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Abstract – Data transport methods with end-to-end performance 
guarantees  are  required  by   the  next  generation  distributed 
computing  applications.  Transport  methods  based  on  default 
best-effort  IP  networks  are  not  capable   of  providing  such 
guarantees  due  to  complex  traffic  distributions  in  wide-area 
networks and highly dynamic network conditions. In this paper, 
we present a measurement-based transport method using source 
routing   strategy   to   minimize   message   delays   via   multiple 
quickest paths. This method is based on a linear approximation 
using effective  bandwidth, and is computationally efficient and 
also analytically tractable under  fairly general conditions.  This 
method  is  implemented  using   application-level  daemons  and 
tested  at  Internet  nodes.  The   results  illustrate  its  superior 
performances over the default TCP/IP method. 
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I.   INTRODUCTION 

New   generation   of   large-scale   distributed   computing 
applications  require  unprecedented  end-to-end  performance 
levels from long-haul networks. One of the important problems in 
this area is to minimize the message delays over wide-area 
networks.  In  the  present  wide-area  networks,  including  the 
Internet, messages are typically decomposed into data packets, 
which are then forwarded by the routers as per the best-effort 
IP paradigm. Typically, the packets are routed along paths with 
minimum   number   of   hops   from   source   to   destination. 
However, such paths are not necessarily uniformly quickest for 
all message sizes because the “available” path bandwidth and 
network congestion are also  vital factors in determining the 
delays. In general, the delays experienced by data packets have 
been shown to have highly complicated statistical distributions, 
which make the end-to-end performance highly unpredictable. 
Since  an  accurate  prediction  of  delay  distributions  is  not 
feasible    over    wide-area    networks,    measurement-based 
approaches have been developed to identify close-to-optimal 
quickest paths [9-11]. Furthermore, by utilizing application- 
level daemons, multiple paths via the daemons can be used to 
overcome  the  limitations  of  the  default  TCP/IP  paradigm. 
These works establish the feasibility and underlying principles 
of such an approach but they only provide proof-of-the-concept 
experimental results. In  particular, the analytical  methods in 
[10] are not very practical, whereas the results in [11] are based 
on simulation and are not analytically justified. 

 
In this paper,  we propose a  measurement-based transport 

method and describe its complete functional framework with 
practical   implementations   of   various   components.   The 
proposed method actively collects network  measurements to 
estimate the effective bandwidth and minimum delay for each 
link using a linear regression estimator, whose probabilistic 
performance   guarantees   are   shown   under   fairly   general 
conditions. Based on the measurement results, the proposed 
method computes multiple quickest paths to achieve low end- 
to-end message delays using a source-based routing strategy 
supported  by  application-level  routing  daemons.   We   also 
describe  a  systematic  approach  to  optimizing  the  needed 
measurements based on the statistical design [4,5]. 
 

The rest of the paper is organized as follows. We describe 
in Section II the general framework of network daemons that 
estimates  link  properties  and  supports   message  transfers. 
Section III discusses in detail the technique used for measuring 
effective  bandwidth  and  minimum  delay  as  well  as  its 
performance analysis. Section IV presents  the algorithms for 
computing multiple quickest paths. Section V is devoted to the 
minimization  of  measurements.  The  implementation  details 
and experimental results are given in Section VI. 
 

II.   NETWORK DAEMON OF MEASUREMENT-BASED 
TRANSPORT METHOD 

We  design  network  transport  daemons  that  provide   a 
measurement-based    solution    ensuring    end-to-end    delay 
performance.  The  framework   of  such  transport  daemons 
illustrated in Fig. 1 is based in part on earlier works [9-11]. A 
transport daemon consists of two main components, namely, 
measurement and transport modules. The measurement module 
has four functional units for measurement minimization, end- 
to-end   delay   measurement,   regression   estimate   of   link 
properties,   and   routing   table   construction.   The   transport 
module is responsible for setting up a transport channel by 
propagating the source routing control information along a pre- 
computed routing path and providing data transfer service to 
user applications through API functions. 
 

