
International Conference on Computer Communications and Networks (IC3N 2004)

On Measurement-Based Transport Method for Message Delay
Minimization Over Wide-Area Networks

Qishi Wu, Nageswara S. V. Rao
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831
Tele: 865-576-5603

Email: {wuqn,raons}@ornl.gov

S. Sitharama Iyengar
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803

Tele: 225-587-1252
Email: iyengar@bit.csc.lsu.edu

Abstract – Data transport methods with end-to-end performance
guarantees are required by the next generation distributed
computing applications. Transport methods based on default
best-effort IP networks are not capable of providing such
guarantees due to complex traffic distributions in wide-area
networks and highly dynamic network conditions. In this paper,
we present a measurement-based transport method using source
routing strategy to minimize message delays via multiple
quickest paths. This method is based on a linear approximation
using effective bandwidth, and is computationally efficient and
also analytically tractable under fairly general conditions. This
method is implemented using application-level daemons and
tested at Internet nodes. The results illustrate its superior
performances over the default TCP/IP method.

Keywords: transport method, overlay network, network
measurements, end-to-end delays

I. INTRODUCTION

New generation of large-scale distributed computing
applications require unprecedented end-to-end performance
levels from long-haul networks. One of the important problems in
this area is to minimize the message delays over wide-area
networks. In the present wide-area networks, including the
Internet, messages are typically decomposed into data packets,
which are then forwarded by the routers as per the best-effort
IP paradigm. Typically, the packets are routed along paths with
minimum number of hops from source to destination.
However, such paths are not necessarily uniformly quickest for
all message sizes because the “available” path bandwidth and
network congestion are also vital factors in determining the
delays. In general, the delays experienced by data packets have
been shown to have highly complicated statistical distributions,
which make the end-to-end performance highly unpredictable.
Since an accurate prediction of delay distributions is not
feasible over wide-area networks, measurement-based
approaches have been developed to identify close-to-optimal
quickest paths [9-11]. Furthermore, by utilizing application-
level daemons, multiple paths via the daemons can be used to
overcome the limitations of the default TCP/IP paradigm.
These works establish the feasibility and underlying principles
of such an approach but they only provide proof-of-the-concept
experimental results. In particular, the analytical methods in
[10] are not very practical, whereas the results in [11] are based
on simulation and are not analytically justified.

In this paper, we propose a measurement-based transport

method and describe its complete functional framework with
practical implementations of various components. The
proposed method actively collects network measurements to
estimate the effective bandwidth and minimum delay for each
link using a linear regression estimator, whose probabilistic
performance guarantees are shown under fairly general
conditions. Based on the measurement results, the proposed
method computes multiple quickest paths to achieve low end-
to-end message delays using a source-based routing strategy
supported by application-level routing daemons. We also
describe a systematic approach to optimizing the needed
measurements based on the statistical design [4,5].

The rest of the paper is organized as follows. We describe
in Section II the general framework of network daemons that
estimates link properties and supports message transfers.
Section III discusses in detail the technique used for measuring
effective bandwidth and minimum delay as well as its
performance analysis. Section IV presents the algorithms for
computing multiple quickest paths. Section V is devoted to the
minimization of measurements. The implementation details
and experimental results are given in Section VI.

II. NETWORK DAEMON OF MEASUREMENT-BASED
TRANSPORT METHOD

We design network transport daemons that provide a
measurement-based solution ensuring end-to-end delay
performance. The framework of such transport daemons
illustrated in Fig. 1 is based in part on earlier works [9-11]. A
transport daemon consists of two main components, namely,
measurement and transport modules. The measurement module
has four functional units for measurement minimization, end-
to-end delay measurement, regression estimate of link
properties, and routing table construction. The transport
module is responsible for setting up a transport channel by
propagating the source routing control information along a pre-
computed routing path and providing data transfer service to
user applications through API functions.

In addition to the refinements in various components, this
framework also incorporates the measurement optimization
compared to the earlier works [9-11]. In general, not all
transport daemons deployed at available nodes are activated in
order to save computing and communication resources.
Instead, we strategically select a subset of nodes to conduct
link measurements at optimal measuring rates that are
statistically determined. The measurement results are broadcast
over the entire overlay network of transport daemons so that

1

 2

every node is able to build the network topology and perform
source routing via multiple quickest paths for its applications.

