
Augmentation of a Term/Document Matrix with Part-of-
Speech Tags to Improve Accuracy of Latent Semantic

Analysis

TOM RISHEL, A. LOUISE PERKINS, SUMANTH YENDURI, FARNAZ ZAND
Computer Science Dept.,

University of Southern Mississippi
730 East Beach Blvd, Long Beach, MS 39560

USA

S.S. IYENGAR
Computer Science Dept.,

Louisiana State University
298 Coates Hall, Tower Drive, Baton Rouge, LA 70802

USA

Abstract: - We consider the improvement in accuracy of latent semantic analysis when a part of speech tagger
is used to augment a term/document matrix. We first construct an augmented term/document matrix as input
into singular value decomposition (SVD). The singular values then serve as principal components for a
cosine projection. The results show that the addition of POS tags can decrease ambiguities significantly.

Key-Words: - Latent Semantic Analysis, Documents, Tags, Singular Value Decomposition

1 Introduction
Latent semantic analysis (LSA) has been used for
several years to improve the performance of
document library searches. For example, [4]
showed that a SVD based projection, also referred
to as latent semantic analysis or latent semantic
indexing, improved document library searches.
LSA uses scaled word frequencies across a set of
candidate documents, which we refer to as a
library, to discover and quantify semantic
similarities among documents and, in so doing, to
locate documents that are most similar to the
original query document. We use Brill’s POS
tagging software [1, 2, 3] in conjunction with the
Infomap natural language processing software [7]
to generate a POS tagged term/document matrix.
 POS taggers have only recently been used to
augment a term/document matrix as input for LSA
[8]. In that paper they used very brief documents
and queries that are sentence-length or shorter.
They report a decrease in accuracy when using a
POS-augmented word/document matrix. In this
paper we present a study that improves the
accuracy, contrary to their results. We believe that
part of the reason for their negative result is due
directly to their short document lengths. Another

issue may be that the granularity level of the POS
tagger can affect query results by posting both false
positive and false negative results.
 The procedure we use requires three major steps.
First, we format two libraries of identical
documents, one POS tagged, the other untagged.
Next we formulate a tagged query and an untagged
query. Then we query the tagged library with the
tagged term and the untagged library with the
untagged term.
 To tag our texts, we used Brill’s automatic part-
of-speech tagger. It assigns tags that indicate the
part-of-speech of a word within the context
provided. The tagger we use was trained using the
Wall Street Journal Penn Treebank tagged corpus
[5].
 In the Wall Street Journal Penn Treebank
corpus, the words were drawn from a variety of
sources and tagged using an automated process.
The tags were then corrected by hand to achieve a
“gold standard” document for POS tagging. The
tagset from the Wall Street Journal Penn Treebank
corpus [6] shows the granularity of our
augmentation.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp573-578)

2 Term Document Matrix
A term/document matrix is a matrix composed of
columns of documents and rows of the terms that
occur in each of the documents. Figure 1 is the
term/document matrix generated as a result of the
following three-document set (These short
examples are for illustrative purposes only).

Document 1: After the first day I felt a spring in my
step.
Document 2: The first day of Spring was a beautiful
day.
Document 3: When she first comes in, spring up
and shout, “Surprise!”
 Preprocessing of these three documents
included removing the punctuation (we did not
remove the “stop words” because of the length of
the examples).

 D
oc

um
en

t 1

D
oc

um
en

t 2

D
oc

um
en

t 3

T1 after 0.09 0 0
T2 the 0.09 0.11 0
T3 first 0.09 0.11 0.1
T4 day 0.09 0.22 0
T5 I 0.09 0 0
T6 felt 0.09 0 0
T7 a 0.09 0.11 0
T8 spring 0.09 0.11 0.1
T9 in 0.09 0 0.1
T10 my 0.09 0 0
T11 step 0.09 0 0
T12 of 0 0.11 0
T13 was 0 0.11 0
T14 beautiful 0 0.11 0
T15 when 0 0 0.1
T16 she 0 0 0.1
T17 comes 0 0 0.1
T18 up 0 0 0.1
T19 and 0 0 0.1
T20 shout 0 0 0.1
T21 surprise 0 0 0.1
 0.99 0.99 1

Fig. 1 The term-document matrix generated from the
three example sentences. The numerical cell values are
scaled frequencies of words within documents. The last
row is the sum of the scaled frequencies.

