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One of the most challenging topics in the automatic doc-
ument rating process is the development of a rating
scheme for the image quality of documents. As part of
the Department of Energy (DOE) document declassifica-
tion program, we have developed a generalized rating
system to predict the optical character recognition
(OCR) accuracy level that is achieved when processing a
document. The need for such a system emerged from
the declassification of degraded, typewriter-era docu-
ments, which is currently a time-consuming manual
process. This article presents the statistical analysis of
the most influential document quality features affecting
OCR accuracy, develops consistent predictive models
for four currently used OCR engines, and studies the
applicability of different OCR products to the DOE docu-
ment declassification process. This study is expected to
lead to an efficient and completely automated document
declassification system.

Introduction

Efficient, reliable, and fully automated optical character
recognition (OCR) has become one of the most important
problems in modern document analysis. OCR is a method of
transforming a page image into a text file. The goal of this
transformation is to make letters, words, and symbols
printed on a page identifiable. Document rating systems
attempt to rank page images on the basis of the degree to
which they can be accurately transformed into text by OCR.

Although modern OCR engines are implemented with
fast pattern recognition techniques, document rating still
requires human interaction. This interaction becomes espe-
cially unavoidable in the rating of degraded text documents,
where document quality is substantially reduced by age,
copying, faxing, low-resolution printing, typing, and other
processes. Because rating such documents manually is a
tedious and expensive task, a fast and fully automated rating
system would be highly beneficial in the document rating
process.
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This article introduces an efficient automated document
rating scheme that is accurate and does not require human
assistance. In the first part, we develop a minimal set of doc-
ument quality parameters sufficient for high-fidelity rating.
These parameters are then used to predict the actual OCR
accuracy levels obtained with four different OCR products
for a set of old typewritten pages. Finally, we evaluate the
four OCR engines with respect to a population of degraded
text images and find the engine that gives the best perfor-
mance on these images (Senior & Robinson, 1998; Cannon,
Kelly, Ilyengar, & Brener, 1997; Tang, Tu, Lee, Lin, & Shyu,
1998).

Department of Energy Declassification Problem

In our development of an automated document rating
system, we used a set of low-quality typewriter-era docu-
ments provided by the Department of Energy (DOE) Office
of Declassification (OD). Currently, OD has approximately
230 million pages of documents waiting to be declassified.
At present, these documents are being declassified manu-
ally, a time-consuming and labor-intensive task. Clearly,
this declassification process needs to be automated, with
the first step being the conversion of the documents to text
files using OCR engines. In order for the automated system
to run successfully, the OCR conversion must be done at a
high level of accuracy. Current OCR commercial products
are designed primarily for documents produced by laser
printers and typically achieve high levels of accuracy on
such documents. However, much of the OD document pop-
ulation was produced by typewriters in the 1940s and
1950s and is in sharp contrast to laser printer documents.
As a result, many of the modern OCR technologies may not
achieve sufficiently high accuracy on the OD typewriter-era
documents. Thus we need an automated system that can
evaluate a document’s readability with different OCR en-
gines and predict the OCR accuracy rate for each engine. In
this way, we can select the best OCR engine to use on each
document.

In order to develop such an automated system, we need to
determine the image quality factors that cause errors for a par-
ticular OCR engine, develop an efficient tool for predicting
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OCR accuracy rates (Cannon, Kelly, Iyengar, & Brener,
1997), and find the most appropriate OCR product for pro-
cessing typewriter-era documents. These aims were accom-
plished by performing a detailed statistical analysis of the
effect of different image quality parameters on OCR accu-
racy. This analysis is expected to lead to an automated sys-
tem that will substantially improve the OD declassification
process.

