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Abstract: - We consider the improvement in accuracy of latent semantic analysis when a part of speech tagger 
is used to augment a term/document matrix.  We first construct an augmented term/document matrix as input 
into singular value decomposition (SVD).  The singular values then serve as principal components for a 
cosine projection. The results show that the addition of POS tags can decrease ambiguities significantly. 
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1   Introduction 
Latent semantic analysis (LSA) has been used for 
several years to improve the performance of 
document library searches. For example, [4] 
showed that a SVD based projection, also referred 
to as latent semantic analysis or latent semantic 
indexing, improved document library searches.  
LSA uses scaled word frequencies across a set of 
candidate documents, which we refer to as a 
library, to discover and quantify semantic 
similarities among documents and, in so doing, to 
locate documents that are most similar to the 
original query document. We use Brill’s POS 
tagging software [1, 2, 3] in conjunction with the 
Infomap natural language processing software [7] 
to generate a POS tagged term/document matrix. 
     POS taggers have only recently been used to 
augment a term/document matrix as input for LSA 
[8].  In that paper they used very brief documents 
and queries that are sentence-length or shorter.  
They report a decrease in accuracy when using a 
POS-augmented word/document matrix. In this 
paper we present a study that improves the 
accuracy, contrary to their results.  We believe that 
part of the reason for their negative result is due 
directly to their short document lengths. Another 

issue may be that the granularity level of the POS 
tagger can affect query results by posting both false 
positive and false negative results.  
     The procedure we use requires three major steps. 
First, we format two libraries of identical 
documents, one POS tagged, the other untagged.  
Next we formulate a tagged query and an untagged 
query. Then we query the tagged library with the 
tagged term and the untagged library with the 
untagged term.  
     To tag our texts, we used Brill’s automatic part-
of-speech tagger. It assigns tags that indicate the 
part-of-speech of a word within the context 
provided. The tagger we use was trained using the 
Wall Street Journal Penn Treebank tagged corpus 
[5].   
     In the Wall Street Journal Penn Treebank 
corpus, the words were drawn from a variety of 
sources and tagged using an automated process.  
The tags were then corrected by hand to achieve a 
“gold standard” document for POS tagging. The 
tagset from the Wall Street Journal Penn Treebank 
corpus [6] shows the granularity of our 
augmentation.   
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2   Term Document Matrix 
A term/document matrix is a matrix composed of 
columns of documents and rows of the terms that 
occur in each of the documents. Figure 1 is the 
term/document matrix generated as a result of the 
following three-document set (These short 
examples are for illustrative purposes only). 
 
Document 1: After the first day I felt a spring in my 
step. 
Document 2: The first day of Spring was a beautiful 
day. 
Document 3: When she first comes in, spring up 
and shout, “Surprise!” 
      Preprocessing of these three documents 
included removing the punctuation (we did not 
remove the “stop words” because of the length of 
the examples). 
 

    D
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T1 after 0.09 0 0 
T2 the 0.09 0.11 0 
T3 first 0.09 0.11 0.1 
T4 day 0.09 0.22 0 
T5 I 0.09 0 0 
T6 felt 0.09 0 0 
T7 a 0.09 0.11 0 
T8 spring 0.09 0.11 0.1 
T9 in 0.09 0 0.1 
T10 my 0.09 0 0 
T11 step 0.09 0 0 
T12 of 0 0.11 0 
T13 was 0 0.11 0 
T14 beautiful 0 0.11 0 
T15 when 0 0 0.1 
T16 she 0 0 0.1 
T17 comes 0 0 0.1 
T18 up 0 0 0.1 
T19 and 0 0 0.1 
T20 shout 0 0 0.1 
T21 surprise 0 0 0.1 
  0.99 0.99 1 

Fig. 1 The term-document matrix generated from the 
three example sentences.  The numerical cell values are 
scaled frequencies of words within documents.  The last 
row is the sum of the scaled frequencies. 
 