In addition to the refinements in various components, this 
framework  also  incorporates  the  measurement  optimization 
compared  to  the  earlier  works  [9-11].  In  general,  not  all 
transport daemons deployed at available nodes are activated in 
order   to   save   computing   and   communication   resources. 
Instead,  we strategically select a subset of nodes to conduct 
link   measurements   at   optimal   measuring   rates   that   are 
statistically determined. The measurement results are broadcast 
over the entire overlay network  of transport daemons so that 
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every node is able to build the network topology and perform 
source routing via multiple quickest paths for its applications. 

During message transmission, the daemons operate in one 
of three modes: sending, routing, and receiving. A sending 
node reads data from user applications and prepares the source-
routing header information. A receiving node forwards 
incoming data to host applications and handles the 
acknowledgements if necessary. A routing node acts as a 
virtual router at the application level providing routing 
functions 

User Applications
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1. Select a subset of nodes
2. Select a subset of links out of each node
3. Optimize the measuring rate at each
selected node

Perform End-to-End Delay
Measurements
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2. Send test messages of various sizes at
optimized rates on selected node links
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Fig. 1. Framework of measurement-based transport daemon 

III. BANDWITH AND DELAY MEASUREMENT 
The link bandwidth is the fastest rate at which data can be 

generated and sent along the link, while the available link 
bandwidth is the spare bandwidth of the link “left over” after 
the cross traffic [2,3]. Due to complex traffic distribution over 
wide-area networks, and the non-linear nature of transport 
protocol dynamics (in particular TCP), the throughput achieved 
in actual message transfers is typically different from both the 
link and available bandwidths, and typically contains a random 
component The effective path bandwidth is defined as the 
maximum throughput the path provides to a flow given the 
current cross traffic load on the path. The notion of effective 
bandwidth is specific to the transport protocol employed by the 
transport daemon, and is related to both link and available 
bandwidth perhaps in a complicated way. The active 
measurement technique we apply here is to estimate the 
effective path bandwidth and minimum delay for each virtual 
link.  

There are three main types of delays involved in the 
message transmission over computer networks, namely, link 
propagation delay pd  imposed at the physical link level, 
equipment-associated delay qd  mostly incurred by processing 

and buffering at the hosts and routers, and bandwidth-
constrained delay BWd . Due to the time-varying network cross 
traffic, the delay qd  often experiences a high level of 
randomness. Also, since the transport protocol reacts to the 
competing traffic on the links, the delay BWd  may also 
exhibits randomness particularly over congested wide-area 
connections.  We have the following expression for the end-to-
end delay or message delay in transmitting a message of size r 
on a path P with l links or hops: 

)),()((),(),( ,
1
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l

i
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Note that d is a random variable for fixed P and r. If the 
message size r is smaller than the smallest MTU on the path, 
and the network is lightly loaded, the bandwidth-constrained 
delay in Equation (1) is negligible so that the sum of the 
queuing and propagation delays mostly account for the end-to-
end delay1. We denote this lower bound of message delay by a 

fixed quantity: MTUrrPdPdPd iq

l

i
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On the other hand, if the message size r is considerably large, 
the message delay is mainly contributed by the bandwidth-
constrained delay together with a somewhat smaller but 
random quantity qd . Let EBW(P) denote the effective 
bandwidth of the path P. The message delay ),( rPd  for 
transmitting a message of size r can be approximated by a 
linear model: 

min
1( , ) ( )

( )
d P r r d P

EBW P
≈ +   (2) 

In a circuit-switching connection such as a light path or a 
dedicated bandwidth channel, the maximum transmission rate 
is fixed and is determined by the minimum effective link 
bandwidth EBW(link) of the path P  

( ) min{ ( )}
link P

EBW P EBW link
∈

= .  (3) 

In a purely packet-switching network wherein all data 
packets are stored and forwarded at intermediate nodes. Thus, 
the bandwidth-constrained delay needs to be counted at every 
component link. For the transmission of a packet of length less 
than path MTU, the effective path bandwidth is approximated 
in [11] as: 

1( )
1
( )link P

EBW P

EBW link∈

=
∑

  (4) 

However, when transmitting a message of large size in a 
packet-switching network, the pipelining of data packets along 
component links actually makes the effective path bandwidth 
practically close to Equation (3). 