Automated Document Rating Scheme

Extracting Image Quality Parameters

In order to determine which factors affect OCR accuracy,
we developed a 131-page test suite selected from approxi-
mately 550 pages provided by Dyncorp (Crandall & Amsler,
1996). All pages were typewritten and were chosen to con-
tain various levels of text degradation, representing the
lower-quality documents that are part of the OD document
population waiting to be declassified. As a first step, the
pages were scanned and digitized as binary images in com-
pressed tagged image file (TIF) format; each image was
approximately 2000 by 3000 pixels.! Then the four leading
commercial OCR engines were used to process the 131
images; we will refer to these engines as A, B, C, and D. For
each page, the actual OCR accuracy rate was manually cal-
culated on a [0, 100] scale as the percentage of correctly
identified characters, resulting in a 131-dimensional vector
of accuracy rates for each OCR engine.

Our goals were to eliminate the tedious manual ranking
and to develop a simple but efficient image-processing tool to
predict the OCR accuracy rate from morphological parame-
ters of a scanned page. For increased efficiency, only minimal
image processing was applied. First, the top and bottom of
each text line were located from the vertical black pixel den-
sity histogram, as described in Senior and Robinson (1998).
Then the beginning and the end of each text line were deter-
mined from the horizontal line density histograms. This
process enabled us to identify correctly the location of nearly
all text lines, including titles, headers., and, in some cases,
page numbers. After these text-containing rectangular
regions were located, the bottom, top, left, and right margins
were removed from the analysis, and the remaining image
was subdivided into text-containing and complementary
between-line regions, as shown in Figure 1. Average text line
height was chosen as a character height estimate CH. From
the horizontal line density histogram each text-containing
rectangle was divided into regions with above-average hori-
zontal density, corresponding to the characters (sometimes
broken or touching), and the average character width CW was
estimated. Once the character-containing regions were fil-
tered out from the between-character noise, the histograms
for black connected®> components CC, black connected

‘For better analysis, all pages were scanned with 3 -4 magnification.
*We used 8-connectivity.
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FIG. 1. Text image segmentation.

components within text line regions LCC, white connected
components within text line regions WLCC, and ““thick” black
connected components® within text line regions 7CC were
determined. For each statistic, its mean and variance were
computed to estimate both the most probable parameter value
and the amount of randomness it can have (Table 1).

Document Quality Multifeatures

The OCR predictability analysis resulting from the docu-
ment segmentation described was based on a natural
assumption that the character-based OCR recognition accu-
racy rate will be proportional to the quality of the text-
containing image.® Therefore, we assumed that given
the OCR rate R and a set of image quality parameters Dis
i=1,..., n, one can efficiently approximate R with a lin-
ear regression model:

n
R=bn+2bip,+ e,

=i

where e, the regression error, is minimized with an appro-
priate choice of regression coefficients b; (Iyengar & Rao,
1983). However, we did not assume any a priori knowledge
of the specific set of predictor features p;. Therefore, we ini-
tially computed n = 36 text quality parameters, which are
described in Table 1 and illustrated in Figure 2.

These parameters were grouped into seven generic
classes shown in Figure 3. The parameters within each class
tend to be correlated; for instance, large character height CH
is likely to correspond to a large font size, resulting in a large
character width CW. Because the initial number of parame-
ters n = 36 was large, optimal parameter reduction was
applied, as explained in the next section.

3Same as LCC but only for the black pixels with all eight black neighbors.

*This is less true for the word-based OCR, which would require an ad-
ditional and complex linguistic analysis, avoided here for efficiency. More-
over, we observed the high correlation between character-based and word-
based OCR rates.
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TABLE 1.

Text quality features p;.

Parameter name

Parameter value

Parameter name

Parameter value

l. BBLD Density of black pixels,
[number of black pixels/total
number of pixels],
in between-line regions

2. BLD Density of black pixels inside line regions
(similarto 1)

3. BSP Black speckle density defined as percentage
of black connected components® with
size smaller than 20% of average black
connected component size CC

4, CC, CCV Average black connected component size
and its variance

5. CCH, CCHV Average black connected component height
and its variance (standard deviation)

6. CCW, CCWV Average black connected component width
and its variance

7. CH,CHV Average character height (as average text
line height) and its variance

8. CW, CcwVv Average character width and its variance
found from horizontal line density
histogram

9. LCC, LCCY, Line connected component statistics,

LECH, LCCHV: computed similarly to overall connected
LCCW, LCCWV component parameters in 4-6, but now

only for connected components inside
text line regions.