During message transmission, the daemons operate in one
of three modes: sending, routing, and receiving. A sending
node reads data from user applications and prepares the source-
routing header information. A receiving node forwards
incoming data to host applications and handles the
acknowledgements if necessary. A routing node acts as a
virtual router at the application level providing routing
functions

User Applications

APIs

Minimize Measurement
1. Select a subset of nodes
2. Select a subset of links out of each node
3. Optimize the measuring rate at each
selected node

Perform End-to-End Delay
Measurements

1. Activate transport daemons on selected
nodes while keeping others sleeping
2. Send test messages of various sizes at
optimized rates on selected node links
3. Measure end-to-end delays

Estimate Bandwidth and Minimum Delay
(Regression Estimator using Link

Measurements)
1. Slope = 1/Bandwidth
2. Intercept = Queuing delay + Propagation
delay + Access delay, etc.

Build Routing Table
1. Construct entire network topology of
transport daemon nodes
2. Compute the quickest path
3. Compute the multiple quickest paths
4. Construct/Update routing table

Source Node:
Read & Initiate SendingPath Info

Intermediate Node:
Receive & Forward

Destination Node:
Receive & Store Locally

Data
Stream

Data
Stream

Data
Stream

Messages for end-
to-end delay

measurements

Link regression
information
exchanged

between nodes

Tr
an

sf
er

 d
at

a
fro

m
/to

 h
os

t

Data size to be transmitted Outgoing data

Measurement Module Transport Module

Fig. 1. Framework of measurement-based transport daemon

III. BANDWITH AND DELAY MEASUREMENT
The link bandwidth is the fastest rate at which data can be

generated and sent along the link, while the available link
bandwidth is the spare bandwidth of the link “left over” after
the cross traffic [2,3]. Due to complex traffic distribution over
wide-area networks, and the non-linear nature of transport
protocol dynamics (in particular TCP), the throughput achieved
in actual message transfers is typically different from both the
link and available bandwidths, and typically contains a random
component The effective path bandwidth is defined as the
maximum throughput the path provides to a flow given the
current cross traffic load on the path. The notion of effective
bandwidth is specific to the transport protocol employed by the
transport daemon, and is related to both link and available
bandwidth perhaps in a complicated way. The active
measurement technique we apply here is to estimate the
effective path bandwidth and minimum delay for each virtual
link.

There are three main types of delays involved in the
message transmission over computer networks, namely, link
propagation delay pd imposed at the physical link level,
equipment-associated delay qd mostly incurred by processing

and buffering at the hosts and routers, and bandwidth-
constrained delay BWd . Due to the time-varying network cross
traffic, the delay qd often experiences a high level of
randomness. Also, since the transport protocol reacts to the
competing traffic on the links, the delay BWd may also
exhibits randomness particularly over congested wide-area
connections. We have the following expression for the end-to-
end delay or message delay in transmitting a message of size r
on a path P with l links or hops:

)),()((),(),(,
1

, rPdPdrPdrPd iq

l

i
ipBW ∑

=
++= (1)

Note that d is a random variable for fixed P and r. If the
message size r is smaller than the smallest MTU on the path,
and the network is lightly loaded, the bandwidth-constrained
delay in Equation (1) is negligible so that the sum of the
queuing and propagation delays mostly account for the end-to-
end delay1. We denote this lower bound of message delay by a

fixed quantity: MTUrrPdPdPd iq

l

i
ip <+= ∑

=
)),,()(()(,

1
,min .