We use an active measurement technique to estimate the 
effective bandwidth of a link or a physical path in an overlay 
network. A measurement node generates a set of test messages 
of various sizes, sends them over an outgoing link through a 
                                                           
1 From the transport layer’s viewpoint, the minimum delay for a message 
smaller than the path MTU may also contain a small component introduced 
by the timeout a transport protocol uses to wait for more data from 
applications. This waiting period is usually dependent on the implementation 
of a transport protocol. 
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transport channel such as a TCP flow, and measures the end-
to-end transmission delay. This process is repeated several 
times for each message size and the average delay is 
calculated. Once the average end-to-end delays for messages of 
different sizes are determined on an outgoing link, we apply a 
linear regression to fit the measured points of message size r 
and end-to-end delay d pair. The first order approximation of 
the effective path bandwidth EBW and the minimum end-to-
end delay mind  are then estimated by the slope and intercept of 

the regression line min
1d r d

EBW
= + , respectively. It is worth 

pointing out that the intercept of the regression line is 
sometimes sensitive to the message transmission delay 
measurements. We replace the estimate of mind  with a UDP-
based minimum end-to-end delay measurement if the intercept 
does not yield a valid value. 

The message delay measurements between two transport 
daemons deployed at Louisiana State University (LSU) and 
Oak Ridge National Laboratory (ORNL) as well as its 
corresponding linear regression estimate are illustrated in Fig. 
2. The measurement of the transmission delay for each 
message size is carried out three times. From this figure, we 
estimate that the effective path bandwidth EBW of this virtual 
link to be about 1.0 Mbps and the minimum message delay to 
be about 35 ms. 

Message Sizes vs. End-To-End Delays
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Fig. 2. End-to-end message transmission delay measurements 
between LSU and ORNL 

We use the following result from [11] to obtain the linear 
regression estimate for the effective path bandwidth and the 
minimum end-to-end delay: 

Theorem: Given a set of test messages with various sizes 
},...,2,1|{ kirR i == , and the corresponding message delays  

},...,2,1|{ kidD i == , the following formula gives the 
coefficient vector of a polynomial regression estimate in the 
least squares sense. 

)()( 1 yXXXa TT vv −=   (5) 
where, av  is the coefficient vector of a polynomial regression 
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We now analyze the effectiveness of this method under 
fairly general conditions. For a given message of size r, let the 
corresponding delay d be distributed according to a probability 

distribution /d rP . Note that the expression min
1 r d

EBW
+ for d 

is an approximation that estimates d for a given value r. While 
this equation captures the dominant relationship between r and 
d, it does not capture the random effects. Recall that such 
random components could be due to a number of factors such 
as delays at router or host buffers, packet retransmissions due 
to buffer overflows or other losses, and time variations in 
transferring the packets from application buffers to kernel 
buffers then to Network Interface Card (NIC) buffers.  In 
general such variations are not major contributors to the delays, 
particularly for large messages sent over wide-area 
connections. Nevertheless, it is important to assess the 
effectiveness of the above method compared to the one that 
takes the randomness into effect. Given a linear estimator 

1 0a r a+  for the delay d, its expected square error is given by 

rdaa ParadI ,
2

01),( )(
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The best estimator according to Eq (7) is given by 
* * 1 01 0 ( , )1 0

( , )( , )
min

a a
a aa a

I I= . For this cost measure, coefficients 0a  

and 1a  cannot be computed even in principle since it requires 
the knowledge of /d rP . Typically this is an infinite 
dimensional quantity and cannot be accurately estimated using 
a finite sample. 