 The tagset from the Wall Street Journal Penn
Treebank corpus is given. Words that are very
common, known as “stop words” are usually

excluded from the matrix (e. g. see Table 1). The
value in each cell of the matrix is the scaled
frequency of the term in the document. To reduce
the cost of query comparisons, the singular value
decomposition is truncated after an a priori limited
number of matrix entries (typically about 100).
From this truncated matrix we extract the most
significant 100 orthogonal factors from which the
original matrix can be approximated by linear
combination [4].
 After this reduction, a vector of factor weights
represents each document. The number of items in
each vector equals the number of factors into which
the original matrix was decomposed (100 in the
above discussion). Queries are represented in a
manner similar to documents. Query vectors are
built from the scaled combination of the terms
within the query.

Table 1. Some examples of common “stop words”

the or with at that
be as by for and
from under such there of
other whether also than which
now where these when we
an to but upon then
if is it can this

3 The Parts of Speech Tagger
POS taggers have been available for use since 1963
beginning with the seminal work of Klein and
Simmons. We use Eric Brill’s POS tagger [1, 2, 3].
A POS tagger defines syntactic categories such as
noun, verb, etc. and then associates a category with
each word in a document.
 Before a document may be tagged with Brill’s
tagger, the tagger must be trained. In the training
phase of Brill’s tagger, the tagger fills in a set of
rule templates that define how to apply POS tags.
Hence, Brill’s tagger is a rule-based artificially
intelligence algorithm. These rule templates may be
provided a priori [1, 2] (Table 2), or learned from
an untagged corpus together with a dictionary [3].

 Table 2. Rule templates from the Brill tagger

Change tag a to tag b when:
The preceding (following) word is tagged z.
The word two before (after) is tagged z.
One of the two preceding (following) words is
tagged z.
One of the three preceding (following) words is
tagged z.
The preceding word is tagged z and the following
word is tagged w.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp573-578)

The preceding (following) word is tagged z and
the word two before (after) is tagged w.
The preceding (following) word is q.
The word two before (after) is q.
One of the two preceding (following) words is q.
The current word is q and the preceding
(following) word is k.
The current word is q and the preceding
(following) word is tagged z.
where a, b, z, and w are variables over the set of
parts of speech and q and k are variables over all
words in the training corpus.

 The algorithms used in the Brill tagger with rule
templates are based on comparison of the results of
each pass of the tagger to the most common tag for a
word in the training corpus. The tagger generates a
list of tag errors by counting the number of times a
word was tagged with tag A when it should have
been tagged with tag B as indicated by the most
common tag assigned to the word in the training
corpus. The tagger calculates the net improvement of
applying each rule template in the rule template set
to each error in the list. The rule that results in the
greatest net improvement is added to the rule set.
This process continues until the net improvement
from acquiring and applying new rules falls below a
pre-set threshold [2]. To tag a sentence with the
trained tagger, the sentence is first tagged with the
start-state tagger and then each of the rules are
applied in order. (We do not use the learning tagger.)
 The Brill tagger begins by making an initial guess
at the part of speech for each word as determined by
examination of a large manually tagged corpus
(Context is not considered in assigning this first tag).
We use the Wall Street Journal Penn Treebank
Corpus (When the tagged corpus does not include a
word, the word is first tagged as a noun [2]. When a
tagged corpus is available, the decision as to when a
rule should be applied is based on decreasing the
error-rate as compared to the tagged corpus (Brill,
1992). When no manually tagged standard is
available, the procedure is:

1. Each word in the training set is tagged
with all tags allowed for that word, as
indicated in the dictionary.
2. Tags are altered by applying previously
learned transformations.

Consider the transformation:
Change the tag of a word from X to Y in context C.

This transformation is scored as follows: Where Y Є
X for each tag Z Є X, Z ≠ Y compute freq(Y)/freq(Z)
* incontext(Z,C) where freq(Y) is the number of

occurrences of words unambiguously tagged with
tag Y in the corpus, freq(Z) is the number or
occurrences of words unambiguously tagged with
tag Z in the corpus, and incontext(Z,C) is the number
of times a word unambiguously tagged with tag Z
occurs in context C in the training corpus.