10. LCCD Average line connected component density”
11. RSS Percentage (with respect to total number
of line connected components) of line
connected components with width and
height both below 0.5LCCH
12. RLS Percentage (see 11) of line connected
components with width above and height
below 0.5LCCH
13. RSL Percentage (see 11) of line connected
components with width below and height
above 0.5LCCH
14. RLL Percentage (see 11) of line connected
components with width and height both
above 0.5LCCH
15. " FCC TCEN: “Thick™ line connected component
TCCH, TCCHYV, statistics, computed similarly to the
TCCW, TCCWV overall connected component parameters
in 4-6, but now only for thick connected
components inside text line regions. Thick
connected component includes only
black pixels with all black 8-pixel
neighborhood®
16. WLCC, White line connected component statistics,
WLCCV, WLCCH, computed similarly to the line connected
WLCCHV, WLCCW, component parameters in 9, but for the
WLCCWV white pixel connected components
17. WSP White speckle density, computed similarly

to BSP, but for white pixels

A black (white) pixel is defined as a connected component pixel if all its eight neighboring pixels are black (white). A black (white) connected compo-
nent is a connected set of connected component pixels of the same color (either black or white).

bFound as the average of the ratio (number of connected component pixels/[connected component width X connected component height]).

“That is, all eight neighbors of the pixel must also be connected component pixels of the same color (either black or white). This statistic was defined to

eliminate small connected components introduced by random noise.
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FIG. 2. OCR features for degraded characters.
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FIG. 3.

Text multifeature set.

Reducing the Number of Predictor Variables

Similarly to the OCR engines, each parameter p; in our
analysis was represented by a 131-dimensional vector,
consisting of the parameter value computed for all 131 test

1276

pages. The best two-dimensional parameter space represen-
tation based on interparameter Euclidean distances is shown
in Figure 4 (left). The figure was obtained by mapping para-
meter representation vectors from their original 131-
dimensional space to a 2-dimensional space, with the map-
ping chosen to preserve the relative distances between the
parameters optimally. This plot approximately visualized the
proximity of parameters and suggested the need for a
reduced parameter set because many features in Figure 4
(left) nearly overlap. Therefore, we used the SAS® predictor
selection tool o choose the best (corresponding to the low-
est possible mean square error [MSE]) set of predictor vari-
ables for each model size n and each OCR engine as follows:
First, the optimal number of significant parameters was esti-
mated with principal component analysis. For the given 131-
dimensional 36-parameter vector set we determined that
approximately the first’ five to six eigenvalues of the para-
meter correlation matrix

131 n=36
C = [CU = (P,sPJ,) = ; pi(d)pj{d)‘J

Lj=1

QOrdered by their magnitude.
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account for the majority (82%) of the total parameter set
variance. Figure 4 (right) represents the contribution of
each eigenvalue to the total parameter set variance. There-
fore, principal component analysis suggested that the dim-
ensionality of the parameter space could be reduced to five
to six dimensions. This dimensionality estimate allowed
development of a compact OCR rate-predicting scheme
based on linear regression with four to six predictor vari-
ables as presented below.