     Consider that 1 1
1 0a r a+  is an estimator for the delay d 

computed using Theorem 1. We will show that for any 
distribution ,d rP  we have 

{ } 2
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which implies that the expected error of the computed estimate 
is within ε  of the optimal with probability approaching 1 as 
the sample size k increases. In fact, for any given values of k 
and ε , the right hand side of the above expression can be used 
to compute probability with which the error of the estimate is 
within ε of the optimal. This is best type of result possible 
when the distribution ,d rP  is completely unknown. Similar 
results are shown in [12] using a more detailed expression for 
the delay, which results in estimators that are significantly 
more complicated than the above linear estimate. There are two 
important aspects of the above performance guarantee. On the 
positive side, it is entirely distribution-free in that it is valid 
independent of ,d rP , although stronger guarantees may be 
possible for certain distributions. On the negative side, it only 
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ensures the closeness of estimator error to the best possible 
linear approximation, but it is quite possible that the latter itself 
is unsatisfactory. Note that the linear approximation model has 
been supported by the domain-specific considerations above. 

     We will now prove the above performance result. Consider 
the empirical error of the delay estimator 1 0a r a+ given by 

∑
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Now note that the above delay estimator 1 1
1 0a r a+  minimizes 

this empirical error, that is 1 1 ( , )1 01 2 ( , )1 0

1 1
( , )

min
a a

a a
a a

I I= . The estimators 

class 1 0{ }a r a+  forms a vector space of dimensionality 2. Then 
by using the results from Vapnik [14], we have the following 
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where the last bound is due to the dimension 2 of the estimator 
class (details are standard can be found, for example in [7]). 

IV. MULTIPLE QUICKEST PATH COMPUTATION 
A set of nodes selected to deploy transport daemons and 

virtual links connecting them form an overlay network [15]. A 
typical overlay network with estimated available path 
bandwidths and minimum end-to-end delays is shown in Fig. 3 
for illustrative purposes. 
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Transport
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Fig. 3. Overlay network of transport daemons with estimated 
path bandwidths and minimum end-to-end delays 

An overlay network can be represented by a graph G(V, E) 
with vertices V denoting transport daemons and edges E 
denoting virtual links. Such an overlay network graph can be 
seen as a combination of a weighted graph and a flow network: 
each edge in an overlay network is associated with both the 
minimum delay, which corresponds to the edge weight in a 
weighted graph and the bandwidth, which corresponds to the 
capacity in a flow network. The quickest path problem is to 
find a routing path in an overlay network graph G such that the 
end-to-end delay time required to send a message of size r 
from a source node sv  to a destination node dv  is minimum. A 
routing path in an overlay network is usually made up of one or 
more virtual links or physical paths in the underlying network. 
Since the end-to-end delay for message transmission over a 
routing path does not only depend on the minimum delays of 
component virtual links, but also the associated available 
bandwidths, apparently the well-known single-source shortest 

path algorithm, Dijkstra’s algorithm, cannot be directly applied 
to such graphs. 

We design an approximate algorithm MQP(overlay 
network graph G(V, E), message size r, path number m, source 
node sv , destination node dv ) to compute multiple quickest 
paths from source node  sv  to destination node dv  in an 
overlay network graph G(V, E). This algorithm is modified 
from Dijkstra’s algorithm [1,6,7] with the new key value of 

node dsivi ,,2,1,, K=  defined by ][
][ min i

i

vd
vEBW

r
+ , 

where ][ ivEBW  is the effective path bandwidth of the route 
from source node sv  to node iv , and ][min ivd  is the sum of the 
minimum virtual link delays along the route from source node 

sv  to node iv . For simplicity, we use the minimum of the 
component virtual link bandwidths to approximate the 
effective path bandwidth ][ ivEBW . 

The multiple quickest paths algorithm MQP(G, r, m, sv , 

dv ) is briefly presented in Fig. 4. Note that every time a 
quickest path is found, its path bandwidth is subtracted from 
the bandwidths of its component virtual links before we search 
for the next quickest path. 

 
Fig. 4. Algorithm MQP(G, r, m, sv , dv ) for computing 

multiple quickest paths 

The relaxation procedure in the MQP algorithm is similar 
to the one used in Dijkstra’s algorithm except that MQP uses 
the new key value and the path bandwidth is recomputed for 
each neighboring node to make sure that its path bandwidth is 
always the minimum of the component virtual link bandwidths. 