     The tagset from the Wall Street Journal Penn 
Treebank corpus is given. Words that are very 
common, known as “stop words” are usually 

excluded from the matrix (e. g. see Table 1). The 
value in each cell of the matrix is the scaled 
frequency of the term in the document. To reduce 
the cost of query comparisons, the singular value 
decomposition is truncated after an a priori limited 
number of matrix entries (typically about 100).  
From this truncated matrix we extract the most 
significant 100 orthogonal factors from which the 
original matrix can be approximated by linear 
combination [4].   
     After this reduction, a vector of factor weights 
represents each document. The number of items in 
each vector equals the number of factors into which 
the original matrix was decomposed (100 in the 
above discussion). Queries are represented in a 
manner similar to documents. Query vectors are 
built from the scaled combination of the terms 
within the query. 
 
Table 1.  Some examples of common “stop words” 

 
the  or with at that 
be as by for and 
from under such there of 
other whether also than which 
now where these when we 
an to but upon then 
if is it can this 

 
 
3   The Parts of Speech Tagger 
POS taggers have been available for use since 1963 
beginning with the seminal work of Klein and 
Simmons. We use Eric Brill’s POS tagger [1, 2, 3]. 
A POS tagger defines syntactic categories such as 
noun, verb, etc. and then associates a category with 
each word in a document.   
     Before a document may be tagged with Brill’s 
tagger, the tagger must be trained.  In the training 
phase of Brill’s tagger, the tagger fills in a set of 
rule templates that define how to apply POS tags.  
Hence, Brill’s tagger is a rule-based artificially 
intelligence algorithm. These rule templates may be 
provided a priori [1, 2] (Table 2), or learned from 
an untagged corpus together with a dictionary [3].   
 
     Table 2.  Rule templates from the Brill tagger 

Change tag a to tag b when: 
The preceding (following) word is tagged z. 
The word two before (after) is tagged z. 
One of the two preceding (following) words is 
tagged z.  
One of the three preceding (following) words is 
tagged z. 
The preceding word is tagged z and the following 
word is tagged w. 
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The preceding (following) word is tagged z and 
the word two before (after) is tagged w. 
The preceding (following) word is q. 
The word two before (after) is q. 
One of the two preceding (following) words is q. 
The current word is q and the preceding 
(following) word is k. 
The current word is q and the preceding 
(following) word is tagged z. 
where a, b, z, and w are variables over the set of 
parts of speech and q and k are variables over all 
words in the training corpus. 

 
     The algorithms used in the Brill tagger with rule 
templates are based on comparison of the results of 
each pass of the tagger to the most common tag for a 
word in the training corpus. The tagger generates a 
list of tag errors by counting the number of times a 
word was tagged with tag A when it should have 
been tagged with tag B as indicated by the most 
common tag assigned to the word in the training 
corpus. The tagger calculates the net improvement of 
applying each rule template in the rule template set 
to each error in the list. The rule that results in the 
greatest net improvement is added to the rule set.  
This process continues until the net improvement 
from acquiring and applying new rules falls below a 
pre-set threshold [2]. To tag a sentence with the 
trained tagger, the sentence is first tagged with the 
start-state tagger and then each of the rules are 
applied in order. (We do not use the learning tagger.) 
     The Brill tagger begins by making an initial guess 
at the part of speech for each word as determined by 
examination of a large manually tagged corpus 
(Context is not considered in assigning this first tag).  
We use the Wall Street Journal Penn Treebank 
Corpus (When the tagged corpus does not include a 
word, the word is first tagged as a noun [2]. When a 
tagged corpus is available, the decision as to when a 
rule should be applied is based on decreasing the 
error-rate as compared to the tagged corpus (Brill, 
1992). When no manually tagged standard is 
available, the procedure is: 

 
1. Each word in the training set is tagged 
with all tags allowed for that word, as 
indicated in the dictionary. 
2. Tags are altered by applying previously 
learned transformations. 

 
Consider the transformation: 
Change the tag of a word from X to Y in context C. 

