
3rd International Conference on Image and Graphics Dec.18-20, 2004
 Hong Kong, China

Adaptive Visualization Pipeline Decomposition and Mapping onto Computer
Networks

Mengxia Zhu, Qishi Wu*, Nageswara S. V. Rao*, S. Sitharama Iyengar
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

{mzhu, iyengar}@bit.csc.lsu.edu
*Computer Sci. and Math. Div., Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

 {wuqn, raons}@ornl.gov

Abstract

This paper discusses algorithmic and
implementation aspects of a remote visualization
system, which adaptively decomposes and maps the
visualization pipeline onto a wide-area network.
Visualization pipeline modules such as filtering,
geometry extraction, rendering, and display are
dynamically assigned to network nodes to achieve
minimal total delay or maximal frame rate.
Polynomial-time optimal algorithms using the dynamic
programming method to compute the optimal
decomposition and mapping are proposed. We
implemented an OpenGL-based remote visualization
system. We evaluated its performance using a
deployment at three geographically distributed nodes.

1. Introduction

A remote visualization system potentially enables

an end user equipped with a simple display device and
network access to visualize large volumes of scientific
data stored and/or rendered at remote sites. Such a
system may consist of a remote data source acting as a
server, a local display module acting as a client, zero or
more intermediate nodes performing operations such as
filtering, geometry generation and rendering, and a
network connecting all of them together. The
performance of such a system critically depends on
how efficiently its visualization pipeline is mapped
onto the network nodes.

Many existing remote visualization systems employ a
predetermined partition of the visualization pipeline and
typically send fixed-type data streams such as raw data,
geometric primitives, or framebuffer (FB) to remote
clients. While such schemes are common, they are not
always optimal for high performance
visualizations that typically deal with large data sets.
Over wide-area connections, this problem is further

compounded by the limited bandwidths and time-
varying network dynamics. Bowman et al [3] proposed
a mapping based on predicting the processing times of
visualization modules and network bandwidth. Luke et
al [4] proposed a visualization framework capable of
multiple partition scenarios. In these works, the
mapping is based on empirical testing and manual
configuration.

In this paper, we analytically formulate the problem
of optimizing the total delay or frame rate of the
visualization pipeline by considering the computation
times of the modules and data transfer times between
them. Our model highlights the inherent computational
aspects of optimally mapping a visualization pipeline
onto a network. We propose algorithms using dynamic
programming to compute a mapping with minimum
total delay or maximum frame rate. The time
complexity of these algorithms is ()O n � E
, where
E is the number of edges in the computer network

and n + 1 is the number of visualization modules.
In Section 2, we describe a generic visualization

framework. In Section 3, we present our optimal
partition and mapping algorithms. Implementation
details and test results are provided in Section 4.
Conclusions are made in Section 5.

2. Remote visualization system

2.1. Visualization pipeline

Visualization process involves several steps that
form the so-called visualization pipeline [1]. Fig. 1
shows a simple visualization pipeline along with the
data flow between the pipeline modules. In scientific
applications, the raw data is often multivariate and is
organized in structures such as NetCDF, and HDF. The
filtering module extracts the information of interest
from the raw data and performs the necessary

preprocessing. The transformation module typically
uses a surface fitting technique to derive 3D
geometries, or performs shading and classifications for
volume rendering. The rendering module converts the
transformed geometric or composite volumetric data in
3D view coordinates to a pixel-based image in 2D
screen coordinates.

filtering

transformation
(topological surface

construction, volumetric
transfer function)

rendering
framebufferfiltered data

transformed data
(geometric model,
volumetric values)raw dataData

source

Display

Figure 1. A general visualization pipeline.

2.2. Analytical model

The visualization pipeline consists of n+1 sequential
modules denoted by

1 2 1 1 1 1, , , , , , , , , , , , ,u u v w x x nM M M M M M M M M− − − +… … …… … …
 as shown in Fig. 2. Module , 2, , 1jM j n= +…
performs a computational task of complexity jc on
data of size 1jm − from module 1jM − and generates
data of size jm , which is then sent over the network
link to module 1jM + . An underlying network consists
of k geographically distributed computing nodes
denoted by 1 2 1, , , ,k kv v v v−… . Node , 1,2, ,iv i k= … has
a normalized computing power ip and is connected to
its neighbor node , 1,2, , ,jv j k j i= ≠… via an edge or

link ,i jL of bandwidth ,i jb and link delay ,i jd . The
transport network is represented by a graph

(,), | |G V E V k= = , where V and E are sets of nodes
and edges, respectively.

