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Abstract – We describe the deployment of mobile agent
in Distributed Sensor Networks (DSNs) to form an im-
proved infrastructure for multisensor data fusion. Com-
pared with the traditional client/server paradigm, mo-
bile agent adopts a new computing model: data stay
at the local site, while the execution code is moved to
the data sites. Mobile-agent-based DSN (MADSN) saves
the network bandwidth and provides an effective way to
overcome network latency. It is used to integrate pre-
processed data located at local sensor nodes. Progres-
sive accuracy can be achieve during the agent migration.
We take target classification as an example to show how
MADSN supports high performance distributed integra-
tion.
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1 Introduction
Multisensor data fusion is an evolving technology, con-

cerning the problem of how to fuse data from multiple
sensors in order to make a more accurate estimation of the
environment [8, 10, 16]. Applications of data fusion cross
a wide spectrum, including environment monitoring, au-
tomatic target detection and tracking, battlefield surveil-
lance, remote sensing, global awareness, etc. They are
usually time-critical, cover a large geographical area, and
require reliable delivery of accurate information for their
completion.

So far, client/server computing model has been most
popularly used in Distributed Sensor Networks (DSNs) to
handle multisensor data fusion. However, as advances in
sensor technology and computer networking allow the de-
ployment of large amount of smaller and cheaper sensors,
huge volumns of data need to be processed in real-time. In
this paper, we explore the usage of mobile agent in DSNs
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for data fusion tasks as an alternative to the traditional
client/server model.

The outline of this paper is as follows: Sec. 2 de-
scribes the mobile agent computing model and its ad-
vantages over client/server model. Sec. 3 presents the
design and implementation of mobile-agent-based DSN
(MADSN). Sec. 4 discusses different fusion algorithms
including both centralized and distributed design. Sec. 5
uses target classification as an example to show the effec-
tiveness of MADSN in distributed sensor fusion.

2 Mobile agent computing model
Generally speaking, mobile agent is a special kind of

software which can execute autonomously. Once dis-
patched, it can migrate from node to node performing
data processing autonomously. Lange listed seven good
reasons to use mobile agents [12], including reducing net-
work load, overcoming network latency, robust and fault-
tolerant performance, etc.

In the mobile agent computing model, data stay at the
local site, while the processing task is moved to the data
sites. By transmitting the computation engine instead of
data, the mobile agent model offers several important ben-
efits: 1) Network bandwidth requirement is reduced. In-
stead of passing large amounts of raw data over the net-
work through several round trips, only the agent of small
size is sent. This is especially important for real-time ap-
plications and where the communication is through low-
bandwidth wireless connections; 2) Better network scal-
ability can be achieved. The performance of the network
is not affected when the number of sensor is increased.
Agent architecture can support adaptive network load bal-
ancing automatically; 3) Extensibility is supported. Mo-
bile agents can be programmed to carry task-adaptive pro-
cesses which extends the capability of the system; and 4)
Stability. Mobile agents can be sent when the network
connection is alive and return results when the connec-
tion is re-established. Therefore, the performance of the



system is not much affected by the reliability of the net-
work.

Although the role of mobile agents in distributed com-
puting is still being debated mainly because of the secu-
rity concern [5, 14], several applications have shown clear
evidence of benefitting from the use of mobile agents. For
example, mobile agents are used in networked electronic
trading [4] where they are dispatched by the buyer to the
various suppliers to negotiate orders and deliveries, and
then return to the buyer with their best deals for approval.
Instead of having the buyer contact the suppliers, the mo-
bile agents behave like representatives, interacting with
other representatives on the buyer’s behalf, and alert the
buyer when something happens in the network that is im-
portant to the buyer. Another successful example of us-
ing mobile agents is distributed information retrieval and
information dissemination [6, 9, 15, 22]. Agents are dis-
patched to heterogeneous and geographically distributed
databases to retrieve information and return the query re-
sults to the end-users. Mobile agents are also used to re-
alize network awareness [2] and global awareness [19].
Network-robust applications are of great interest in mili-
tary situations today. Mobile agents are used to be aware
of and reactive to the continuously changing network con-
ditions to guarantee successful performance of the appli-
cation tasks.

In this paper, we deploy the mobile agent paradigm to
improve the design of DSN. We use the acronym MADSN
to denote mobile-agent-based DSN. Figure 1 provides a
comparison between DSN and MADSN from architecture
points of view.
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Figure 1: Comparison of architectures between DSN and
MADSN

3 MADSN design and implementa-
tion

We define mobile agent as an entity of four attributes:
identification, itinerary, data space, and method, as
shown in Fig. 2.

• Identification: A number in the format of 2-tuple
(i, j), where i indicates the IP address of the dis-
patcher and j the serial number assigned to agents by

identification 

itinerary data space

method

(160.36.0.0, 1)

Figure 2: Mobile agent as an entity of four attributes.

the dispatcher. Each mobile agent can be uniquely
identified by its identification.