On the other hand, if the message size r is considerably large,
the message delay is mainly contributed by the bandwidth-
constrained delay together with a somewhat smaller but
random quantity qd . Let EBW(P) denote the effective
bandwidth of the path P. The message delay),(rPd for
transmitting a message of size r can be approximated by a
linear model:

min
1(,) ()

()
d P r r d P

EBW P
≈ + (2)

In a circuit-switching connection such as a light path or a
dedicated bandwidth channel, the maximum transmission rate
is fixed and is determined by the minimum effective link
bandwidth EBW(link) of the path P

() min{ ()}
link P

EBW P EBW link
∈

= . (3)

In a purely packet-switching network wherein all data
packets are stored and forwarded at intermediate nodes. Thus,
the bandwidth-constrained delay needs to be counted at every
component link. For the transmission of a packet of length less
than path MTU, the effective path bandwidth is approximated
in [11] as:

1()
1
()link P

EBW P

EBW link∈

=
∑

 (4)

However, when transmitting a message of large size in a
packet-switching network, the pipelining of data packets along
component links actually makes the effective path bandwidth
practically close to Equation (3).

We use an active measurement technique to estimate the
effective bandwidth of a link or a physical path in an overlay
network. A measurement node generates a set of test messages
of various sizes, sends them over an outgoing link through a

1 From the transport layer’s viewpoint, the minimum delay for a message
smaller than the path MTU may also contain a small component introduced
by the timeout a transport protocol uses to wait for more data from
applications. This waiting period is usually dependent on the implementation
of a transport protocol.

 3

transport channel such as a TCP flow, and measures the end-
to-end transmission delay. This process is repeated several
times for each message size and the average delay is
calculated. Once the average end-to-end delays for messages of
different sizes are determined on an outgoing link, we apply a
linear regression to fit the measured points of message size r
and end-to-end delay d pair. The first order approximation of
the effective path bandwidth EBW and the minimum end-to-
end delay mind are then estimated by the slope and intercept of

the regression line min
1d r d

EBW
= + , respectively. It is worth

pointing out that the intercept of the regression line is
sometimes sensitive to the message transmission delay
measurements. We replace the estimate of mind with a UDP-
based minimum end-to-end delay measurement if the intercept
does not yield a valid value.

The message delay measurements between two transport
daemons deployed at Louisiana State University (LSU) and
Oak Ridge National Laboratory (ORNL) as well as its
corresponding linear regression estimate are illustrated in Fig.
2. The measurement of the transmission delay for each
message size is carried out three times. From this figure, we
estimate that the effective path bandwidth EBW of this virtual
link to be about 1.0 Mbps and the minimum message delay to
be about 35 ms.

Message Sizes vs. End-To-End Delays

0

2

4

6

8

0 100 200 300 400 500 600 700 800 900 1000

message size (Kbytes)

en
d-

to
-e

nd
 d

el
ay

 (s
)

Fig. 2. End-to-end message transmission delay measurements
between LSU and ORNL

We use the following result from [11] to obtain the linear
regression estimate for the effective path bandwidth and the
minimum end-to-end delay:

Theorem: Given a set of test messages with various sizes
},...,2,1|{ kirR i == , and the corresponding message delays

},...,2,1|{ kidD i == , the following formula gives the
coefficient vector of a polynomial regression estimate in the
least squares sense.

)()(1 yXXXa TT vv −= (5)
where, av is the coefficient vector of a polynomial regression
estimate: 01

2
2

1
1 ... arararad n

n
n

n ++++= −
−

−
− . Column

vector Dy =v , and matrix X is constructed as follows:





















=

−−

−−

−−

1...

.......................................
1...

1...

21

2
2

2
1

2

1
2

1
1

1

k
n

k
n

k

nn

nn

rrr

rrr

rrr

X (6)

We now analyze the effectiveness of this method under
fairly general conditions. For a given message of size r, let the
corresponding delay d be distributed according to a probability

distribution /d rP . Note that the expression min
1 r d

EBW
+ for d

is an approximation that estimates d for a given value r. While
this equation captures the dominant relationship between r and
d, it does not capture the random effects. Recall that such
random components could be due to a number of factors such
as delays at router or host buffers, packet retransmissions due
to buffer overflows or other losses, and time variations in
transferring the packets from application buffers to kernel
buffers then to Network Interface Card (NIC) buffers. In
general such variations are not major contributors to the delays,
particularly for large messages sent over wide-area
connections. Nevertheless, it is important to assess the
effectiveness of the above method compared to the one that
takes the randomness into effect. Given a linear estimator

1 0a r a+ for the delay d, its expected square error is given by

rdaa ParadI ,
2

01),()(
01

−−= ∫ . (7)

The best estimator according to Eq (7) is given by
* * 1 01 0 (,)1 0

(,)(,)
min

a a
a aa a

I I= . For this cost measure, coefficients 0a

and 1a cannot be computed even in principle since it requires
the knowledge of /d rP . Typically this is an infinite
dimensional quantity and cannot be accurately estimated using
a finite sample.