To eliminate correlated parameters, all four OCR
engines, A, B, C, and D, and the averaged OCR values®
were considered for the parameter reduction analysis. For
each linear regression model of size n and each OCR eng-
ine, the 131-dimensional OCR rate vector R was regressed
on every possible n-variable subset, 1 < n < 36, of the com-
plete parameter set, and the regression with minimum MSE
was determined. We started this analysis with the averaged
OCR rate and found that four text quality factors, namely,
CCH, BBLD, LCCV, and TCCYV, were sufficient to achieve a
remarkably high 0.9 model-to-response correlation, and
mean square error MSE as low’ as 8.41 (with response
OCR values varying in the [0, 100] range). This best four-
predictor model for the OCR accuracy rate, denoted by
OCR, was computed as follows:

OCR = 60.66 + (1.34CCH) — (129.61BBLD)
+ (0.21LCCV) — (0.36TCCV)

The best five-predictor model was determined to be

OCR = 50.03 + (1.12CCH) — (123.95BBLD)
+ (0.22LCCV) — (0.38TCCV) + (18.35RLL)

and led to an MSE of 8.10.

“Determined as follows: For each page, the smallest and the highest
OCR engine rates were dropped, and the remaining two averaged.
"Full model with all 36 predictors gives 0.96 correlation and 6.45 error.
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Document quality parameters.

Then a similar model selection procedure was applied to
the A, B, C, and D engines separately. For each OCR engine
and each number of features n = 1 to 36, the optimal linear
regression model of size n was found, and the respective mean
square error was determined. The resulting decrease in mini-
mal MSE value, with respect to the linear regression model of
size n, is shown in Figure 5. As one can observe, increasing the
number of predictor variables beyond six resulted in a more
moderate MSE decrease compared to the smaller model sizes.

Therefore, we limited model sizes n to 4, 5, and 6 and det-
ermined optimal variable sets for each OCR engine. This
method permitted us to reduce regression MSE values below
9.5 (for size n = 6), a substantial 60% improvement com-
pared to the results obtained with another OCR prediction
method described in Cannon and associates (1 997). Statistical
analysis for these models is presented in the following section.

Linear Prediction for OCR Engines

The optimal fourth- and fifth-order regression results for
the four OCR engines are summarized in Table 2, and the

OCR Rate Prediction

—— Averaged OCR
—— D
—h— A
——B
—¥—C

1 3 5 7 6 11 13 15 17 1
Number of features
FIG. 5. Predicting OCR rates.
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TABLE 2. Optimal OCR predictors.

OCR engine Best fourth-order model Model MSE Best fifth-order model Model MSE
A 56.0 — (84.8BLD) + (0.18LCCV) 46.2 — (68.2BLD)+ (0.16LCCV)
+ (66RLL) — (.34TCCV) 9.21 + (1.23LCCH) + (48.0RLL) — (0.33TCCV) 8.52
B 54.2 + (1.8CCH) — (167.7BBLD) 122.7 + (2.1CCH) — (82.3BLD)
+ (0.2LCCV) — (04TCCV) 10.21 — (144 4BBLD) — (3.08CWV) — (0.87CH) 9.84
C —50.2 — (0.04CCV) + (1.9LCCH) —13.7 + (14CCH) — (81.2BLD)
+ (123.8RSS) + (111.1RLL) 10.99 + (135.7RSS) + (136.3RLL) — (2.7CW) 9.93
D 102 — (0.04CC) + (1.67CCH) 92.7 — (187.6BBLD) + (0.2LCCV)
— (201.5BBLD) — (3.0WLCCH) 9.92 + (24.5RLL) — (2.7TWLCCH) — (0.3TCCV) 9.36

complete regression analysis, residual plots, histograms, and
normality tests for these models are given in Appendix A.
Note that (Appendix A, Figures A1-A5):

1. All regression models are significant: the analysis of vari-
ance (ANOVA) significance level, which indicates the
degree to which these models are inappropriate, was
found to be below 0.0001 in all cases, which indicates that
all four OCR engines and their average are strongly influ-
enced by the values of their respective five-feature sets.

2. All feature coefficients b; shown in the respective coeffi-
cients tables are also significant on at least the 0.0001
level. Therefore, each feature in the predictive set has a
strong influence on the respective OCR rate.

3. The mean square prediction error for OCR engines
ranges from \/65.614 = 8.1 for the averaged OCR val-
ues to V98.601 = 9.9 for engine C. Thus for all of the
OCR engines tested, the mean square prediction error is
less than 10%.