Let R = argmaxZ freq(Y)/freq(Z) *incontext(Z,C).

Then the score for the transformation Change the tag
of a word from X to Y in context C is

incontext(Y,C) – freq(Y)/freq(R) * incontext(R,C).

We use a Windows port of Eric Brill's tagger
(version 1.14). The port to Windows was performed
by Sina Ghadirian and is available at
http://www.readingenglish.net/software.
4 Formatting Tools
We developed a set of utilities using Python to assist
in formatting and processing the text. The first adds
whitespace around all symbols in a text. This
formatting is required for the Brill tagger to properly
process text. The second takes as input a corpus that
includes multiple possible tags for each word and
generates as output the corpus with each possible tag
for a word appended to a separate copy of the word.
The code for these utilities is available upon request.

5 Latent Semantic Analysis
The Infomap software (which was made available in
2004 by the Computational Semantics Laboratory at
Stanford University) was used to perform the latent
semantic analysis. Infomap is a freely available
software program (http://infomap.stanford.edu). This
software builds term-by-document matrices,
performs single value decomposition (SVD) on
those matrices, and runs queries against those
matrices. Various other programs and more detailed
information is available at the site noted above.
 LSA begins with a large, sparse, term-by-
document matrix containing scaled word frequencies
computed from a document library (see Table 1 for a
brief example). SVD is performed on this matrix to
generate a set of orthogonal factors from which the
original matrix can be approximated by linear
combination.
 Each of these orthogonal factors represents a
dimension of similarity among the terms and
documents of the original library. Thus it is possible
to construct a vector of factor weights to
approximately represent a document from the
library. Furthermore, a vector may be constructed to

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp573-578)

represent any subset of the terms that were included
in original library. In constructing the vector the
factors are scaled appropriately to accurately
represent the terms of the document or query.
 To find documents similar to a query, a vector is
constructed from the terms of the query and
compared to the vectors of all documents in the
library. The documents whose vectors most closely
match the query vector are returned as possible
matches. Note that the match is not based on the
query and documents containing the same terms, but
rather on the query and documents containing
similar weighting factors. We consider each
principal component vector as an abstraction of a
concept or idea that is represented in the original
document library. Hence a document’s vector
represents a combination of one or more of these
concepts (i.e. a semantic entity). LSA provides a
handle to search a document library without direct
text matching.

6 Procedure
On both the BrillWindows and Infomap software
websites (noted above) documentation describing
installation and use is included. For our textual
library, we utilized news documents from
www.cnn.com. Specifically, we ran two searches on
www.cnn.com. First we searched for “china 2000”.
The results of this search were sorted by relevance.
News documents were chosen from the year 2000
(No specific criteria were used in selecting
documents other than that they listed the year 2000
as the publication date). We only included one
document per newsworthy event. The text of the
selected documents was copied and all formatting
and graphics removed.
 We then repeated the process using “russia 2000”
as our search criteria. Again, results were sorted by
relevance, documents were chosen from 2000, and
we avoided selecting multiple documents dealing
with the same topic.
 Ten documents were selected from the china
search and ten documents were selected from the
russia search. Each set of documents was sorted into
alphabetical order by the first word of their titles and
they were numbered from one to ten. The result was
two Sets of document files named china1, china2 . .
.china10 and russia1, russia2 . . .russia10. Eighteen
of the documents, nine from each set, were used to
build the term/document matrix.
 Next the Python utility described above was used
to add white space around all symbols in the text
files. So, for example, “(U.S. April 15, 2005)” is

changed to “ (U . S . April 15 , 2005) “ . The files
were saved in this format. They were then tagged
using the BrillWindows port of the Brill tagger
trained on the Wall Street Journal Penn Treebank
corpus. (The Brill tagger uses backslash characters
as a delimiter between words and tags. To improve
readability, we replaced the backslash characters
with underscores.)
 The tagged and untagged files were then stored in
separate directories. Each directory included an
index file that listed the names of each of the
member text files. The index file was used as the
input to the Infomap software. The Infomap software
was used in the default configuration. Two “models”
were built. One was named “tagged_model” and the
other was named “untagged_model”.