 
This transformation is scored as follows: Where Y Є 
X for each tag Z Є X, Z ≠ Y compute freq(Y)/freq(Z) 
* incontext(Z,C) where freq(Y) is the number of 

occurrences of words unambiguously tagged with 
tag Y in the corpus, freq(Z) is the number or 
occurrences of words unambiguously tagged with 
tag Z in the corpus, and incontext(Z,C) is the number 
of times a word unambiguously tagged with tag Z 
occurs in context C in the training corpus.  

 
Let R = argmaxZ freq(Y)/freq(Z) *incontext(Z,C). 

 
Then the score for the transformation Change the tag 
of a word from X to Y in context C is  

 
incontext(Y,C) – freq(Y)/freq(R) * incontext(R,C). 

 
We use a Windows port of Eric Brill's tagger 
(version 1.14). The port to Windows was performed 
by Sina Ghadirian and is available at 
http://www.readingenglish.net/software.  
4   Formatting Tools 
We developed a set of utilities using Python to assist 
in formatting and processing the text. The first adds 
whitespace around all symbols in a text. This 
formatting is required for the Brill tagger to properly 
process text.  The second takes as input a corpus that 
includes multiple possible tags for each word and 
generates as output the corpus with each possible tag 
for a word appended to a separate copy of the word. 
The code for these utilities is available upon request. 

 
 

5   Latent Semantic Analysis 
The Infomap software (which was made available in 
2004 by the Computational Semantics Laboratory at 
Stanford University) was used to perform the latent 
semantic analysis. Infomap is a freely available 
software program (http://infomap.stanford.edu). This 
software builds term-by-document matrices, 
performs single value decomposition (SVD) on 
those matrices, and runs queries against those 
matrices. Various other programs and more detailed 
information is available at the site noted above. 
     LSA begins with a large, sparse, term-by-
document matrix containing scaled word frequencies 
computed from a document library (see Table 1 for a 
brief example). SVD is performed on this matrix to 
generate a set of orthogonal factors from which the 
original matrix can be approximated by linear 
combination.  
     Each of these orthogonal factors represents a 
dimension of similarity among the terms and 
documents of the original library. Thus it is possible 
to construct a vector of factor weights to 
approximately represent a document from the 
library. Furthermore, a vector may be constructed to 
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represent any subset of the terms that were included 
in original library. In constructing the vector the 
factors are scaled appropriately to accurately 
represent the terms of the document or query.   
     To find documents similar to a query, a vector is 
constructed from the terms of the query and 
compared to the vectors of all documents in the 
library. The documents whose vectors most closely 
match the query vector are returned as possible 
matches. Note that the match is not based on the 
query and documents containing the same terms, but 
rather on the query and documents containing 
similar weighting factors. We consider each 
principal component vector as an abstraction of a 
concept or idea that is represented in the original 
document library. Hence a document’s vector 
represents a combination of one or more of these 
concepts (i.e. a semantic entity). LSA provides a 
handle to search a document library without direct 
text matching. 

 
 

6   Procedure 
On both the BrillWindows and Infomap software 
websites (noted above) documentation describing 
installation and use is included. For our textual 
library, we utilized news documents from 
www.cnn.com.  Specifically, we ran two searches on 
www.cnn.com.  First we searched for “china 2000”.  
The results of this search were sorted by relevance.  
News documents were chosen from the year 2000  
(No specific criteria were used in selecting 
documents other than that they listed the year 2000 
as the publication date). We only included one 
document per newsworthy event. The text of the 
selected documents was copied and all formatting 
and graphics removed.   
     We then repeated the process using “russia 2000” 
as our search criteria. Again, results were sorted by 
relevance, documents were chosen from 2000, and 
we avoided selecting multiple documents dealing 
with the same topic.   
     Ten documents were selected from the china 
search and ten documents were selected from the 
russia search.  Each set of documents was sorted into 
alphabetical order by the first word of their titles and 
they were numbered from one to ten.  The result was 
two Sets of document files named china1, china2 . . 
.china10 and russia1, russia2 . . .russia10. Eighteen 
of the documents, nine from each set, were used to 
build the term/document matrix.   
     Next the Python utility described above was used 
to add white space around all symbols in the text 
files. So, for example, “(U.S. April 15, 2005)” is 