 Consider that 1 1
1 0a r a+ is an estimator for the delay d

computed using Theorem 1. We will show that for any
distribution ,d rP we have

{ } 2

1 1 * *
1 2 1 2

2
/ 512

(,) (,)

64 641 8 ln k
a a a a

e eP I I e εε
ε ε

− − < > −  
 

, (8)

which implies that the expected error of the computed estimate
is within ε of the optimal with probability approaching 1 as
the sample size k increases. In fact, for any given values of k
and ε , the right hand side of the above expression can be used
to compute probability with which the error of the estimate is
within ε of the optimal. This is best type of result possible
when the distribution ,d rP is completely unknown. Similar
results are shown in [12] using a more detailed expression for
the delay, which results in estimators that are significantly
more complicated than the above linear estimate. There are two
important aspects of the above performance guarantee. On the
positive side, it is entirely distribution-free in that it is valid
independent of ,d rP , although stronger guarantees may be
possible for certain distributions. On the negative side, it only

 4

ensures the closeness of estimator error to the best possible
linear approximation, but it is quite possible that the latter itself
is unsatisfactory. Note that the linear approximation model has
been supported by the domain-specific considerations above.

 We will now prove the above performance result. Consider
the empirical error of the delay estimator 1 0a r a+ given by

∑
=

−−=
k

i
iaa arad

k
I

1

2
01),(

1)(1
01 (9).

Now note that the above delay estimator 1 1
1 0a r a+ minimizes

this empirical error, that is 1 1 (,)1 01 2 (,)1 0

1 1
(,)

min
a a

a a
a a

I I= . The estimators

class 1 0{ }a r a+ forms a vector space of dimensionality 2. Then
by using the results from Vapnik [14], we have the following

{ }1 1 * *
1 2 1 2

(,) 1 01 0
1 0

2

(,) (,)

1
(,)

(,)

/ 512

sup / 2

64 641 8 ln

a a

a a a a

a a
a a

k

P I I

P I I

e e e ε

ε

ε

ε ε
−

− <

 > − < 
 
 > −  
 

 (10)

where the last bound is due to the dimension 2 of the estimator
class (details are standard can be found, for example in [7]).

IV. MULTIPLE QUICKEST PATH COMPUTATION
A set of nodes selected to deploy transport daemons and

virtual links connecting them form an overlay network [15]. A
typical overlay network with estimated available path
bandwidths and minimum end-to-end delays is shown in Fig. 3
for illustrative purposes.

vs

v1

v3

v2

v4

vd

0.7Mbps, 80ms

0.35Mbps, 92ms

1.2Mbps, 20ms

1.02Mbps, 45ms

1.7Mbps, 102ms

2.5Mbps, 70ms

0.93Mbps, 37ms

1.49Mbps, 58ms 0.76Mbps, 33ms

Transport
daemon

BW, delay Virtual link

Fig. 3. Overlay network of transport daemons with estimated
path bandwidths and minimum end-to-end delays

An overlay network can be represented by a graph G(V, E)
with vertices V denoting transport daemons and edges E
denoting virtual links. Such an overlay network graph can be
seen as a combination of a weighted graph and a flow network:
each edge in an overlay network is associated with both the
minimum delay, which corresponds to the edge weight in a
weighted graph and the bandwidth, which corresponds to the
capacity in a flow network. The quickest path problem is to
find a routing path in an overlay network graph G such that the
end-to-end delay time required to send a message of size r
from a source node sv to a destination node dv is minimum. A
routing path in an overlay network is usually made up of one or
more virtual links or physical paths in the underlying network.
Since the end-to-end delay for message transmission over a
routing path does not only depend on the minimum delays of
component virtual links, but also the associated available
bandwidths, apparently the well-known single-source shortest

path algorithm, Dijkstra’s algorithm, cannot be directly applied
to such graphs.