7 Results
As configured, the Infomap software returns the
twenty term or document vectors with the highest
cosine similarity score to the query vector. Table 3
is the result of using the word “china” as a query
against the untagged matrix and the word
“china_nnp” as a query against the tagged matrix.
NNP is the part-of-speech tag for proper nouns and
is the tag most frequently associated with the word
“China” in the document library (N = 220). Table 3
shows how adding POS tags changes the set of
documents returned by the Infomap software. Table
3 shows how adding POS tags changes the set of
words returned by the Infomap software.

Table 3. Results of queries “china” and “china_nnp”
requesting document similarities

Untagged Tagged

Document Name
Cosine
Similarity Document Name

Cosine
Similarity

china1_untagged.txt 0.463657 china3_tagged.txt 0.434622
china3_untagged.txt 0.457149 china2_tagged.txt 0.431527
china7_untagged.txt 0.435218 china7_tagged.txt 0.376409
china6_untagged.txt 0.405293 china6_tagged.txt 0.373664
china5_untagged.txt 0.400212 china5_tagged.txt 0.353992
china2_untagged.txt 0.386189 china1_tagged.txt 0.336986
china8_untagged.txt 0.376046 china8_tagged.txt 0.299148
china4_untagged.txt 0.329631 china4_tagged.txt 0.297588
china9_untagged.txt 0.210723 china9_tagged.txt 0.110808
russia7_untagged.txt 0.039227
russia1_untagged.txt 0.002823

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp573-578)

Table 4. Results of queries “china” and “china_nnp”
requesting word similarities

Tagged Untagged

Word
Cosine
Similarity Word

Cosine
Similarity

china_nnp 1.0000 china 1.0000
dropping_vbg 0.5617 existence 0.5237
bans_nns 0.5610 republic 0.5154
flights_nns 0.5474 creation 0.5038
shipping_nn 0.5474 appease 0.4834
define_vb 0.5416 dropping 0.4784
economy_nn 0.5345 bans 0.4734
components_nns 0.5243 flights 0.4667
comprised_vbn 0.5243 shipping 0.4667
senate_nnp 0.5213 demonstrates 0.4620
demonstrates_vbz 0.5136 providing 0.4620
providing_vbg 0.5136 alternative 0.4525
passage_nn 0.5047 beijing 0.4448
market-driven_jj 0.4995 happen 0.4242
83-15_jj 0.4968 delivery 0.4079
voted_vbd 0.4968 taiwanese 0.4072
normal_jj 0.4903 fighters 0.3995
permanent_jj 0.4680 feet 0.3977
convince_vb 0.4642 indefinitely 0.3977
state-planned_jj 0.4587 lean 0.3970

8 Discussion
These results show that the addition of POS tags can
change our results significantly. The addition of a
POS tag is not sufficient to completely remove
ambiguity from a given word. However, it did
decrease the ambiguity of the word for our
documents and therefore improves the accuracy of
LSA.
 The set of documents returned by the tagged
search is smaller than the set of documents returned
by the untagged search. False positives have been
discarded. This suggests, even though the cosine
similarities are smaller in some cases, that the
accuracy of the matches is greater.
 The range of cosine similarities for selected
tagged documents is 0.323814. The range of cosine
similarities for selected untagged documents is
0.460834. The smaller range of similarities of the
selected documents demonstrates the increased
accuracy of the tagged model. Apart from accuracy,
a query algorithm that reduces the number of
matches returned is of importance. Trimming the
users search is a desirable goal.
 When we change the query to return words
instead of documents, we see a similar pattern in the
response sets. The range of the cosine similarities of

returned words is smaller in the tagged set than in
the untagged set. The range of cosine similarities in
the untagged set is 0.5413 while the range of cosine
similarities in the untagged set is 0.6030. This
smaller range of cosine similarities again
demonstrates the increased accuracy of the tagged
model.
 For word results, the cosine similarities are
generally higher in the tagged response set. In the
tagged set the maximum cosine similarity, excluding
the query word itself, is 0.5617. In the untagged set
the maximum cosine similarity is 0.5237. The
average cosine similarity of the tagged set is 0.5385.
The average cosine similarity of the untagged set is
0.4782. The higher average and smaller range of
cosine similarities of the tagged set show the
increased accuracy of the LSA when selecting words
that are semantically similar to the query.