changed to “ ( U . S . April 15 , 2005 ) “ . The files 
were saved in this format. They were then tagged 
using the BrillWindows port of the Brill tagger 
trained on the Wall Street Journal Penn Treebank 
corpus. (The Brill tagger uses backslash characters 
as a delimiter between words and tags.  To improve 
readability, we replaced the backslash characters 
with underscores.) 
     The tagged and untagged files were then stored in 
separate directories. Each directory included an 
index file that listed the names of each of the 
member text files.  The index file was used as the 
input to the Infomap software. The Infomap software 
was used in the default configuration. Two “models” 
were built. One was named “tagged_model” and the 
other was named “untagged_model”. 
 
 
7   Results 
As configured, the Infomap software returns the 
twenty term or document vectors with the highest 
cosine similarity score to the query vector.  Table 3 
is the result of using the word “china” as a query 
against the untagged matrix and the word 
“china_nnp” as a query against the tagged matrix.  
NNP is the part-of-speech tag for proper nouns and 
is the tag most frequently associated with the word 
“China” in the document library (N = 220).  Table 3 
shows how adding POS tags changes the set of 
documents returned by the Infomap software. Table 
3 shows how adding POS tags changes the set of 
words returned by the Infomap software.   
 
Table 3.  Results of queries “china” and “china_nnp” 
requesting document similarities 

Untagged Tagged 

Document Name 
Cosine 
Similarity Document Name 

Cosine 
Similarity

china1_untagged.txt 0.463657  china3_tagged.txt 0.434622 
china3_untagged.txt 0.457149  china2_tagged.txt 0.431527 
china7_untagged.txt 0.435218  china7_tagged.txt 0.376409 
china6_untagged.txt 0.405293  china6_tagged.txt 0.373664 
china5_untagged.txt 0.400212  china5_tagged.txt 0.353992 
china2_untagged.txt 0.386189  china1_tagged.txt 0.336986 
china8_untagged.txt 0.376046  china8_tagged.txt 0.299148 
china4_untagged.txt 0.329631  china4_tagged.txt 0.297588 
china9_untagged.txt 0.210723  china9_tagged.txt 0.110808 
russia7_untagged.txt 0.039227    
russia1_untagged.txt 0.002823    
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Table 4.  Results of queries “china” and “china_nnp” 
requesting word similarities 

Tagged Untagged 

Word 
Cosine 
Similarity Word 

Cosine 
Similarity

china_nnp 1.0000 china 1.0000 
dropping_vbg 0.5617 existence 0.5237 
bans_nns 0.5610 republic 0.5154 
flights_nns 0.5474 creation 0.5038 
shipping_nn 0.5474 appease 0.4834 
define_vb 0.5416 dropping 0.4784 
economy_nn 0.5345 bans 0.4734 
components_nns 0.5243 flights 0.4667 
comprised_vbn 0.5243 shipping 0.4667 
senate_nnp 0.5213 demonstrates 0.4620 
demonstrates_vbz 0.5136 providing 0.4620 
providing_vbg 0.5136 alternative 0.4525 
passage_nn 0.5047 beijing 0.4448 
market-driven_jj 0.4995 happen 0.4242 
83-15_jj 0.4968 delivery 0.4079 
voted_vbd 0.4968 taiwanese 0.4072 
normal_jj 0.4903 fighters 0.3995 
permanent_jj 0.4680 feet 0.3977 
convince_vb 0.4642 indefinitely 0.3977 
state-planned_jj 0.4587 lean 0.3970 
 