4. Model scatterplots demonstrate the linearity between the
regression model prediction and the actual OCR values.
One can also observe that most outliers occur at the lower
rates, where text images contain a lot of noise and char-
acter recognition rates become less predictable or consis-
tent. For the pages with rates above 60%, regression
accuracy increases, resulting in even lower MSE values
compared to the overall regression.

5. Both residual histograms and normal P-P plots for each
OCR engine suggest that the regression residual distribu-
tion approaches the normal, with most residual values
close to 0 and only a few less probable outliers.

Thus, the statistical data indicate that the model’s predic-
tions are highly correlated with the actual OCR rate for the
particular engine. Because the model selection procedure
ensured that each of these models provides the best OCR
prediction for the given model size and cannot be modified
without increasing the mean square error MSE, we therefore
obtained a concise and highly significant predictive model
for each OCR engine in question.

Apart from this regression analysis, a few descriptive
conclusions can be drawn:

1. Each engine has a different set of best predictive features.
Because all features in Table 2 are significant, we can
analyze the sensitivity of a particular OCR engine to

different text quality factors. For instance, engine D is the
only one affected by the height of white connected com-
ponents in the text line regions (WLLCH). High values
of this parameter can correspond to a large number of
characters broken along the vertical axis, thereby signifi-
cantly decreasing engine D’s recognition rate. Therefore,
the knowledge about the optimal predictor set can be
used to judge how a particular OCR engine is sensitive to
specific text degradation features, and that in turn may
suggest ways to improve that engine.

2. All OCR engines exhibit very similar predictability,
which can be seen in Table 2 and Figure 5. Note that we
used only the most general text quality factors, such as
noise and size variation, and did not make any assump-
tions about character shapes, fonts, or languages.® This
method leads to an interesting conclusion: Essentially, the
character-based OCR rate can be predicted with low MSE
values without using character-, language-, or context-
specific information and assuming only a certain consis-
tency in text parameters.

Nonlinear Regression Models

Even optimally chosen linear regression models may not
be able to account for all possible functionality in the OCR
rate prediction. Therefore, nonlinear regression models can
also be used to achieve better OCR prediction results by tak-
ing advantage of more complicated dependencies. This fea-
ture enables us to increase prediction quality without
increasing the set of the document quality parameters.
Because each parameter has a certain computational cost,
the use of nonlinear models can be beneficial in developing
a fast document rating system.

Several alternatives for the nonlinear regression analysis
were considered as possible improvements to the linear
regression models. The rationale for this can be seen in
Figure 6 (left), which shows the error e = D — D in the en-
gine D fifth-order linear regression D versus the engine’s ac-
tual OCR values D. One can observe that low OCR values
tend to be overestimated by the linear regression model, pro-
ducing mostly negative residual values, and increased OCR
rates lead to less negative residuals. Therefore, linear regres-
sion was not able to account for all existing dependencies

S8Except that the languages use English-like alphabets.

1278 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2005



D: Regression Error vs. OCR Rate
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between the five-feature set values and the actual engine D
recognition rate.

To remove these dependencies, we applied the SPSS®
curve estimation tool to fit D with various nonlinear func-
tions D :f(f)), as shown in Figure 6 (right). It was found
that the cubic model of the form

D= A[} + A]D ¥ Azf)z + /\353.

represented by the thick curve in Figure 6 (right), achieved
the best performance over the linear regression results. This
decreased the regression MSE from 9.36 (as for the fifth-
order linear regression) to 8.73, with optimal A values deter-
mined as

Ao = 2.7218, A = —0.02526,
Az = 0.0323, A3 = —0.0002.