• Data space: The agent’s data buffer which carries
the partially integrated results. This result should
provide progressive accuracy as the agent migrates
from node to node.

• Itinerary: The route of migration. It can be fixed
or dynamically determined based on the current net-
work status. Currently, we assume the itinerary is
fixed.

• Method: The processing task (or execution code)
carried with the agent. Our focus in this paper is
the development of distributed sensor integration al-
gorithms.

MADSN is simulated using a mobile agent framework
(MAF) we developed. Its architecture design is shown in
Fig. 3. MAF is built upon TCP/IP protocol. A combina-
tion of C/C++ and an interpreting language as the front
end is usually the setup of the language support. The mo-
bile agent server functions like a daemon. It listens to
the network for any valid incoming agents and invokes
the corresponding routine to carry out sensor integration.
Again, we can see that the local data reside at the local
site, only the integrated results are carried with the mo-
bile agent.

There have been many mobile agent systems developed
recently. Most of them use Java or the combination of
C/C++ and a scripting language, such as IBM’s Aglets
[1], Dartmouth’s Agent Tcl [20], General Magic’s Tele-
script [21], etc. MAF is implemented in Python and has
left flexible interface to other processing modules. [13]
provides a detailed list of benefits of Python, including
its purely object-oriented support, its suitability for rapid
prototyping, and its object serialization support which is
one way to save information between program executions.
It needs to be clarified that object serialization only keeps
the data space, but not the execution status. No modifica-
tion to the Python interpreter is needed in order to support
moderate mobility.
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Figure 3: MAF design architecture.

In order to enhance the performance of MAF, and also
make usage of existing mature integration modules, MAF
has provided flexible interface where the integration mod-
ules developed in C/C++ can be dynamically linked and
executed by agents.

4 Distributed sensor integration al-
gorithm design

As larger amount of sensors are deployed in harsher
environment, it is important that sensor integration tech-
niques are robust and fault-tolerant so that they can handle
uncertainty and faulty sensor readouts. Here, the redun-
dancy in the sensor readouts are used to provide error tol-
erance. In this section, we first describe an efficient multi-
resolution integration (MRI) algorithm. Then we modify
the algorithm such that the original centralized integration
can be carried out distributively. Readers are referred to
[18] for detailed derivation and case study.

4.1 Centralized MRI algorithm
The original MRI algorithm was proposed by Prasad,

Iyengar and Rao in 1994 [17]. The idea essentially con-
sists of constructing a simple function (the overlap func-
tion) from the outputs of the sensors in a cluster and re-
solving this function at various successively finer scales
of resolution to isolate the region over which the correct
sensors lie. Each sensor in a cluster measures the same
parameters. It is possible that some of them are faulty.
Hence it is desirable to make use of this redundancy of
the readings in the cluster to obtain a correct estimate of
the parameters being observed.

Figure 4 illustrates the overlap function (Ω(x)) for a
set of 7 sensors calculated from their characteristic func-
tions. The actual value of the parameter being measured
lies within regions over which the maximal peaks of Ω(x)
occur.
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Figure 4: The overlap function for a set of 7 sensors.
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Figure 5: An overlap function Ω(x) and its appearance
at different resolutions (The shaded region indicates the
region needs to be resolved over).

Multi-resolution analysis provides a hierarchical
framework for interpreting the overlap function. It is nat-
ural and more efficient to first analyze details at a coarse
resolution and then increase the resolution for only the
region of interest. Given a sequence of increasing reso-
lutions, at each resolution, MRI picks the crest from the
overlap function, and resolve only the crest in the next
finer resolution level. Crest is a region in the overlap func-
tion with the highest peak and the widest spread. The
algorithm is optimal, since the overall time required is
O(n log n), which is the time required to maintain Ω(x).
This algorithm is also robust, satisfies a Lipschitz condi-
tion [11], which ensures that minor changes in the input
intervals cause only minor changes in the integrated re-
sult. Figure 5 illustrates the multi-resolution analysis pro-
cedure.

Cho et. al. [3] improves the Ω function to only return
the interval with the overlap function ranges [n− f, n]. It
also satisfies Lipschitz condition. The biggest advantage
of this function is that it is able to reduce the width of
the output interval in most cases and produce a narrower
output interval when the number of sensors involved is



large, which is the case for distributed sensor network in
general.

4.2 Decentralized MRI algorithm
In a distributed sensor network (DSN), all readouts

from the sensor nodes are sent to their corresponding pro-
cessing elements, where the overlap function at the finest
resolution is first generated, and the multi-resolution anal-
ysis procedure is then applied to find the crest at the de-
sired resolution.

In a mobile-agent-based DSN (MADSN), the mobile
agents migrate among the sensor nodes and collect read-
outs. Therefore, each mobile agent always carries a par-
tially integrated overlap function which is accumulated
into a final version at the processing element after all the
mobile agents return. During this process, if MADSN
applies MRI in the same way as DSN does, that is, let-
ting mobile agents carry the partially integrated overlap
function in its finest resolution and then use MRI to find
the crest at desired resolution at the processing center, the
advantages of mobile agents will be nullified because of
heavy data migration.