We design an approximate algorithm MQP(overlay
network graph G(V, E), message size r, path number m, source
node sv , destination node dv) to compute multiple quickest
paths from source node sv to destination node dv in an
overlay network graph G(V, E). This algorithm is modified
from Dijkstra’s algorithm [1,6,7] with the new key value of

node dsivi ,,2,1,, K= defined by][
][min i

i

vd
vEBW

r
+ ,

where][ivEBW is the effective path bandwidth of the route
from source node sv to node iv , and][min ivd is the sum of the
minimum virtual link delays along the route from source node

sv to node iv . For simplicity, we use the minimum of the
component virtual link bandwidths to approximate the
effective path bandwidth][ivEBW .

The multiple quickest paths algorithm MQP(G, r, m, sv ,

dv) is briefly presented in Fig. 4. Note that every time a
quickest path is found, its path bandwidth is subtracted from
the bandwidths of its component virtual links before we search
for the next quickest path.

Fig. 4. Algorithm MQP(G, r, m, sv , dv) for computing

multiple quickest paths

The relaxation procedure in the MQP algorithm is similar
to the one used in Dijkstra’s algorithm except that MQP uses
the new key value and the path bandwidth is recomputed for
each neighboring node to make sure that its path bandwidth is
always the minimum of the component virtual link bandwidths.

As for the data transmission, the source node first retrieves
multiple quickest paths from the routing table, divides the data
into multiple parts appropriately, and then sends them to the
second nodes through different paths concurrently. Suppose
that m quickest paths have been found: mPPP ,,, 21 K . The
partitioning of user data of size r into m parts: mrrr ,,, 21 K ,
requires that the transmission times along all routing paths are
equal:

MQP(G, r, m, sv , dv)
Begin
For each quickest path numbered from 1 to m
 Initialize resolved/unresolved node set, predecessor node list, and
key value of source node sv ;

 Compute key value][
][min i

i

vd
vEBW

r
+ for node si vv ≠ ;

 While unresolved node set is not empty
 Select the node with the minimum key value;
 Relax its neighbor nodes;
 Remove this node from unresolved node set and add to resolved
node set;
 Build the quickest path from sv to dv using the predecessor node
list;
 Subtract path bandwidth from all component virtual link bandwidths
of the current quickest path;
End

 5

















+=+

+=+

+=+

−
−

−)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

1
1

1

3
3

3
2

2

2

2
2

2
1

1

1

m
m

m
m

m

m Pd
PEBW

r
Pd

PEBW
r

Pd
PEBW

r
Pd

PEBW
r

Pd
PEBW

r
Pd

PEBW
r

LL

 (11)

and

rr
m

i
i =∑

=1
 (12)

Particularly, when the number of quickest paths 2=m , we
use the following equation to partition the data of size r [9]:









−=
+

−⋅⋅
+

+
⋅

=

12

21

1221

21

1
1)()(

)]()([)()(
)()(

)(

rrr
PEBWPEBW

PdPdPEBWPEBW
PEBWPEBW

rPEBWr (13)

A source node performs user data partition based on the
measurement results and sends data components via multiple
quickest paths. As an overlay router, an intermediate transport
daemon performs routing functions. It receives incoming data
components, extracts routing path information, and forwards
them to the very next hop on the routing path. The destination
node simply receives data components and stores them locally.
If all data components have arrived, an acknowledgement is
sent from the destination node to the source node to notify the
sending daemon of the completion of the transmission task.

V. MEASUREMENT RATE MINIMIZATION
In high-speed networks, it is impractical to collect delay
measurements for every message for the purpose of computing
the effective bandwidth of every link. Even if all measurements
are available, estimating EBW may consume computational
resources on data that does not contribute useful information.
In this section, we adapt the general method of [7] based on the
statistical design of experiments [5] to the present EBW
estimation problem. We allocate suitable rates for various links
and re-compute the estimates using the measurements collected
so far. Informally, such measurement rate optimization results
in links with higher variances being measured more often than
others.