The second alternative was the use of quadratic regres-
sion to predict the same actual engine D OCR rate D as

D=ay+ Dap+ D a,np+e
2 i

where the p;’s are the document quality parameters used in
the linear regression prediction and oy, o;; are optimally
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Engine D nonlinear models.

chosen constants. The best n = 5 engine D parameters
{BBLD, LCCV, RLL, TCCV, WLLCH} were chosen from
Table 2 as the p;’s. The E,-J- a;;p;p; term adds the cross-pro
ducts pjp; and the quadratic terms p? to the linear regres-
sion, which leads to considerable improvement in the pre-
diction of OCR accuracy rates, as shown in Table 3.

Note that all quadratic regression terms in this model
have influential significance levels but essentially are com-
binations of only the five document quality parameters used
in the linear regression. The MSE value produced by this
model was as low as 7.75. The same analyses were
performed for the remaining three OCR engines, with very
similar (below 8.0 MSE) low prediction errors.

Automated Document Rating

The regression analysis and optimal parameter set selec-
tion demonstrated a high potential for predicting OCR
accuracy rates and are expected to lead to the automated OCR
document recognition rating system shown in Figure 7.

Note that MSE values as low as 8-9, achieved with the
proposed OCR prediction process, allow one both to predict
the OCR rate produced by a specified OCR engine accu-
rately and to estimate the time and cost of the document
classification. Documents with high predicted OCR values
can be efficiently recognized by OCR software and

TABLE 3. Engine D quadratic regression results.
Degrees of Type I sum
Regression freedom of squares R-square F-ratio Prob > F
Linear 5 28650 0.7299 95.251 0.0000
Quadratic 5 747.963587 0.0191 2.487 0.0359
Cross-product 10 3477.306326 0.0886 5.780 0.0000
Total Regression 20 32876 0.8375 27.325 0.0000
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FIG. 7. Automated document rating.

converted into text files. Documents with low predicted
OCR values are very unlikely to be successfully processed
by any OCR product, and their conversion will require
time-consuming human labor.

Selecting the Best OCR Engines for DOE
Declassification

The 131-page test suite described previously was used to
test the performance of the four OCR engines—A, B, C, and
D—to determine which is the most appropriate and efficient
for the DOE declassification problem. The four engines were
to be compared to each other; that led to the six-pair 7-test, as
shown in Tables Al and A2 in Appendix B.

1. Paired samples correlations (Table Al) demonstrate that
the OCR rates produced by all four products are strongly
correlated (the hypothesis of their being uncorrelated has
significance levels as low as 0.0001). From these results,
engines A and B exhibit the most similar performance,
while C and D produce the most dissimilar OCR values.

2. Paired samples means, deviations and standardized errors
for each OCR engine are also presented in Table Al. On
the basis of the mean OCR rate, the D product delivers
the highest average recognition rate (79.2% OCR rate), B
(71.6%) is second, A (69.9%) is third, and C produces the
lowest OCR values (68.2%). However, these relations
between the means are not sufficient to compare the four
OCR engines, because they must be related to the possi-
ble OCR measurement errors. This comparison was ac-
complished with the paired t-test.

3. The paired samples t-test (Table A2) compared all four
engines, assuming that the performance of each one can
be represented as an accurate recognition rate plus nor-
mally distributed error. Because the lowest significance
levels in this table correspond to the highest probability
that the two engines perform differently, engine D
clearly differs from the remaining three products (all
three D pairs, and only these, have significance levels
below 0.0001). On the other side of the table, D pro-
duces the highest average recognition rates and outper-
forms A by 9.2%, B by 7.5%. and C by 11%. The confi-
dence intervals show that for 99% of the test pages, D is
clearly producing better results, outperforming A by at
least 6.0%, B by at least 4.1%, and C by at least 7.4%.
These numbers demonstrate that D is the most suitable
for DOE declassification, producing results that are
significantly better than those of the other three OCR
products.

4. For the remaining three engines, only B, which has the
second best average recognition rate, is different from C,
which has the lowest average recognition rate, at the 0.01

Euclidean distance model

) B
2¢
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=05 o A

— 10 o
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FIG. 8. OCR engines in two-dimensional space.

significance level.’ The difference between A and B is
less significant than the difference between A and C, so
that C is the least suitable product for the DOE declassi-
fication problem.

