
Coding Theory Framework for Target Location in Distributed Sensor Networks' 

Krishnendu Chakrabarty Sitharama S. Iyengar 
Dept. Electrical & Computer Engineering 

Durham, NC 27708 

Dept. Computer Science 
Duke University Louisana State University 

Baton Rouge, LA 70803 

Hairong Qi Eungchun Cho 
Dept. Electrical & Computer Engineering Dept. Mathematics and Sciences 

University of Tennessee 
Knoxville TN 37996 

Abstract 
Distribiited9 red-time setisor nenvorks ure essential j o r  

eflective surveillance in the digitized bcittlejwld arid for 
etivironnientul nioriitoririg. [ti this paper; ~ v e  present the 
,first systematic theon  that leads to novel setisor deploy- 
nietit strutegies for effective sitrveillmce arid target loca- 
tion. We represetit the serisorJield CIS U grid (hrw or three- 
dinietisiorial) of points (coorditiutes), mid iise the term tcir- 
get locutioti to refer to the prohleni oj'pin-pointing u target 
ut ti grid point ut any itistarit in time. We iise the ,frunie- 
work oj" itlentifi irig codes to determine sensor placenierit 
f o r  ictiiqiie target location. We pravitle cotlirig-theoretic 
howitis on the niiniber ($ setisors utid presetit methodsfor 
cletemitheir plucemerit iri the serisorjieltl. We also show dicit 
setisor placenierit for  sirigle tutgets provides asyniptoticully 
complete (iinunibigiioiis) location of niiiltiple turgets. 

1 Introduction 
Distributed, real-time sensor networks are essential for 

effective surveillance in the digitized battlefield and for cn- 
vironmental monitoring. An important problem in sensor 
networks is that of target location. If the sensor field is 
represented as a grid (two- or three-dimensional) of points 
(coordinates), target location refers to the problem of pin- 
pointing a target at a grid point at any point in time. For 
enhanced coverage, a large number of sensors are typically 
deployed in the sensor field, and if  the coverage areas of 
multiple sensors overlap, they may all report a target in their 
respective zones. The precise location of the target must 
then be determined by examining the location of these sen- 
sors. In many cases, i t  is even impossible to precisely locate 
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the target (within the granularity o f a  single grid point). AI- 
ternatively, target location can bc simplified considerably if  
the sensors arc placed i n  such a way that every grid point 
in the sensor field is covered by a unique subset of sensors. 
In this way, the set of sensors reporting a target at time t 
uniquely identify the grid location for the target at time t .  
The trajectory of a moving target can also be easily deter- 
mined in this fashion from time series data. 

Previous research in distributed sensor networking has 
largely ignored the above sensor placement issues. Most 
prior work has concentrated exclusively o n  e f f i c i e n t  s e n -  
sor communication [ I ,  21 and sensor fusion j3, 4, 51 for 
;I given sensor field architecture. Howevcr, as sensors arc 
used in greater numbers for field operation, efficient dcploy- 
ment strategies become increasingly important. indeed, i t  
is fair to state that the extensive research in this area has 
not yet led to a firm grasp of sensor deployment strategies 
for target location. This lack of understanding is not alto- 
gether surprising because the sensor deployment combines 
the hitherto unexplained interaction of target location with 
optimal placement of sensors. 

The sensor placement problem for target location is 
closely related to the alarm placement problem described 
in [6]. The latter refers to the problem of placing "alarms" 
on the nodes of a graph G such that a single faults in thc 
system (corresponding to a single faulty node in G) can be 
diagnosed. The alarms are therefore analogous to sensors in 
a sensor field. It was shown in [6] that the alarm placement 
problem is NP-complete for arbitrary graphs. However, we 
show that for restricted topologies, e.g. a set of grid points 
in a sensor field, a coding theory framework can be used 
to efficiently determine sensor placement. The sensor loca- 
tions correspond to codewords of an identifying code con- 
structed over the grid points in the sensor field. Such coding 
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frameworks are often used in computing systems, e.g. for 
error control [7] and more recently for resource placement 
in multicomputers [8]. 

In this paper, we address the following sensor deploy- 
ment problem: How should the sensors be placed at grid 
points such that every grid point is covered by a unique sub- 
set of sensors. We use the theoretical framework of identi- 
fying codes [9] to determine the best placement of sensors 
such that the grid point for a target can be uniquely identi- 
fied. To the best of our knowledge, this paper presents the 
first systematic theoretical formulation and practical solu- 
tions to these sensor deployment problems. 