We now briefly describe the general formulation of the
statistical design of experiments [5], to which the network
measurement problem can be mapped in more than one ways.
Consider the model of [4] given by

() ()t t i t iY U x xε= + (14)

where tY is the observation taken at time t corresponding to

the variable ix and tε is the measurement error. In our case

ix corresponds to a path or link and tY is its EBW estimate.

Let ()1 2(), (),..., () T
sU u x u x u x= denote estimators at all

nodes. Let [] 0uE U U= and

()()0 0
T

uVar U U U U K − − =  . (15)

We consider the design problem given by
() (){ }1 1, , , ,n np x p xξ = L such that /i ip r N= and

1

n

i
i

N r
=

= ∑ . Let 1()U ξ be a predictor of U , and its quality is

given by the matrix of expected squared residuals

()()1 1
,() () ()

T

uD E U U U Uεξ ξ ξ = − −  
. (16)

The observational errors are assumed to have zero means
and be uncorrelated such that:

[]| () 0u t iE xε ε = (17)

1 1
2

| () ()u t i it tt
E x xε ε ε σ δ  =  (18)

Let ϕ be a criterion of optimality. One of the simplest

problems is to select a design *ξ that minimizes ()Dϕ ξ  
where D is the residual matrix. Several methods for computing
the optimal design *ξ are presented in [5] for estimating the
delays. In this formulation, we fixed the sites and found the
optimal measuring rates at each of the chosen sites so that total
rate of measurement is no more than N during the time window
[0,T]. At fixed measurement rates, the solution here optimizes
the allocation of measurement rates among the chosen sites,
which yields more accurate estimation than equally distributing
the measurement rates. There could be other potential ways to
apply statistical design methods to improve the measurements
in computer networks [4].

VI. IMPLEMENTATION IN WANS AND EXPERIMENTAL
RESULTS

The transport daemon for end-to-end delay minimization is
implemented in C++ on Linux operating system. TCP
connections are used for both end-to-end measurements and
user data transmissions. We construct a simple overlay
network solely for performance evaluation purposes by
deploying transport daemons on the following three sites: LSU,
ORNL, GaTech (Georgia Institute of Technology). The
topology of this test overlay network is shown in Fig. 5. Since
there is always a physical path connecting any two hosts in the
Internet, the overlay network is essentially a complete graph.

We conduct two sets of transport experiments between
ORNL and LSU in this overlay network: one using a single
default TCP stream, and the other using two quickest paths.
The first quickest path is the direct IP connection to destination
while the second one is via the transport daemon deployed at
GaTech as a virtual router. A user-defined header containing
both data and path information such as data type, data size,
path delay, path bandwidth, and a list of routing nodes, is
propagated from the source node to the destination node to set
up a data channel via virtual routers.

For each experiment, we transfer a certain size of data from
ORNL to LSU. The data is partitioned into two parts for two
quickest paths according to Equation (13) based on the data
size as well as the bandwidth and delay measurements. The
throughput performances of these experiments using different
transport methods are tabulated in Table 1 for comparison.

 6

LSU

ORNL

GaTechPa
th

 o
ne

Path two

Fig. 5. Overlay network of transport daemons over Internet

Table 1. Throughput performances of two transport methods
from ORNL toLSU

Experiment
index

File size
(Mbytes)

Single TCP
stream (Mbps)

Two quickest
paths (Mbps)

1 1 1.63 3.31
2 5 1.40 2.36
3 10 1.38 2.68
4 15 1.35 2.55
5 20 1.16 2.41
6 25 1.07 2.10
7 30 0.84 1.80
8 35 0.92 1.75
9 40 1.44 3.79
10 45 1.88 4.26
11 50 1.01 2.03
12 55 0.98 1.68
13 60 0.66 1.13
14 65 0.82 2.17
15 70 1.11 2.06
16 75 1.03 2.48
17 80 0.79 1.37
18 85 1.26 3.39
19 90 1.21 2.83
20 95 0.92 1.72
21 100 1.16 2.74