M1 Mu-1 Mu Mv-1 Mw Mx-1

vs

vP[q-1]

vd

vP[2]

G1 G2 Gq-1

mu-1 mv-1

ps pd

c1 cu-1 cu cv-1 cw cx-1

pP[2] pP[q-1]

Mx Mn+1

mx-1

cx cn+1

Gq

b
s,P[2] bP[2],P[3]

bP[q-1],d

Figure 2. Pipeline partitioning and mapping.

We consider a path P of q nodes from a source node

sv to a destination node dv in the transport network,
where [2,min(, 1)]q k n∈ + and path P consists of
nodes [1] [2] [1] [], , , ,P s P P q P q dv v v v v v−= =… . The
pipeline is decomposed into q visualization groups
denoted by 1 2 1, , , ,q qG G G G−… , which are mapped one-

to-one to the nodes of P. The data flow between two
adjacent groups originates at the last module in the
preceding group such that we have

1 1 2 1 1 1() , () , , ()u v q xm G m m G m m G m− − − −= = =… . The
client at last node dv sends control messages to one or
more preceding visualization groups to support
interactive operations. However, transport time for
control message is assumed to be negligible due to its
small size. We consider two optimization problems:
(a) Minimal total delay: The goal is to minimize the
total time incurred on the forward links from the source
node to the destination node, given as follows:

()

[], [1]

1

1 1

1

1
1 2 1[] [], [1]

()

()1 (1)

i P i P i

i

total computing transport

q q

G L
i i

q q
i

j j
i j G and j iP i P i P i

T Path P of q nodes T T

T T

m G
c m

p b

+

−

= =

−

−
= ∈ ≥ = +

= +

= +

   
= +      

   

∑ ∑

∑ ∑ ∑

(b) Maximal frame rate: Our goal is to maximize the
frame rate by minimizing the time incurred on a
bottleneck link/node (for applications with streaming
data), which is given as follows:

{ }

()

()

[], [1]
1,2, , 1

1
2[]

[], [1]1,2, , 1

1
2[]

()

max (), (), ()

1 ,

()
max ,

1

i

q

bottleneck

computing i transport P i P i computing qPath P of q nodes
i q

j j
j G and jP i

i

Path P of q nodes
P i P ii q

j j
j G and jP q

T Path P of q nodes

T G T L T G

c m
p

m G
b

c m
p

+
= −

−
∈ ≥

+= −

−
∈ ≥

=

=

∑

…

…

(2)

 
 
 
  
 
 
 
 
  

∑

In Eqs (1) and (2), we assume that the transport
time between modules within a group assigned to a
single node is negligible. When 2q = , this system
reduces to the conventional client and server structure.
A special case of this problem where the network
nodes form a linear arrangement is considered in [6].

3. Mapping for remote visualization system

3.1. Bandwidth measurement

Three main types of delays contribute to the total
message delay, namely, link propagation delay pd
imposed at the physical layer level, equipment-related
delay qd mostly incurred by processing and buffering
at the hosts and routers, and bandwidth-constrained
delay BWd . We measure the end-to-end delay in

transmitting a message of size r on a path P with l links
as follows:

, ,
1

(,) (,) (() (,)) (3)
l

BW p i q i
i

d P r d P r d P d P r
=

= + +∑

For large data transfers only the first term of Eq (3) is
significant which leads to the linear approximation:

(,) / ()d P r r EPB P≈ . Here EPB denotes the Effective Path
Bandwidth and is estimated via linear regression using the
active measurement technique of [2].

3.2. Partition and mapping

A general partition and mapping problem is similar
to the classical graph clustering problem, which is NP-
complete [5]. By exploiting the linear arrangement of
the visualization modules, we develop polynomial-time
algorithms for the problems formulated in Section 2.2.