5. The plot in Figure 8 represents the results of the optimal
2-dimensional scaling applied to the four OCR engines
and their averaged value. The 2-dimensional coordinates
for all five variables on this plot were computed to
provide the best Euclidean distance match between the
resulting 2-dimensional (on this plot) and the actual the
131-dimensional (in the test observation space) intervari-
able distances. This graphical result shows that engine D,
which has the best OCR rates, is distinctively different
from the other three OCR engines and hence is perform-
ing at a significantly higher level than the other engines.
It also indicates that A and B produce very similar recog-
nition rates, close to the averaged OCR values, and C,
which has the lowest OCR rates, is performing at a sig-
nificantly lower level than the other three engines.

=

Conclusions

A new efficient document image technique was proposed.
It is based on exploiting the dependencies existing between
the character recognition rates produced by currently used
OCR engines and optimally chosen image quality factors.
The analysis of these dependencies with linear and nonlinear
regression tools demonstrates that only five to six document
quality parameters are sufficient to achieve OCR prediction

9That is. the hypothesis that C performs as well as B may be accepted
with only 1% probability.
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accuracy with MSE below 8.0; the result is a simple and
reliable document classification scheme. The optimally
reduced document feature set also resulted in high time
efficiency for the automated document rating system: The
2000-by-3000 page image classification takes less than |
second on a Pentium MMX 233 MHz processor.

The automated page rating must be followed with actual
page recognition, performed with currently used OCR
engines (Figure 7). To complete this step with optimal results,
four existing OCR products, A, B, C, and D, were statistically
analyzed, and their performances on DOE typewriter-era
documents were evaluated and compared. This comparison
led to definite conclusions about each engine’s efficiency
and demonstrated that the D engine is the best of the cur-
rently available products.

Our document rating method demonstrated a high docu-
ment rating fidelity and therefore can be applied to substan-
tially reduce the costs and labor currently associated with
large-scale document processing. The combination of the

proposed automated document rating scheme and state-of-
art OCR software is expected to lead to a time-efficient au-
tomated document processing system.
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Appendix A: Linear Prediction for OCR Engines: Best Fifth-Order Models

ANOVA
Sum of Mean
Model Squares df Square F Sig.
1 Regression [42621.353 5 8524271 | 115.235 .000
Residual 9246.580[ 125 65.614
Total 51867.933 130
Coefficients
Unstandardized IStandardized|
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 50.029 4.458 11.221 000
BBLD -123.952 14.736 =372 -8.412 .000
CCH 1.122 171 321 6.576 .000
Leev 223 .022 1.398 10.126 000
TCCV -.380 030 -1.801 -12.809 .000
RLL 18.354 5.787 .169 3.172 .002
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FIG. Al. Averaged OCR regression.
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ANOVA

Scatterplot
Sum of Mean .
Model Squares df Square F Sig. Dependent Variable: A
1 Regression 51075.113 5 10215.023| 111.761 .000 120
Residual 11425.059 125 72.937
Total 62500.172 130 100 o
o
Coefficients 80 Sl u% &
o0 a
o
o na'gu :ﬂBE
Unstandardized Standardized| 60 o nan L
Coefficients Coefficients
o o o o
) 40 4 - o o ogo - m
Model B Std. Error | Beta 1 Sig. oo @ B
1 (Constant) 46.189 4.958 9.316 .000 204%oa 2 S @
RLL 48.001 7.626 403 6.295 .000
o (=]
BLD -68.251 11.853 -.366 -5.158 .000 < 0 a
LCCH 1.230 279 277 4.406 .000 3 2 -1 0 1 2
LCCV 164 028 936 5.795 .000
TCCV -.331 040 -1.427 -8.280 .000 Regression Standardized Predicted Value
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FIG. A2. Engine A regression.
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ANOVA