2 
In this section, we address the problem of placing sen- 

sors on grid points such that the grid positions of targets 
can be uniquely identified from the subset of sensors that 
detect the targets. This approach is based on the concept of 
identifying codes for uniquely identifying vertices in graphs 
P I .  

The identifying code problem can be stated as an opti- 
mal covering of vertices in an undirected graph G such that 
any vertex in G can be uniquely identified by examining the 
vertices that cover it. A ball of radius T centered on a vertex 
v is defined as the set of vertices that are at distance at most 
T from v. The vertex v is then said to cover itself and every 
other vertex in the ball with center v. The formal problem 
statement is as follows: Given an undirected graph G and 
an integer T 2 1, find a (minimal) set C of vertices such 
that every vertex in G belongs to a unique set of balls of ra- 
dius T centered at the vertices in C.  The set of vertices thus 
obtained constitutes a code for vertex identification. 

We now show that the problem of placing sensors for 
unique target identification can be solved using the theory 
of identifying codes. The grid points in the sensor field cor- 
respond to the vertices in the graph G, while the centers 
of the balls correspond to the grid points where sensors are 
placed. The unique identification of a vertex in G corre- 
sponds to the unique location of a target by the sensors in 
the sensor field. Each sensor at a grid point can detect a 
target at grid points that are adjacent to it. 

Let Sg denote the number of sensors required for 
uniquely identifying targets in an n-dimensional (n 5 3) 
sensor field with p grid points in each dimension. The fol- 
lowing theorem provides upper and lower bounds on SE. 
Its proof follows from the properties of identifying codes 
on regular graphs [9]. 

Theorem 1 The number of sensors 5’: for  uniquely identi- 
fying a target in an n-dimensional sensorfield with p grid 
points in each dimension is given by: 

Sensor placement for target location 

Ball centered 
at (4,3) 

(0,4) (7,4 , 
0 6 0  0 0  
0 0 8  0 0  
0 8 0  0 0  
Q O O O O O O O  

O @ O Q O O O O  

(om (0,7) 
8 Sensor at grid point 

Figure 1. A checkerboard placement of sen- 
sors. 

For example, for a two-dimensional sensor field with 100 
grid points in each dimension, at least 3,334 sensors are 
required for the lo4 grid points. However, 5,000 sensors 
are adequate for unique target identification. For a two- 
dimensional sensor field, the upper bound corresponds to a 
checkerboard placement of sensors on grid points as shown 
in Figure 2. The grid points are marked by their (z, y) co- 
ordinates, and each sensor can detect a target at distances 
upto the next grid point in each dimension. Note that each 
grid point for this placement is covered by a unique subset 
of sensors. 

We now describe more efficient sensor placement strate- 
gies based on coding theory principles from [9]. We first 
review some terminology. For every grid point (5 ,  y, z )  in a 
sensor field, we associate a parity vector (pr,py,py) given 
as follows: 

p ,  = x m o d 2  
PY - - y m o d 2  
p 3  = z mod2  

For example, the parity vector for grid point (2,4,5) in a 
three-dimensional sensor field is (O,O,l). The set of par- 
ity vectors is called the binary parity code and denoted by 
W C ) .  
Theorem 2 For an 3-diniensional sensor jield with p grid 
points in each dimension, p even and p > 2, target loca- 
tion is achieved with a smallest possible number of sensors 
(S,”, = p n / 4 )  if the binary pari9 code P(C) is the perfect 
binary (3 ,1,3)  Hamming code, where a perfect (n ,  k ,  d )  
Hamming code consists of 2k codewords in n dimensions 
and the minimum distance between codewords is d. 

Proof: We first prove that every grid point is uniquely cov- 
ered. Every sensor is covered only by itself because the 
Hamming distance between any two parity vectors is at least 
three. Next consider a noncodeword vertex with coordinates 
( 2 1  , ~ 2 ~ x 3 )  and corresponding parity vector @I, p2,  p3).  

There are two vertices with coordinates z’ = (xi, xi, x$) 
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and z” = (z; ’ ,z~,z~) such that have the same parity 
vector (yl , q 2 ,  y3) ,  z’ and 2’’ are neighbors of z in  the n -  
dimensional sensor field, ( y l  , q p ,  y3) belongs to the Ham- 
ming code, and the Hamming distance between (PI, p2,  p3)  
and (yl, y2, q3) is one. We note that x’ and z” are uniquely 
determined by z. 

