
Efficient and Fault-Tolerant Feature Extraction
in Wireless Sensor Networks

Bhaskar Krishnamachari1 and S. Sitharama Iyengar2

1 Department of Electrical Engineering, University of Southern California,
Los Angeles, CA 90036, USA

bkrishna@usc.edu, http://ceng.usc.edu/˜bkrishna/
2 Department of Computer Science, Louisiana State University,

Baton Rouge, LA 70802, USA
iyengar@bit.csc.lsu.edu, http://bit.csc.lsu.edu/˜iyengar/

Abstract. We consider a canonical task in wireless sensor networks –
the extraction of information about environmental features – and propose
a multi-step solution that is fault-tolerant, self-organizing and energy-
efficient. We explicitly take into account the possibility of sensor mea-
surement faults and study a distributed algorithm for detecting and cor-
recting such faults, showing through theoretical analysis and simulation
results that 85-95% of faults can be corrected using this algorithm even
when as many as 10% of the nodes are faulty. We present a self-organizing
algorithm which combines shortest-path routing mechanisms with leader-
election to permit nodes within each feature region to self-organize into
routing clusters. These clusters are used in data aggregation schemes
that we propose for feature extraction. We show that the best such ag-
gregation scheme can result in an order-of-magnitude improvement in
energy savings.

1 Introduction

In general sensor networks can be tasked to answer any number of queries about
the environment [24]. We focus on one particular class of queries: determining
regions in the environment with a distinguishable, “feature” characteristic. As an
example, consider a network of devices that are capable of sensing concentrations
of some chemical X; an important query in this situation could be “Which regions
in the environment have a chemical concentration greater than λ units?” We will
refer to the process of getting answers to this type of query as feature extraction.

Feature extraction can be considered a canonical task in a sensor network.
While feature extraction is useful for static sensor networks, it should be pointed
out that it can also be used as a mechanism for non-uniform sensor deployment.
Information about the location of feature regions can be used to move or deploy
additional sensors to these regions in order to get finer-grained information.

Wireless sensor networks are often unattended, autonomous systems with
severe energy constraints and low-end individual nodes with limited reliability.
In such conditions, self-organizing, energy-efficient, fault-tolerant algorithms are

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 488–501, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (¨OL)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 489

required for network operation. These design themes will guide the multi-step
solution proposed in this paper to the problem of feature extraction.

It is helpful to treat the trivial centralized solution to the feature recognition
problem first in order to understand the shortcomings of such an approach. We
could have all nodes report their individual sensor measurements, along with
their geographical location directly to a central monitoring node. The process-
ing to determine the feature regions can then be performed centrally. While
conceptually simple, this scheme does not scale well with the size of the network
due to the communication bottlenecks and energy expenses associated with such
a centralized scheme. Hence, we would like a solution in which the nodes in a
feature region organize themselves and perform localized, in-network processing
to determine the extent of the region. This is the approach we will take.

We can decompose the process of extracting features in a sensor network into
multiple steps, as follows:

1. Determining feature readings: The sensors need to know what measure-
ment constitutes a feature. Although some work has been done on systems that
learn the normal conditions over time so that they can recognize unusual feature
readings [33], we consider this issue beyond the scope of this paper. We will
instead make the reasonable assumption that a threshold that enables nodes to
determine whether their reading corresponds to a feature has been specified with
the query, or otherwise made available to the nodes during deployment.

2. Disambiguating “features” from faulty sensor readings: A challenging task
is to disambiguate features from faults in the sensor readings, since an unusually
high reading could potentially correspond to both. Conversely, a faulty node
may report a low measurement even though it is in a feature region. We will
present in section 2 a probabilistic decoding mechanism that exploits the fact
that sensor faults are likely to be stochastically uncorrelated, while features are
likely to be spatially correlated. In analyzing these schemes, we will show that
the impact of faults can be reduced by as much as 85-95% even for reasonably
high fault rates.

3. Feature clustering: Once the sensors have determined that they do indeed
belong to the feature region, we would like to have them self-organize into a
cluster. In section 3 we propose a clustering algorithm that develops intra-cluster
routing paths and elects a cluster head that would be responsible for collecting
the data for the feature region and routing it to the central data sink.