As for the data transmission, the source node first retrieves 
multiple quickest paths from the routing table, divides the data 
into multiple parts appropriately, and then sends them to the 
second nodes through different paths concurrently. Suppose 
that m quickest paths have been found: mPPP ,,, 21 K . The 
partitioning of user data of size r into m parts: mrrr ,,, 21 K , 
requires that the transmission times along all routing paths are 
equal: 

MQP(G, r, m, sv , dv ) 
Begin 
For each quickest path numbered from 1 to m 
    Initialize resolved/unresolved node set, predecessor node list, and 
key value of source node sv ; 

    Compute key value ][
][ min i

i

vd
vEBW

r
+  for node si vv ≠ ; 

    While unresolved node set is not empty 
        Select the node with the minimum key value; 
        Relax its neighbor nodes; 
        Remove this node from unresolved node set and add to resolved 
node set; 
    Build the quickest path from sv  to dv  using the predecessor node 
list; 
    Subtract path bandwidth from all component virtual link bandwidths 
of the current quickest path; 
End 
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and 
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m

i
i =∑

=1
    (12) 

Particularly, when the number of quickest paths 2=m , we 
use the following equation to partition the data of size r [9]: 
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A source node performs user data partition based on the 
measurement results and sends data components via multiple 
quickest paths. As an overlay router, an intermediate transport 
daemon performs routing functions. It receives incoming data 
components, extracts routing path information, and forwards 
them to the very next hop on the routing path. The destination 
node simply receives data components and stores them locally. 
If all data components have arrived, an acknowledgement is 
sent from the destination node to the source node to notify the 
sending daemon of the completion of the transmission task. 

V. MEASUREMENT RATE MINIMIZATION 
In high-speed networks, it is impractical to collect delay 
measurements for every message for the purpose of computing 
the effective bandwidth of every link. Even if all measurements 
are available, estimating EBW may consume computational 
resources on data that does not contribute useful information. 
In this section, we adapt the general method of [7] based on the 
statistical design of experiments [5] to the present EBW 
estimation problem. We allocate suitable rates for various links 
and re-compute the estimates using the measurements collected 
so far. Informally, such measurement rate optimization results 
in links with higher variances being measured more often than 
others. 

We now briefly describe the general formulation of the 
statistical design of experiments [5], to which the network 
measurement problem can be mapped in more than one ways. 
Consider the model of [4] given by 

( ) ( )t t i t iY U x xε= +    (14) 

where tY  is the observation taken at time t corresponding to 

the variable ix and tε  is the measurement error. In our case 

ix  corresponds to a path or link and tY  is its EBW estimate. 

Let ( )1 2( ), ( ),..., ( ) T
sU u x u x u x=  denote estimators at all 

nodes. Let [ ] 0uE U U=  and 

( )( )0 0
T

uVar U U U U K − − =  . (15) 

We consider the design problem given by 
( ) ( ){ }1 1, , , ,n np x p xξ = L  such that /i ip r N=  and 

1

n

i
i

N r
=

= ∑ . Let 1( )U ξ  be a predictor of U , and its quality is 

given by the matrix of expected squared residuals 

( )( )1 1
,( ) ( ) ( )

T

uD E U U U Uεξ ξ ξ = − −  
. (16) 

The observational errors are assumed to have zero means 
and be uncorrelated such that: 

[ ]| ( ) 0u t iE xε ε =    (17) 

1 1
2

| ( ) ( )u t i it tt
E x xε ε ε σ δ  =     (18) 

Let ϕ  be a criterion of optimality. One of the simplest 

problems is to select a design *ξ  that minimizes ( )Dϕ ξ    
where D is the residual matrix. Several methods for computing 
the optimal design *ξ are presented in [5] for estimating the 
delays. In this formulation, we fixed the sites and found the 
optimal measuring rates at each of the chosen sites so that total 
rate of measurement is no more than N during the time window 
[0,T]. At fixed measurement rates, the solution here optimizes 
the allocation of measurement rates among the chosen sites, 
which yields more accurate estimation than equally distributing 
the measurement rates. There could be other potential ways to 
apply statistical design methods to improve the measurements 
in computer networks [4].  