3.2.1. Minimal total delay. We consider two versions
of the total delay minimization problem. The first one
considers a one-to-one mapping from visualization
modules to network nodes, and the second one
combines modules into groups. For the first case, let

()k
iT v denote the minimal delay with k hops from sv

to iv , which satisfies the following recursion:

1

() ,1 ,
() min () (4)

i i ii

k k k k k
i u adj v v u vk ton v V

c m mT v T u p b
−

∈= ∈

  = + +  
  

This recursion follows from the observation that the
minimal delay to iv with k hops is the minimum of the
delays to its neighbor with k-1 hops plus the cost
incurred by that link. The base conditions are
computed as:

1 1 1
,1

,
,

,
()

,

i
i i

i

s v
v s vi

v V and s

c m m e Ep bT v
otherwise∈ ≠

 + ∀ ∈= 
∞

. The

complexity of this algorithm is ()O n E× .

For second case, let ()m
iT v denote the minimal

total delay with the first m messages mapped onto the
network from source node sv to end node iv . Then,

()m
iT v can be computed recursively as follows:

1

1 , 1

() ,

() ,
() min (5)

min ()

i

i

i i i

m m m
i

vm
i

m ton v V m m m m
u adj v v u v

c mT v p
T v

c m mT u p b

−

= ∈ −

∈

 +  =    + +    

with the base conditions computed as:
1 1 1

,1
,

,

,
()

,

i
i i

i

s v
v s vi

v V and s

c m m e Ep bT v
otherwise∈ ≠

 + ∀ ∈= 
∞

 and

1

()
m

m i i
s

si

c mT v p
=

 =  
 ∑ .

In Eq (5), (,)T i j computes the minimal of the two
following scenarios based on adding the module 1mM +
to the partial pipeline. In scenario 1, we execute 1mM +

at node iv itself, and add its computing time to
1()m

iT v− , a sub-problem of iv of size m-1. In scenario
2, we map link of 1mM + to a network link from among

all links incident to node iv , and choose the minimum
as in the second term of Eq (5). Thus in each iteration

()m
iT v either inherits the mapping scheme from

1()m
iT v− by simply adding module 1mM + to the last

group, or just starts a separate group with module
1mM + to the mapping scheme of 1 (), ()m

iT u u adj v− ∈ .
The complexity of this algorithm is ()O n E× .

3.2.2. Maximal frame rate. For animation and
monitoring tasks, data is continuously generated,
manipulated, and rendered. The maximal frame rate
that a pipelining can achieve is decided by the slowest
transport link or computing node. A modified dynamic
programming method of previous section solves this
problem. Let 1/ ()m

iF v denote the maximal frame rate
with the first m messages mapped onto the network
from source node sv and the end node iv . Let

()m
iGS v represent the sum of message sizes of

modules on iv with the first m messages mapped from

sv to iv . We have the following recursion:

()()1
1

1 ,
1

() ,

max (), ,
() min (6)

min max (), ,

i

i

i i i

m
i m mm

i
vm

i
m ton v V

m m m m
u adj v v u v

GS v c m
F v p

F v
c m mF u p b

−
−

= ∈
−

∈

  +
     =  

   
    

   

with the base conditions computed as:

1 1 1
,1

,
,

max , ,
()

,

i
i i

i

s v
v s vi

v V and s

c m m e Ep bF v
otherwise

∈ ≠

   ∀ ∈  =   
∞

 and

1
()

m
m i i

s
si

c mF v p
=

 =  
 ∑ .

Here, the bottleneck for each possible scheme is
computed, and the one with the minimal time is
chosen, which will achieve maximal frame rate.