To prove necessity, we note that if two sensors in the p -  
ary n-dimensional sensor field are neighbors, their parity 
vectors are at distance 1 .  Thus, for an identifying code, the 
covering radius of the set of parity vectors must be equal to 
1 ,  and the smallest set with this property is a perfect (3,1,3) 
code. 0 

The following theorem shows that if the number of grid 
points in  each dimension is even, the lower bound on the 
number of sensors (Theorem 1 )  can be achieved for a three- 
dimension sensor field. The proof follows from Theorem 2. 

Theorem 3 For a three-dimensional sensor field with p 
grid points ( p  > 4, p even) in each dimension, sensorplace- 
ment with a minimum number of sensors (St = p 3 / 4 )  can 
be achieved ifand only ifsensors are placed on grid points 
whosepari4 vectors are (O,O,O) arid ( l , l , l) .  

Theorem 2 shows that if p is even, the sensor den- 
sity (average number of sensors per grid point) for three- 
dimensional sensor fields is only 0.25. For example, let 
p = 6. From Theorem 2, we see that sensors should be 
placed at the set of grid points {SO, SI}, where SO and SI 
are the set of grid points with parity vectors (O,O,O) and 
(1,1, I ) ,  respectively, as shown below: 
SO ={ (O,O,O), (0,0,2), (0,2,0), (0,2,2), (0,0,4), (0,4,0), 
(0,4,2), (0,2,4), (0,4,4), (2,0,0), (2,0,2), (2,2,0), (2,2,2), 
(2,0,4), (2,4,0), (2,2,4), (2,4,4), (4,0,0), (4,0,2), (4,2,0), 
(4,2,2), (4,0,4), (4,4,0). (4,4,2), (4,2,4), (4,4,4)} 

(1,5,3), (1,3,5), ( 1 S S ) ,  (3,1,1), (3,1,3), (3,3,1), (3,3,3), 
(3,1S), (3,5,1), (3,3,5), (3,5,5), (5,1,1), (5,1,3), (5,3,1), 
(5,3,3), (5,1,.5), (5,5,1), (5,5,3), (5,3,5), (5,5,5)}. 
Hence, a total of 54 sensors are required for the 216 grid 
points. 

The next theorem addresses cases where p is not neces- 
sarily even. For a sensor field with p grid points in each 
dimension, we can define an n-dimensional p-ary code C 
with covering radius 2 as follows: C is the smallest set of 
grid points (vertices) such that each non-codeword is at dis- 
tance at most two from a codeword. Note that the distance 
between two points ( 5 1 ,  y1, z1) and ( 2 2 ,  y2, z 2 )  in this con- 
text is given by d = 1x1 - 221 + Iy1 - y21 + Iz1 - z2I. 

Theorem 4 Let K*(n, 2) be the minimum number of code- 
words in a p-ary n-dimensional code with covering radius 
2. Then for  any p > 4, an upper bound on the mini- 
mum nuniber of sensors SE for  target location in an n -  
dimensional sensorfield with p grid points is given by 

SI ={ (1,1,1), (1,3,1), (1,3,1), (1,3,3), ( I , ]  S) ,  (L5 11, 

S: 5 ( 2 n f  1 ) K p ( n , 2 )  (2) 

To prove this theorem, it is sufficient to show that all grid 
points in a ball B2 of radius 2 with center w can be uniquely 
identified by balls of radius 1 centered at all gridpoints that 
belong to the ball B1 of radius 1 centered at w. Without 
loss of generality, we can assume that w = ( O , O , .  . . , O ) .  
Then B1 = ((0,O , . . . ,  O)}U{(O ,... , O , f l , O  ,..., 0) 
(mod p ) }  and Bz = B1 u{(O,. . . , O , f 2 , 0 , .  . . , O )  
(mod p ) }  U{(O, . . . , A l ,  0 , .  . . , 0, f l ,  0 , .  . . ,0) 
(mod p ) } .  Let x E Bz. We have to consider the follow- 
ing four cases: 
1)  z = (0 ,  . . . , O ) .  Then z belongs to all balls of radius 1 
with centers in B1. 