Scatterplot
Sum of Mean .
Model Squares df Square F sig. Dependent Variable: B
1 Regression | 50840.881 5 10168.176| 70.007 000 120
Residual 18155.710 125 96.825
Total 68996.591 130 e
Coefficients 80
Unstandardized Standardized| &
Coefficients Coefficients
40
Model B Sid. Error Beta 1 Sig.
1 (Constant) | 122.712 8.982 13.661 000 20 o o
BBLD -144.422 | 22463 -376 -6.429 000
=]
BLD 82207 | 15.135 -420 -5.438 000 m 0 = ®
CCH 2.078 220 516 9.458 .000 = -4 3 i) -1 0 ]
CcH -875 237 -216 -3.686 000
CWV -3.085 840 -218 -3.674 .000 Regression Standardized Predicted Value
Residual Histogram Normal P-P Plot of Standardized Residuals
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FIG. A3. Engine B regression.
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ANOVA

Regression Standardized Residual

Scatterplot
Sum of Mean .
Model Squares df Square E Sig. Dependent Variable: C
1 Regression | 34461.589 5 6892318 | 56.092 .000 100
- o2afo D
Residual 15359484 | 125 98.601 o o %% Q
=]
Total 49821073 | 130 o #ﬁﬁ 0g”
80 m" o 3 s o0%em
- SR S
Coefficients oy, ot °
60 4 o £ g
o ® poad
Unstandardized Standardized| ] & g o g
Coefficients Coefficients %4 “ o o
40 o op B ®
o p 0 o
Model B Std. Error Beta t Sig. o Dﬂ al o
I (Constant) | -13.722 | 13.983 -981 328 20 4
BLD -81.256 11.262 -.488 -7.215 000 o
CCH 1.453 220 424 6.591 000 O 0 %o
cwW -2.730 521 -345 -5.245 000
-3 -2 -1 0 1 2
RLL 136.281 15.725 1.281 8.666 000
RSS 5680 | 2 ; 15 i ; . .
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FIG. A4. Engine C regression.
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ANOVA

Sum of Mean
Model Squares df Square F Sig
1 Regression 36177.988 5 7235.598 57.445 .000
Residual 15744.739 125 87.609
Total 51922.727 130
Coefficients
Unstandardized Standardized)
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 92.763 9.614 9.649 000
BBLD -187.611 21.070 -.562 -8.904 L000
Lcev 188 029 1.182 6.558 2000
RLL 24.477 7.112 225 3.442 001
TCCV -.300 039 -1.422 -7.741 000
WLCCH -2.693 668 233 -4.029 000
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FIG. A5. Engine D regression.
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Appendix B: Comparing OCR Engines

TABLE Al. Paired samples statistics.
Correlation Standard Standard error
‘Engine pair Correlation significance Mean deviation of mean
A-B .870 .000 69.9449 23.4927 1.9577
71.6533 24,4268 2.0356
A-C 764 .000 69.9449 23.4927 1.9577
68.1891 20.7201 1.7267
A-D .784 .000 69.9449 23.4927 1.9577
79.1970 21.7580 1.8132
B-C .760 .000 71.6533 24,4268 2.0356
68.1891 20.7201 1.7267
B-D 773 .000 71.6533 24.4268 2.0356
79.1970 21.7580 1.8132
Cc-D 690 .000 68.1891 20.7201 1.7267
79.1970 21.7580 1.8132
TABLE A2. Paired samples test.
Paired differences
99% Confidence interval
Engine pair Mean Lower Upper T-test Standard error of mean
A-B —1.7084 —4.3772 9604 =161 097
A-C 1.7558 —1.5968 5.1084 1.367 174
A-D —9.2521 —12.5072 —5.9969 —7.420 .000
B-C 3.4642 —0.0022 6.9506 2.594 010
B-D —7.5437 —10.9723 —4.1151 —5.744 000
C-D —11.0079 —14.6547 —7.3611 —7.880 .000

op
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