4. Implementation and case study

Our remote visualization system is deployed at
three nodes located at North Carolina State University
(NCSU), Oak Ridge National Laboratory (ORNL), and
Louisiana State University (LSU). The parallel
isosurface extraction computation is implemented on
Orbitty cluster at NCSU which consists of 23 nodes
(total of 92 CPUs each at 2.4GHz, and total flops of
441.6G). Linux workstations with 3GHz CPU are used
as hosts at ORNL and LSU. Our system provides
functionalities of scalar glyphs, vector glyphs,
isosurface, ray casting using Fastvox 1.0 and
animation. Data transmission is carried out via TCP
sockets. In this initial implementation, our system runs
in a client/server mode without intermediate nodes.
The decomposition is optimized (albeit among only
two network nodes) since the data sizes exchanged
between them varies depending on the grouping. The
server estimates the delay time based on the entity
being visualized and the available bandwidth, and
designates proper visualization modules to the clients.
Table 1 illustrates the estimated transport time between
LSU and ORNL with different types of data
transmitted. The message sizes for raw data, 3D
geometry and FB are estimated at the server. The
estimated transport delay is calculated as:

(_ 8) /delayT d Msg size EPB= + × .

Table 1. Horizontal split test.
Dim Est. BW

(Mbps)
Min delay

(sec)
Raw data

size/delay
Geometry
size/delay FB size/delay

Case 1:
10x6x8 0.284 0.032 8 K /

0.257sec
1K /

0.032sec 1.8M/50.73sec

Case 2:
50x20x39 0.300 0.034 610K /

16.3sec
16K /

0.46sec 1.8M/48.03 sec

Case 3:
150x210x139 0.277 0.033 71.6M /

34.4min
2.4M /

69.34sec 1.8M/52.01sec

Case 4:
256x256x80 0.239 0.033 81.9M /

45.69min NA 1.8M/60.28sec

Case 1: Cube 1 has a tiny size of geometry and raw
data, and hence either can be sent in less than a second.
Case 2: Cube 2 has a larger raw data size than cube 1.
But due to its small geometry, the server chose to send
the geometry data instead of raw data.
Case 3: The raw data size in this case is further
increased but with similar sizes in geometry and FB to
Cases 1 and 2. Sending the geometry data is preferable
for interactive visualization because the regeneration of
FB introduces additional traffic when the client
changes the view parameters.
Case 4: A CT scanned hand data has a raw data size of
81.9 Mbytes. Since volume rendering is employed, we

only need to decide whether to send raw data or FB to
the client in this case.

5. Conclusion and Future plan

We proposed a framework and an analytical model
for mapping visualization pipelines onto computer
networks. The dynamic programming method is
employed for computing an optimal decomposition and
mapping of the visualization pipeline. It would be of
future interest to study various other formulations of
this problem from the viewpoint of different
computational criteria and practical implementation. In
future, we plan to include intermediate hosts in our
implementation using the dynamic programming
algorithms, and also deploy our system over dedicated
networks. We also plan to incorporate newer transport
methods in our visualization system at a later stage.

Acknowledgements

This research is sponsored by the High Performance
Networking Program of the Office of Science, U.S.
Department of Energy, under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC, the Defense
Advanced Projects Research Agency under MIPR
No.~K153, and by National Science Foundation under
Grants No. ANI-0229969 and No. ANI-335185.

References

[1] A. Kaufman, “Trends in visualization and volume
graphics”, Scientific Visualization Advances and Challenges,
IEEE Computer Society Press, 1994.

[2] N. S.V. Rao, Y.C. Bang, S. Radhakrishnan, Q. Wu, S.S.
Iyengar, and H. Cho, “NetLets: Measurement-based routing
daemons for low end-to-end delays over networks”, in
Computer Communications, 26, no. 8, pp. 834-844, 2003.

[3] I. Bowman, J. Shalf, and K. Ma, “Performance modeling
for grid-based visualization”, submitted to Parallel Graphics
and Visualization 2004.

[4] E.J. Luke and C.D. Hansen, “Semotus Visum: a flexible
remote visualization framework”, Proc. Visualization 2002,
pp.61-68, 2002.

[5] P. Fränti, O. Virmajoki and T. Kaukoranta, "Branch-and-
bound technique for solving optimal clustering", in Int. Conf.
on Pattern Recognition (ICPR'02), pp.232-235, 2002.

[6] M. Zhu, Q. Wu, N.S.V. Rao, S. S. Iyengar, On optimal
mapping of visualization pipeline onto linear arrangement of
network nodes, submitted to Conference on Visualization
and Data Analysis, 2005.