4. Aggregation/Compression of feature information: Finally, a useful addi-
tional step would be to aggregate the data by compressing it in some manner.
Sending such a compressed version would save energy resources. We discuss this
issue in section 4. We will show that the best scheme, stepwise rectangular ap-
proximate aggregation (SRA), can result in order-of-magnitude energy savings.

We present the context for our results through a discussion of related work
in section 5. Finally, we will present our conclusions in section 6.

490 B. Krishnamachari and S.S. Iyengar

2 Fault-Feature Disambiguation

Let the real situation at the sensor node be modelled by a binary variable Ti.
This variable Ti = 0 if the ground truth is that the node is a normal region, and
Ti = 1 if the ground truth is that the node is in a “feature” region. We map
the real output of the sensor into an abstract binary variable Si. This variable
Si = 0 if the sensor measurement indicates a normal value, and a Si = 1 if it
measures an unusual value.

There are thus four possible scenarios: Si = 0, Ti = 0 (sensor correctly reports
a normal reading), Si = 0, Ti = 1 (sensor faultily reports a normal reading),
Si = 1, Ti = 1 (sensor correctly reports an unusual/feature reading), and Si =
1, Ti = 0 (sensor faultily reports an unusual reading). While each node is aware
of the value of Si, in the presence of a significant probability of a faulty reading,
it can happen that Si �= Ti. We describe below a Bayesian fault-recognition
algorithm to determine an estimate Ri of the true reading Ti after obtaining
information about the sensor readings of neighboring sensors.

We make one simplifying assumption: the sensor fault probability p is uncor-
related and symmetric. We also wish to model the spatial correlation of feature
values. Let each node i have N neighbors (excluding itself). Let’s say the evi-
dence Ei(a, k) is that k of the neighboring sensors report the same binary reading
a as node i , while N − k of them report the reading ¬a, then we can decode
according to the following model for using the evidence, giving equal weight to
the evidence from each neighbor : P (Ri = a|Ei(a, k)) = k

N .
Now, the task for each sensor is to determine a value for Ri given information

about its own sensor reading Si and the evidence Ei(a, k) regarding the readings
of its neighbors. The following Bayesian calculations provide the answer:

Paak = P (Ri = a|Si = b, Ei(a, k))

=
P (Ri = a, Si = b|Ei(a, k))

P (Si = b|Ei(a, k))

=
P (Si = b|Ri = a)P (Ri = a|Ei(a, k))

P (Si = b|Ri = a)P (Ri = a|Ei(a, k)) + P (Si = b|Ri = ¬a)P (Ri = ¬a|Ei(a, k))

≈ P (Si = b|Ti = a)P (Ri = a|Ei(a, k))
P (Si = b|Ti = a)P (Ri = a|Ei(a, k)) + P (Si = b|Ti = ¬a)P (Ri = ¬a|Ei(a, k))

=
(1 − p)k

(1 − p)k + p(N − k)
(1)

Where the approximation follows from the fact that Ri is meant to be an estimate
of Ti. Equation (1) shows the statistic with which the sensor node can now
make a decision about whether or not to disregard its own sensor reading Si

in the face of the evidence Ei(a, k) from its neighbors. Each node can then use
a threshold decision scheme, which uses a threshold 0 < Θ < 1 as follows: if
P (Ri = a|Si = a, Ei(a, k)) > Θ, then Ri is set to a, and the sensor believes that
its sensor reading is correct. If the metric is less than the threshold, then node

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 491

i decides that its sensor reading is faulty and sets Ri to ¬a. It can be shown
that the optimal threshold Θ = 1 − p corresponds to a median filter (i.e. a node
assumes its reading is correct if and only if at least half of its neighbors also
have the same value). Equation (1) can be used to obtain analytical expressions
for the performance of this fault reduction mechanism.