 
8   Discussion 
These results show that the addition of POS tags can 
change our results significantly. The addition of a 
POS tag is not sufficient to completely remove 
ambiguity from a given word. However, it did 
decrease the ambiguity of the word for our 
documents and therefore improves the accuracy of 
LSA. 
     The set of documents returned by the tagged 
search is smaller than the set of documents returned 
by the untagged search. False positives have been 
discarded. This suggests, even though the cosine 
similarities are smaller in some cases, that the 
accuracy of the matches is greater.   
     The range of cosine similarities for selected 
tagged documents is 0.323814. The range of cosine 
similarities for selected untagged documents is 
0.460834. The smaller range of similarities of the 
selected documents demonstrates the increased 
accuracy of the tagged model.  Apart from accuracy, 
a query algorithm that reduces the number of 
matches returned is of importance. Trimming the 
users search is a desirable goal. 
     When we change the query to return words 
instead of documents, we see a similar pattern in the 
response sets.  The range of the cosine similarities of 

returned words is smaller in the tagged set than in 
the untagged set.  The range of cosine similarities in 
the untagged set is 0.5413 while the range of cosine 
similarities in the untagged set is 0.6030. This 
smaller range of cosine similarities again 
demonstrates the increased accuracy of the tagged 
model. 
     For word results, the cosine similarities are 
generally higher in the tagged response set.  In the 
tagged set the maximum cosine similarity, excluding 
the query word itself, is 0.5617.  In the untagged set 
the maximum cosine similarity is 0.5237. The 
average cosine similarity of the tagged set is 0.5385.  
The average cosine similarity of the untagged set is 
0.4782. The higher average and smaller range of 
cosine similarities of the tagged set show the 
increased accuracy of the LSA when selecting words 
that are semantically similar to the query. 
 
 
9   Conclusions 
The possibilities of LSA are only beginning to be 
explored. There remains much work to be done in 
finding possible improvements to and applications 
of LSA. One change that may result in further 
improvements in accuracy is decreasing the 
granularity of the tags used in POS tagging.  
Because some words may be tagged slightly 
differently and yet be semantically similar, a less 
fine-grained tag set may result in more accurate 
semantic groupings.  For example, in the Wall Street 
Journal Penn Treebank corpus, the word “put” may 
be tagged VB – base form verb, VBN – past 
participle verb, JJ - adjective, NN – common noun, 
or VBD – past tense verb. In the current 
implementation of the POS-tagged LSA, each of 
these would be considered a distinct word. While 
grammatically the base form verb is different from 
the past participle verb and the past tense verb, 
semantically they are all similar. Dropping the last 
character from the three-character tags would allow 
the LSA software to treat each of these separate verb 
uses as a single idea, thus potentially improving the 
accuracy of the results. Note that this change 
maintains the accuracy gained by adding POS tags.  
The granularity of the parts-of-speech is decreased 
to noun, verb, determiner, adjective, adverb, etc. 
     Another area for possible improvement is adding 
pronoun disambiguation software to LSA. In 
standard LSA applications, pronouns are included on 
“stop lists” of words that are removed from 
consideration when constructing the original term-
document matrix. Pronoun disambiguation software 
attempts to replace pronouns with the nouns to 
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which they refer. So the sentence, “Mary said she 
was going to the store.” becomes, “Mary said Mary 
was going to the store.” Most nouns are not included 
on the “stop lists”. If pronoun disambiguation 
software were used in a pre-processing stage the 
scaled frequencies of the nouns in the term-
document matrix would more accurately reflect the 
semantic content of the document and the LSA 
would also be more accurate.  
     We are currently combining this work with 
natural language processing. Specifically, we utilize 
the LSA analysis to select the most probable context 
for a text. Based on the context we then 
disambiguate English descriptions, re-write them in 
unambiguous English, and present them to the user 
for verification of our understanding. This can iterate 
until the English is unambiguous. We then use 
context dependent Context Free Grammar’s to 
compile instructions given within the English text 
into a program.  In this way we utilize English as a 
programming language, assisted by our context 
identifier. 
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