2) z = (0 ,  . . . , 0, f l ,  0, . . . , 0). Then x belongs to two balls 
of radius 1 with centers at x and (0, .  . . , 0), respectively. 
3) z = ( 0 , .  . . , O ,  f l  , O , .  . . , f l  ,0 ,  . . . ,0). Then 2 be- 

longs to 2 balls with centers (0,. . . ,0 ,  f l  , O , .  . . ,0) and 

v - 
a j 

v 
2 

( 0 , .  . . ,o ,  f l  , o , .  . . , O ) .  
v 
j 

4) z = (0, .  . . ,0,  f2 , O , .  . . , O ) .  Then z belongs to one 

ball with center (0,. . . , O ,  f l  , O , .  . . , O ) .  

v 
2 - 

i 
This completes the proof. 0 

Theorem 4 implies that sensor placement can be carried 
out by first determining a code K p ( n ,  2) with covering ra- 
dius 2. (Tables of covering codes are easily available [IO].). 
Sensors are then placed on the grid points corresponding to 
the codewords as well as on all grid points that are adjacent 
to codewords of Kp(n, 2). This is shown in Figure 1 for a 
two-dimensional sensor field with p = 13. We need a total 
of 65 sensors for 169 grid points (sensor density = 0.38), 
which is slightly greater than the lower bound of 57 pre- 
dicted by Theorem 1. Note however that the lower bound 
need not always be achievable. 

As an another example, let p = 5 and n = 3. For this 
case, K5(3 ,  2) = 5 [ 10, 1 I], hence a total of 35 sensors 
placed at the 125 grid points provides unique target location. 

While the above sensor deployment strategy can be used 
in general for any p > 4, the sensor density can often be 
decreased for specific values of p .  For example, consider 
the special case p = 8s and n = 2. An ad hoc sensor 
placement given by Figure 3 yields a sensor density of only 
0.375, which improves upon the construction of Theorem 4. 

3 Locating multiple targets 
We have assumed thus far that the location of only a sin- 

gle target in the sensor field has to be uniquely identified. 
We now show that sensor placement for unique location of 
single target provides a near-complete location of sets of 
targets. This demonstrates that the sensor placement strat- 
egy outlined in this section is effective even for tracking 
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Figure 2. An efficient placement of sensors 
given by Theorem 3. 
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Sensor at grid point 

Figure 3. An efficient ad hoc placement of 
sensors. 

multiple targets in the sensor field. Let C(I)  be the fraction 
of sets of targets of cardinality exactly 1 that are uniquely 
identifiable. The following lemma provides a lower bound 
on the fraction of multiple targets that can be located. 
Lemma 1 The fraction C(1) of sets of targets of cardinality 
exactly 1 that are uniquely ident$able with t = 1 by sensor 
placementjbr single targets is lower-bounded by C(1) 2 

, where l‘(4) is the number of grid points 
at distance upto four grid points from any given vertex in 
the graph, and N is the nuniber of gridpoints in the sensor 
jield. 
Proof A set of targets is uniquely identifiable if the dis- 
tance between any two targets (grid points) in this set is at 
least five. Note that this condition is sufficient but not neces- 
sary. The fraction of identifiable sets of vertices is therefore 
lower-bounded by 

i-1 N - iV(4) 
N - i  n;=, 

This completes the proof of the lemma. 0 
The above lemma can be used to show that if the number 

of grid points is sufficiently large relative to the cardinality 
of the set of targets, the multiple targets can be uniquely 
located (asymptotically) using sensor placement for single 
targets. 

Theorem 5 As the tiumber of grid points in a setisorfield 
teiids to itzjinih, the fraction of sets of targets of cardinality 
exactly 1 that nre utiiyuely identijiable approaches otie i f  
1 = .(a). 
Proof Let 

that for i  2 fl, 
= nI,k( A’ - iv(4)). It can be easily seen N - i  

N - ‘  ~ i ( V ( 4 )  - 1) i(V(4)  - 1) 
N - i  ’ In %I, (4) = ln(1 - ) - -  N - i  N - i  

i ( l - (4 )  - 1) / - I  

. Now, 
N - i 

and In N - 
1=1 

( I  - 1)(L7(4) - 1) 
and lim (1 - 1) = 0 if 1’/N -+ 0 

N+co N - l + I  . -  
(since V(4) is constant). 0 

This underlines the effectiveness of the sensor placement 
approach for single targets, and implies that separate place- 
ment algorithms for multiple targets are not necessary. 
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4 Conclusions 
We have presented novel sensor deployment strategies 

for effective surveillance and target location. This ap- 
proach represents the sensor field as a grid (two- or three- 
dimensional) of points (coordinates), and sensors are se- 
lectively placed on a subset of these grid points. We have 
used the framework of identifying codes to determine sen- 
sor placement for unique target location, which refers to the 
problem of pin-pointing a target at a grid point at any instant 
in time. We have provided coding-theoretic bounds on the 
number of sensors and presented methods for determining 
their placement in the sensor field. We have also shown that 
sensor placement for single targets provide asymptotically 
complete (unambiguous) location of multiple targets. 
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