We modified the basic MRI algorithm and presented a
more efficient implementation for MADSN [18]. The key
concept underlying the modified algorithm is that MRI is
applied before accumulating the overlap function. A 1-
D array, ωx, can serve as an appropriate data structure to
represent the partially-integrated overlap function carried
by a mobile agent. The size of the array is dependent
upon the resolution requirement. The coarser the resolu-
tion, the smaller the data buffer. The modified algorithm
also provides progressive accuracy. When the accuracy
requirement has been reached, the mobile agent can re-
turn to the processing center immediately without finish-
ing the scheduled route. The MADSN implementation of
MRI achieves the same integration result as original MRI
but is more flexible, and is able to carry out the integration
distributively. We use target classification as an example
to show the advantages of MADSN.

5 MADSN for target classification
Target detection, classification, localization, and target

tracking are all typical applications in DSNs. By integrat-
ing observations from different sensors at different loca-
tions, the system will automatically send alarms when-
ever a certain target is detected. Our discussion in this
section concentrates on ground vehicles classification us-
ing MADSN formed by unattended ground sensors. Both
seismic and acoustic sensors are typically used in battle-
field surveillance and our example uses only acoustic sig-
nals.

Acoustic signal is strongly non-stationary. It can be
interfered by many factors such as the speed of the tar-
get, Doppler effects, noise from various moving parts and
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Figure 6: Time series and PSD of acoustic signals from
AAV and DW.

frictions, environmental effects, etc. On top of that, the
deployed sensor can be faulty or even dead. Therefore,
sensor integration is crucial here in order to tolerate the
faults, uncertainties in the sensor readouts and obtain ac-
curate classification results.

5.1 Parameter selection
Before we can use MRI algorithm for distributed in-

tegration, we must first identify the parameters to be
observed. Different parameters can be chosen depen-
dent upon different signal processing techniques applied.
Acoustic signals can be analyzed in time domain, fre-
quency domain, or time-frequency domain. Here we
choose to analyze the signal under frequency domain. By
observing the power spectral density (PSD) of the time se-
ries acoustic signal, we found that the dominant frequency
range in the PSD has a good indication of different vehi-
cles. Figure 6 shows a segment of time series acoustic
signal from AAV and Dragon Wagon (DW) with the cor-
responding PSD as well. We can see that the location of
the peak and the width of the peak differ from vehicle to
vehicle. Here, we define the dominant frequency range
as the range between the closest inflection points at the
left and right sides of the maximum. It is, however, diffi-
cult to find the maximum from the original PSD. There-
fore, we first use Bézier spline [7] to smooth the original
PSD into an (n−1)th polynomial, where n is the number
of samples used to represent the original PSD. The more
samples we use, the closer the polynomial to the original
PSD, the longer the computation time. Once we obtained
the smoothed PSD, we can easily pick the maximum and
the dominant frequency range as defined above. MRI can
then be applied to integrate the dominant frequency range
as the mobile agent migrates from node to node. A block
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Figure 7: Block diagram on using MRI to integrate the
dominant frequency range obtained from PSD.
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diagram of the procedure is illustrated in Fig. 7.

5.2 Integration results using MRI
We conducted two experiments to show the results of

using MRI in MADSN. In the first experiment, we choose
the readouts from nine sensor nodes with one of them be-
ing faulty. The target in this experiment is AAV. In the
second experiment, we also choose the readouts from nine
sensor nodes but with two of them being faulty. Dragon
Wagon (DW) is the target in the second experiment.

Figure 8 is the result of mobile agent implementa-
tion of MRI at different resolutions for AAV. From the
plots, we can see the effect of multi-resolution analy-
sis: the finer the resolution, the narrower the dominant
frequency range, the more accurate the estimation. For
AAV, the dominant frequency range at the finest resolu-
tion is [0.45, 0.72] with the location of peak at around
0.58. Figure 9 shows another example with DW as the
target. The dominant frequency range at the finest reso-
lution is [0.61, 0.65] with the location of peak at around
0.63.

Figure 10 shows the effect of progressive accuracy
achieved in the first experiment. The overlap functions
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Figure 9: integration results at different resolutions from
nine sensors with two of them being faulty. (The target is
DW)

are all at their finest resolution. From the eight partially
integrated results, we can see that after having migrated
around five sensors, the integration result goes stable. The
observations from the remaining four sensors do not affect
the result at all. Therefore, the mobile agent can return to
its dispatcher without finishing up its scheduled itinerary,
but still achieve required accuracy.

6 Summary
This paper describes the design and implementation of

mobile-agent-based distributed sensor networks. Mobile
agent has been a promising solution to high performance
distributed computing. Here, we use mobile agent to carry
out distributed sensor integration tasks. We take an exam-
ple of target classification to illustrate the efficiency of
mobile agent computing model.
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