In order to simplify the analysis of the Bayesian fault-recognition mecha-
nisms, we will make the assumption that for all N neighbors of node i, the
ground truth is the same. In other words, if node i is in a feature region, so
are all its neighbors; and if i is not in a feature region, neither are any of its
neighbors. This assumption is valid everywhere except at nodes which lie on the
boundary of a feature region. For sensor networks with high density, this is a
reasonable assumption as the number of such boundary nodes will be relatively
small. We will first present results for the randomized decision scheme.

Let gk be the probability that exactly k of node i’s N neighbors are not
faulty. This probability is the same irrespective of the value of Ti. This can be
readily verified:

gk =
(

N

k

)
P (Si = 0|Ti = 0)kP (Si = 1|Ti = 0)(N−k)

=
(

N

k

)
P (Si = 1|Ti = 1)kP (Si = 0|Ti = 0)(N−k)

=
(

N

k

)
(1 − p)kp(N−k) (2)

For the optimal decision threshold scheme it can be shown (details omitted
for brevity) that

P (Ri = a|Si = a, Ti = a) =
N∑

k=kmin

gk (3)

P (Ri = ¬a|Si = ¬a, Ti = a) =
N∑

k=kmin

gN−k (4)

The average number of errors after decoding α can then be described by the
following expression:

α = (1 −
N∑

k=0.5N

(gk − gN−k))n (5)

The best policy for each node (in terms of minimizing α, the average number
of errors after decoding) is to accept its own sensor reading if and only if at
least half of its neighbors have the same reading. This is an intuitive result,
following from the equal-weight evidence model that we are using (equation
(2)). This means that the sensor nodes can perform an optimal decision without

492 B. Krishnamachari and S.S. Iyengar

Fig. 1. Normalized reduction in average number of sensor faults for the optimal thresh-
old decision scheme

even having to estimate the value of p. This makes the optimal-threshold decision
scheme a very feasible mechanism for minimizing the effect of uncorrelated sensor
faults. Figure 1 shows how the optimal threshold scheme results in a significant
reduction in the average number of sensor faults. It shows that the impact of
faults can be reduced by as much as 85-95% even for fault rates of 10%.

3 Feature Cluster Formation

Once the feature nodes have been identified by the fault-recognition algorithm,
we would like to have these nodes self-organize into clusters and elect clus-
ter heads to enable local information processing. We propose to achieve this
by combining a distributed election leader algorithm [5] with a distance-vector
routing [6] mechanism. The combination is an algorithm in which the immediate
neighbors of the leader get the correct information first, then the neighbors of
these neighbors, and so on until all nodes within the cluster obtain a path to the
same cluster leader. We now give details of this clustering algorithm.

Only nodes which have a feature reading participate in this mechanism. As
with most leader election algorithms, it is assumed that each node i within the
cluster has a unique ID value IDi that can be used to determine the cluster head
(typically the lowest ID number node is elected, though this can be modified for
some other metric easily). One useful way in which unique ID’s can be chosen

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 493

is to base their value on the geographical location of the nodes, particularly
on their distance to the central monitoring node. This is likely to result in the
cluster head being close to the data sink.

Each node i maintains a 3-tuple (LIDi, Ki, NHi). The field LIDi is the
lowest ID number seen to date by node i; Ki is the number of hops from i to
the node with lowest ID; and NHi is the next hop from i towards the lowest ID
node. Initially, for all i, LIDi = IDi, Ki = 0 and the NHi field is left blank.
As the algorithm proceeds, messages are exchanged with nearest neighbors -
each node updates its information to reflect the lowest ID number seen to date,
the number of hops to that node (which is one plus the value in the received
message), and the next hop node (which is the node that delivers the message
causing the update. This is similar to the the minimum spanning tree algorithm,
and the basic distance vector algorithm used for building routing tables. The
algorithm can be performed in a semi-synchronous manner. A node only sends
messages when it has updated its own information previously.

If all nodes are at most distance D from the leader node l, all nodes will have
their entries frozen in at most D steps, at which point the algorithm terminates.
Further, since each node only issues at most one message in each round, no node
issues more than D messages.