VI. IMPLEMENTATION IN WANS AND EXPERIMENTAL 
RESULTS 

The transport daemon for end-to-end delay minimization is 
implemented in C++ on Linux operating system. TCP 
connections are used for both end-to-end measurements and 
user data transmissions. We construct a simple overlay 
network solely for performance evaluation purposes by 
deploying transport daemons on the following three sites: LSU, 
ORNL, GaTech (Georgia Institute of Technology). The 
topology of this test overlay network is shown in Fig. 5. Since 
there is always a physical path connecting any two hosts in the 
Internet, the overlay network is essentially a complete graph. 

We conduct two sets of transport experiments between 
ORNL and LSU in this overlay network: one using a single 
default TCP stream, and the other using two quickest paths. 
The first quickest path is the direct IP connection to destination 
while the second one is via the transport daemon deployed at 
GaTech as a virtual router. A user-defined header containing 
both data and path information such as data type, data size, 
path delay, path bandwidth, and a list of routing nodes, is 
propagated from the source node to the destination node to set 
up a data channel via virtual routers. 

For each experiment, we transfer a certain size of data from 
ORNL to LSU. The data is partitioned into two parts for two 
quickest paths according to Equation (13) based on the data 
size as well as the bandwidth and delay measurements. The 
throughput performances of these experiments using different 
transport methods are tabulated in Table 1 for comparison. 
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Fig. 5. Overlay network of transport daemons over Internet 

Table 1. Throughput performances of two transport methods 
from ORNL toLSU 

Experiment 
index 

File size 
(Mbytes) 

Single TCP 
stream (Mbps) 

Two quickest 
paths (Mbps) 

1 1 1.63 3.31 
2 5 1.40 2.36 
3 10 1.38 2.68 
4 15 1.35 2.55 
5 20 1.16 2.41 
6 25 1.07 2.10 
7 30 0.84 1.80 
8 35 0.92 1.75 
9 40 1.44 3.79 
10 45 1.88 4.26 
11 50 1.01 2.03 
12 55 0.98 1.68 
13 60 0.66 1.13 
14 65 0.82 2.17 
15 70 1.11 2.06 
16 75 1.03 2.48 
17 80 0.79 1.37 
18 85 1.26 3.39 
19 90 1.21 2.83 
20 95 0.92 1.72 
21 100 1.16 2.74 

Due to recent interest in parallel-TCP method that employs 
a number of TCP streams, we briefly compare our method with 
it.  The data packets of parallel-TCP travel along the same IP 
route to the destination and therefore share all communication 
resources. However, the data packets of the multi-path 
transport are delivered via different routes with the support of 
overlay routers and are intended to avoid resource contest 
between different paths, especially on the bottleneck link. The 
multi-path transport exhibits similar throughput performance to 
parallel-TCP when there is no congestion or the congestion 
only occurs at two ends. The advantage of using the multi-path 
transport over parallel-TCP becomes evident when the second 
quickest path bypasses the congested zone experienced by the 
first quickest path. Fig. 6 shows such a case that the multi-path 
transport outperforms parallel-TCP when an increasing number 
of parallel streams saturate the default IP route. The x-axis in 
Fig. 6 represents the number of parallel streams that run along 
the default route (or the first quickest path in the multi-path 
transport), and the y-axis is the corresponding throughput 
performance measured in Mbps. 

VII. CONCLUSION 
We presented a measurement-based source routing method 

to minimize message delays via multiple quickest paths. Using 
a linear approximation, we presented a method which is 
computationally efficient and also analytically tractable under  
fairly general conditions This method is implemented using 
application-level daemons and tested at Internet nodes, and it 
outperformed the default TCP/IP method. There are number 
possible directions for future investigations. The measurement 

optimization method may be extended to identify a subset of 
nodes that at which measurements may be collected while still 
assuring the performance. Also practical advantages of the 
measurement optimization methods may be studied in detail. 

 
(a) No congestion is bypassed (b) Congestion is bypassed 

Fig. 6 Comparison of throughput performance between multi-
stream and multi-path transports 
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