.
Consequences are usually outputs that are produced by the
system. Some of these outputs may be consumed by users to
further resolve uncertainties, and other outputs may actuate
devices in the automation system.

The system maintains a reflection, � : � × � → � , which
is its view of the environment. Suppose that the system
makes a decision, π ∈ �; the system benefits from an under-
standing of what consequence π ∈ �, ψ produces. The con-
sequence ψ is presented as an output either to humans
within a SmartSpace or to the automation system. ψ does
not obviously follow ψ as specified by S2 because of uncer-
tainties in the system.

The evaluation set, �, represents a performance scale that
is used to compare the results of alternate actions. That is,
suppose the system could make two decisions, π1 ∈ � or
π2 ∈ �, and these decisions have consequences ψ1, ψ2 ∈ � ,
respectively. � helps to determine which of the two deci-
sions are preferable.

An evaluation mapping, � : � × � → �, is used to com-
pare outcomes of decisions using the performance scale. � is
specified by taking into account the extent or cost of the effort
associated with a decision; i.e., π ∈ �. For any π ∈ � and
π ∈ �, � assigns a value λ ∈ � and helps to determine the

system’s preference for a decision-consequence pair (π,ψ).
A tolerance function, 
 : � × � → �, indicates the degree

of satisfaction with the outcome if a given uncertainty δ ∈ �

comes to pass. For example, if the conditions are full of certain-
ty, the best or optimal decision can be identified. If, however,
there are several events that are anticipated (i.e., |�| � 1 ), the
performance of the system, as evaluated by �, can be allowed
to deteriorate for some δ ∈ � but this performance must stay
within a tolerance limit that will ensure survival of the system.

Based on the above artifacts and transformations, the func-
tioning of a system, in a goal-seeking paradigm, is defined as:
Find a decision π ∈ � so that the outcome is acceptable (e.g.,
within tolerance limits) for any possible occurrence of uncer-
tainty δ ∈ �; i.e., �(�(π, δ), π) ≤ 
(δ, π), ∀δ ∈ �

Security Management
for Discrete Automation
Security management in a discrete automation system is crit-
ical because of the current trends toward using open com-
munication infrastructures. Automation systems present
challenges of traditional distributed systems, emerging sen-
sor networks, and the need to protect the high investments
in contemporary assembly lines and factories. Formulating
the security management task in the state-transition
paradigm is a formidable task and perhaps may never be
accomplished because of the scale and the uncertainties that
are present. We demonstrate how the goal-seeking formula-
tion helps and the specific data fusion tasks that facilitate
security management.

A future automation system is likely to comprise large sen-
sor-actuator networks as important subsystems [8]. Nodes in
such a system are resource constrained. Determinism and low
jitter are extremely important design considerations. Since a
node typically contains a simple processor without any con-
troller hierarchy or real-time operating system, it is infeasible
to implement a fully secure communications channel for all
links without compromising determinism and performance. A
distinguishing feature of the new sensor networks is that they
do not have enough resources to run a large RTOS; if they did,
then each node would become much more expensive, and that
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Fig. 3. Conceptual framework for an automation system.
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eats into the scale of the system you can build. You can easily
put together a million-node system if the nodes are very inex-
pensive but only 100 nodes if each node costs 10,000 times
more. For the same reason, there is no controller hierarchy, i.e.,
a special processor that performs signal processing, memory
management, or communications tasks. The best that you can
do is perhaps a 4-MHz processor with a microkernel OS that is
good for executing a single thread task. If this processor is
communicating, it cannot be sensing or actuating, and if it is
doing physical IO, it cannot be communicating. Further,
because of the large installed base of such systems, security
mechanisms must be designed to mask the uneven condition-
ing of the environment [10]. The goal-seeking formulation,
presented here, and the cooperative data fusion tasks associat-
ed support such an implementation.

Goal-Seeking Formulation
This section details the artifacts and transformations neces-
sary for security management.

ALTERNATE ACTIONS

The set of actions includes options for security mechanisms
that are available to a future automation system.
Asymmetric cryptography may be applied to a specific link,
a broadcast, a connection, or a session. Digital signatures or
certificates may be required. Frequency hopping may be
used to make it difficult for malicious intruders to masquer-
ade messages or eavesdrop. Block ciphering, digest function,
or µ-T might be applied. These possible actions comprise the
set of alternate actions. At each time step, the automation
system selects one or more of these alternate actions to main-
tain security of the system. Because the nodes are resource
constrained, it is not possible to implement full encryption
for each of the links. Thus, to make the system secure, one or
more mechanisms must be selected in a systematic manner
depending on the current conditions in the system.