At the conclusion of this cluster formation mechanism we have a spanning
tree incorporating all participating nodes whereby each node can pass infor-
mation on to the leader/cluster head (the node with the lowest ID). Figure 2
shows a snapshot from the simulator depicting the intra-cluster spanning tree
and election of cluster head in the feature region for our sample scenario.

Note the distributed, self-organizing, nature of the entire process - no central
commands need to be issued to determine the cluster head for each region and
to perform the intra-cluster routing setup. The entire process can be triggered
automatically when the feature readings are determined. The algorithm is highly
robust to the addition of new nodes to the feature region: any new node i initially
advertises its tuple to be (i, 0, -), and the neighbors of this node which are in the
feature region would respond by with their current values. If the new node is not
going to be the new cluster leader (because its ID number is not low enough),
then no additional messages need to be exchanged. If the new node should be the
cluster leader, then the clustering algorithm starts afresh in the entire region. It
is assumed that complete node failures are rare in the network, but it should be
noted that some form of refresh mechanism is required to ensure that the intra-
cluster routing information does not become stale. Another approach could be
the use of link reversal mechanisms to deal with such failures in the presence
of extreme dynamics [34]. Finally, we note that the clustering algorithm can
be conducted in parallel throughout the network, resulting in the formation of
multiple independent clusters simultaneously in separate feature regions.

494 B. Krishnamachari and S.S. Iyengar

Fig. 2. A simulator snapshot depicting the intra-cluster routing tree within the fea-
ture region along with the elected cluster head. The dashed rectangle on the bottom
represents the rectangular approximation of the feature region that can be represented
compactly. Note that the rectangular approximation is highly robust to faults and
decoding errors of nodes on the border of the feature region.

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 495

4 Compact Feature Extraction

The central monitoring node may query for the location of the critical event
feature region(s), the readings of each individual node in the feature region, or the
min/max/average reading in the feature region. Different forms of aggregation
may be suitable depending on the query. We focus on the location query. This
query says “describe the location of the feature region.” The first thing to note
is that this is a query that lends itself to both exact and inexact answers. On the
one hand we can report the full detailed information of the locations of the nodes
in the feature region; on the other hand we can give an approximate parametric
description that loosely describes a geometric shape containing all nodes in the
feature region.

Let us assume that each node knows the x and y-coordinates for its own
location. We also assume that all packets have a fixed header size H, and use B
bits to represent each coordinate of a location. Let k refer to the total number of
sources, i.e. nodes in the feature region, d the distance in hops from the cluster-
head to the sink, and di, the shortest distance between the cluster-head and the
ith node in the feature region. The following are some aggregation options that
can be pursued:

No Aggregation (NA): If no aggregation mechanism is employed, the
energy cost of this scheme in terms of the total number of bits transmitted in
this case will be λNA = (2B + H)(kd +

∑
di).

Header Aggregation (HA): In this scheme, all nodes in the feature region
send their location information in separate packets through the intra-cluster
routing tree to the cluster-head which then combines these without modification
into one large packet. The number of bits transmitted, λHA = 2B(kd +

∑
di) +

H(d +
∑

di).
Header Aggregation with Lossless Compression (HAC): An addi-

tional level of savings can be obtained in the header aggregation scheme, if the
cluster-head compresses the information it obtains from all nodes in the feature
region by a factor of ρ ≤ 1 before sending it on. The number of bits transmitted,
λHAC = 2B(kdρ +

∑
di) + H(d +

∑
di).

Rectangular Approximate Aggregation (RA): If it suffices to know
the approximate location and extent of the feature region, significant reduction
can be obtained by combining the information into a geometric shape such as
the rectangle which contains the nodes in the feature region. The cluster-head
collects (x,y) coordinates for all such nodes, and sends the 3-tuple
[XMIN, Y MIN, DIAG] (which suffices to reconstruct the enclosing rectangle)
on to the central monitoring node. The number of bits transmitted, λRA =
2B

∑
di + 3Bd + H(d +

∑
di).

Circular Approximate Aggregation (CA): This scheme is similar to
the rectangular approximate aggregation, except that the cluster-head instead
computes the center and radius of the smallest circle which encloses all nodes in
the feature region, represented as the 3-tuple [XMID, Y MID, RADIUS]. The
number of bits transmitted, λCA = 2B

∑
di + 3Bd + H(d +

∑
di).