Due to recent interest in parallel-TCP method that employs
a number of TCP streams, we briefly compare our method with
it. The data packets of parallel-TCP travel along the same IP
route to the destination and therefore share all communication
resources. However, the data packets of the multi-path
transport are delivered via different routes with the support of
overlay routers and are intended to avoid resource contest
between different paths, especially on the bottleneck link. The
multi-path transport exhibits similar throughput performance to
parallel-TCP when there is no congestion or the congestion
only occurs at two ends. The advantage of using the multi-path
transport over parallel-TCP becomes evident when the second
quickest path bypasses the congested zone experienced by the
first quickest path. Fig. 6 shows such a case that the multi-path
transport outperforms parallel-TCP when an increasing number
of parallel streams saturate the default IP route. The x-axis in
Fig. 6 represents the number of parallel streams that run along
the default route (or the first quickest path in the multi-path
transport), and the y-axis is the corresponding throughput
performance measured in Mbps.

VII. CONCLUSION
We presented a measurement-based source routing method

to minimize message delays via multiple quickest paths. Using
a linear approximation, we presented a method which is
computationally efficient and also analytically tractable under
fairly general conditions This method is implemented using
application-level daemons and tested at Internet nodes, and it
outperformed the default TCP/IP method. There are number
possible directions for future investigations. The measurement

optimization method may be extended to identify a subset of
nodes that at which measurements may be collected while still
assuring the performance. Also practical advantages of the
measurement optimization methods may be studied in detail.

(a) No congestion is bypassed (b) Congestion is bypassed

Fig. 6 Comparison of throughput performance between multi-
stream and multi-path transports

REFERENCES
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to

Algorithms. the MIT Press, 2000.
[2] J. Curtis, T. McGregor. Review of Bandwidth Estimation

Techniques. New Zealand Computer Science Research Students'
Conference, 19-20th April 2001, University of Canterbury, New
Zealand.

[3] C. Dovrolis, P. Ramanathan, D. Moore. Packet Dispersion
Techniques and Capacity Estimation. Submitted to the IEEE/ACM
Transactions in Networking, 2002.

[4] V. V. Fedorov, D. Flanagan, T. Rowan, and S. G. Batsell, Analysis
and monitoring design for networks, Technical Report ORNL-TM-
13620, Oak Ridge National Laboratory, 1998.

[5] V. V. Fedorov and P. Hackl, Model-Oreinted Design of Experiments,
Springer-Verlag, Berlin 1997.

[6] M. Jain, C. Dovrolis. End-to-End Available Bandwidth:
Measurement methodology, Dynamics, and Relation with TCP
Throughput. Proceedings of ACM SIGCOMM, August 2002.

[7] N. S. V. Rao, Vector space methods for sensor fusion problems,
Optical Engineering, vol 37, no. 2, 1988, pp. 499-504.

[8] N. S. V. Rao, On design of measurements for end-to-end delay
minimization in wide-area networks,9th International Conference
on Advanced Computing and Communications, 2001.

[9] N. S. V. Rao, NetLets for end-to-end delay minimization in
distributed computing over Internet using two-Paths, International
Journal of High Performance Computing Applications, 2002,
vol. 16, no. 3, 2002.

[10] N. S. V. Rao, Overlay Networks of In-Situ Instruments for
Probabilistic Guarantees on Message Delays in Wide-Area Networks,
IEEE Journal on Selected Areas of Communications, vol 22,
no.. 1, 2004.

[11] N. S. V. Rao, Y. C. Bang, S. Radhakrishnan, Q.Wu, S. S. Iyengar,
and H. Cho, NetLets: Measurement-based routing daemons for low
end-to-end delays over networks, Computer Communications, vol.
26, no. 8, 2003, pp. 834-844.

[12] N.S.V. Rao, S.G. Batsell. Algorithm for Minimum End-to-End Delay
Paths. IEEE Communications Letters, 1999.

[13] N. S. V. Rao, W. C. Grimmell, Y.C. Bang, S. Radhakrishnan, On
algorithms for quickest paths under different routing modes, to
appear in IEICE Transations on Communications, 2004.

[14] V. Vapnik, Nature of Statistical Learning, Springer-Verlag, 1996.
[15] Q. Wu, , “Control of Transport Dynamics in Overlay Networks”,

Ph.D. Dissertation, Dept of Computer Science, Louisiana State
University, May 2003.