UNCERTAINTIES

As already discussed, there are two sources of uncertainties.
First, the system cannot guess the choice when a specific
user choice is expected as input (a subjective decision).
Second, malfunctions of a component or subsystem cannot
be predicted. For example, an established channel, connec-
tion, packet, or session may be lost. A node receiving a
request may be unable to respond to a query without com-
promising local determinism or jitter. The node, channel, or
subsystem may be under a denial of service attack. There
may be a malicious eavesdropper listening to the messages,
or someone may be masquerading production data to mis-
lead management.

CONSEQUENCES

It is not possible to predict either the occurrence or the time of
occurrence of an uncertainty if it occurs. The selected actions
may not lead to intended consequences if one or more uncer-
tainties come to pass, however. Some example consequences

are when the communications channel is highly secure at the
expected speeds, the channel may be secure at a lower speed,
or the channel may be able to deliver data at desired speed
without any security. The supplied authentication, digital sig-
nature, or certificate is either verified or not verified.

REFLECTION

This transformation maps every decision-uncertainty pair
into a consequence that is presented as an output. The reflec-
tion includes all possible choices, without any judgment
about either the cost of effort or feasibility of the conse-
quence in the current system environment.

EVALUATION SET

The three parameters of interest are security of channel,
freshness of data, and authenticity of data. Assuming a bina-
ry range for each of these parameters, we get the following
scale to evaluate consequences:

1) highly secure channel with strongly fresh, truly
authenticated data

2) highly secure channel with strongly fresh, weakly
authenticated data

3) highly secure channel with weakly fresh, truly authen-
ticated data

4) highly secure channel with weakly fresh, weakly
authenticated data

5) weakly secure channel with strongly fresh, truly
authenticated data

6) weakly secure channel with strongly fresh, weakly
authenticated data

7) weakly secure channel with weakly fresh, truly
authenticated data

8) weakly secure channel with weakly fresh, weakly
authenticated data

9) total communication failure, no data sent.

EVALUATION MAPPING

Ideally, consequences follow from decisions directly.
Because of uncertainties, the consequence obtained may be
more desirable or less desirable, depending on the circum-
stances. Evaluation mapping produces such an assessment
for every consequence-decision pair.

TOLERANCE FUNCTION

The tolerance function establishes a minimum performance
level on the evaluation set that can be used to decide whether
or not a decision is acceptable. In an automation system, the
tolerance limit typically changes when the system conditions
are different. For example, a highly secure channel with
strongly fresh, truly authenticated data may be desirable
when a user is trying to reprogram a controller and weakly
secure channel with weakly fresh, weakly authenticated data
may be adequate during commissioning phases. The tolerance
function can be defined to include such considerations as
operating mode and system conditions with the view of eval-
uating a decision in the current context of a system.
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Applying Data Fusion
Only a few uncertainties may come to pass when a particu-
lar alternate action is selected by the system. Hence, we first
build a list of uncertainties that apply to every alternate
action {�1,�2, . . . �|�|}. For an action, πk, if the size of the
corresponding set of uncertainties are |�k| > 1, then data
fusion must be applied.

To manage security in an automation system, we need to
work with two types of sensors. The first type is sensors that are
used to support the automation system, such as ones that sense
presence of a part, completion of a traversal, or failure of an
operation. In addition, there are sensors that help resolve uncer-
tainties. Some of these redundant sensors could either be addi-
tional sensors that sense a different modality or another sensor
whose value is used in another context to synthesize new infor-
mation. Some uncertainties can only be inferred as the absence
of certain values. For every uncertainty, the set of sensor values,
or lack thereof, and inferences are recorded a priori. Sensors that
must be queried for fresh data are also recorded a priori.

For each uncertainty, we also record the strata in the con-
ceptual framework that dominates the value of an uncertain-
ty. For example, suppose there is an uncertainty in the mode
of a station. The resolution of this uncertainty is based on
whether or not there is a fault at the station. Suppose there is
a fault in the station; then the mode at the station must dom-
inate the mode at the line to which the station belongs.
Similarly, when the fault has been cleared, the mode of the
line must dominate if the necessary safety conditions are
met. Thus, the conceptual framework is useful for resolving
uncertainties. The specific implementation of data fusion
mechanisms will depend on the capabilities of the nodes. In
a resource-constrained environment, we expect such tech-
niques to be integrated with the communications protocols.

Summary
In this article we provided a new foundation for data fusion
based on two concepts: a conceptual framework and the
goal-seeking paradigm. The conceptual framework empha-
sizes the dominant structures in the system. The goal-seek-
ing paradigm is a mechanism for representing system
evolution that explicitly manages uncertainty. The goal-seek-
ing formulation for data fusion helps to distinguish between
subjective decisions that resolve uncertainty by involving
humans and objective decisions that can be executed by
computers. These notions are useful for critical tasks such as
security management in large-scale distributed systems.
Investigations in this area, and further refinement of the
goal-seeking formulation for instrumentation and measure-
ment applications, are likely to lead to future systems that
facilitate holistic user decision making.
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