9 Conclusions
The possibilities of LSA are only beginning to be
explored. There remains much work to be done in
finding possible improvements to and applications
of LSA. One change that may result in further
improvements in accuracy is decreasing the
granularity of the tags used in POS tagging.
Because some words may be tagged slightly
differently and yet be semantically similar, a less
fine-grained tag set may result in more accurate
semantic groupings. For example, in the Wall Street
Journal Penn Treebank corpus, the word “put” may
be tagged VB – base form verb, VBN – past
participle verb, JJ - adjective, NN – common noun,
or VBD – past tense verb. In the current
implementation of the POS-tagged LSA, each of
these would be considered a distinct word. While
grammatically the base form verb is different from
the past participle verb and the past tense verb,
semantically they are all similar. Dropping the last
character from the three-character tags would allow
the LSA software to treat each of these separate verb
uses as a single idea, thus potentially improving the
accuracy of the results. Note that this change
maintains the accuracy gained by adding POS tags.
The granularity of the parts-of-speech is decreased
to noun, verb, determiner, adjective, adverb, etc.
 Another area for possible improvement is adding
pronoun disambiguation software to LSA. In
standard LSA applications, pronouns are included on
“stop lists” of words that are removed from
consideration when constructing the original term-
document matrix. Pronoun disambiguation software
attempts to replace pronouns with the nouns to

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp573-578)

which they refer. So the sentence, “Mary said she
was going to the store.” becomes, “Mary said Mary
was going to the store.” Most nouns are not included
on the “stop lists”. If pronoun disambiguation
software were used in a pre-processing stage the
scaled frequencies of the nouns in the term-
document matrix would more accurately reflect the
semantic content of the document and the LSA
would also be more accurate.
 We are currently combining this work with
natural language processing. Specifically, we utilize
the LSA analysis to select the most probable context
for a text. Based on the context we then
disambiguate English descriptions, re-write them in
unambiguous English, and present them to the user
for verification of our understanding. This can iterate
until the English is unambiguous. We then use
context dependent Context Free Grammar’s to
compile instructions given within the English text
into a program. In this way we utilize English as a
programming language, assisted by our context
identifier.

References:
[1] Brill, E., “A simple rule-based part of speech

tagger”, Proceedings of the Third Annual
Conference on Applied Natural Language
Processing, Trento, Italy, 1992.

[2] Brill, E., “Some advances in rule-based part of
speech tagging”, Proceedings of the Twelfth
National Conference on Artificial Intelligence,
Seattle, Wa, 1994.

[3] Brill, E. & Pop, M., “Unsupervised learning of
disambiguation rules for part of speech tagging”,
In Armstrong, S., Church, K. W., Isabelle, P.,
Manzi, S., Tzoukermann, E., & Yarowsky, D.
(Eds.), Natural Language Processing Using Very
Large Corpora. Kluwer Academic Press, 1999.

[4] Deerwester, S., Dumais, S. T., Furrnas, G. W.,
Landauer, T. K., & Harshman, R., “Indexing by
latent semantic analysis”, Journal of the
American Society For Information Science, 41,
391-407, 1990.

[5] Marcus, M., Santorini, B., & Marcinkiewicz, M.,
“Building a large annotated corpus of English:
the Penn Treebank”, Computational Linguistics,
Volume 19, 1993.

[6] Santorini, B., “Part-of-speech tagging guidelines
for the Penn Treebank Project”, Technical report
MS-CIS-90-47, Dept., of Computer & Info.
Science, Univ of Pennsylvania, 1990.

[7] Stanford University, “Infomap NLP software: An
open source package for natural language
processing”, Computational Semantics Lab:

Center for the Study of Language and
Information, Stanford University, 2004.

[8] Wiemer-Hastings and Zipitria, “Adding syntactic
information to LSA”, Proceedings of the 22nd
Annual Conference of the Cognitive Science
Society. Mahwah, NJ. Erlbaum, 2000.

Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, April 16-18, 2006 (pp573-578)