496 B. Krishnamachari and S.S. Iyengar

Step-wise Rectangular Aggregation (SRA): If we permit each node
within the cluster to aggregate the information coming from all downstream
nodes, we can get further gains with the rectangular aggregation scheme. The
number of bits transmitted, λSRA = 3B(k+d−1)+H(d+

∑
di). It is important

to note that the final information obtained by the central monitoring node is the
same in the case of RA as well as SRA aggregation schemes – the coordinates
of the smallest rectangle enclosing the feature nodes.

Step-wise Circular Aggregation (SCA): This scheme is similar to the
SRA. Each node sends the 3-tuple [XMID, Y MID, RADIUS] upstream. This
tuple is used to describe the center and radius of the smallest circular region
that includes the intersection of the circular regions of its descendant nodes as
well as its own location. The number of bits transmitted, λSCA = 3B(k + d −
1) + H(d +

∑
di).

Table 1. Comparison of various aggregation schemes for sample simulated scenario

Scheme Bits Used Savings Response Quality
No aggregation (NA) 221544 0% Exact

Header Aggregation (HA) 117544 46.9 % Exact
HA with Compression (HAC) 100648 54.6 % Exact
Rectangular Aggregation (RA) 34984 84.2 % Tight rect. approximation

Circular Aggregation (CA) 34984 84.2% Tight circ. approximation
Stepwise Rect. Aggregation (SRA) 9240 95.8% Tight rect. approximation
Stepwise Circ. Aggregation (SCA) 9240 95.8% Loose circ. approximation

Table 1 shows a comparison of the above schemes on a sample simulation
scenario. In this simulation the values for the size parameters were H = 40 and
B = 16. For HAC, the compression ratio was set to a typical value of ρ = 0.8.
The number of nodes in the cluster is k = 66, the distance between the cluster-
head and the central monitoring node is d = 40, and the sum of the intra-cluster
distances was evaluated to be

∑
di = 437. We can see that since the header

size is comparable to the size of the data contents, even header aggregation
can reduce the energy costs by nearly half in this case. As noted before, the first
three schemes all provide exact information about the location of each individual
node, while the remaining schemes provide some form of approximation. Both
the RA and CA schemes result in nearly 85% energy savings in this scenario,
the additional gains coming chiefly due to the reduction of data being sent from
from the cluster-head to the central monitoring node. Both approximations are
tight, in the sense that they provide the coordinates of the minimum enclosing
rectangle and circle respectively. For applications where the feature is likely to
be approximately circular in shape (for example if the chemical concentrations in
the environment diffuse uniformly in all directions), the circular approximation
may be closer to the real situation. However, when we consider the two step-
wise approximate aggregation schemes, the SRA scheme is better since it still
provides the minimal enclosing rectangle with significant savings (95% in this

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 497

scenario), whereas the SCA scheme (which incurs the same costs) can result
in a loose overestimate of the region containing all the nodes. Overall, we can
conclude the SRA scheme is a robust, reasonably tight approximate aggregation
algorithm which provides the most energy gains for this application.

It’s also insightful to look at the limiting behavior of the energy gains. An
upper-bound on the energy gains is obtained if we let d tend to infinity (when
the feature region is really far away from the central monitoring node).

Theorem 1. If max(di) and k are fixed then

lim
d→∞

1 − λSRA

λNA
= 1 − (3B + H)

(2B + H)k
(6)

Proof: From the expressions for costs of NA and SRA schemes, we get that

λSRA

λNA
=

3B(k + d − 1) + H(d +
∑

di)
(2B + H)(kd +

∑
di)

(7)

⇒ lim
d→∞

λSRA

λNA
=

(3B + H)d + 3B(k − 1) + H
∑

di

(2B + H)kd + (2B + H)
∑

di
(8)

⇒ lim
d→∞

λSRA

λNA
=

(3B + H)d + o(1)
(2B + H)kd + o(1)

(9)

⇒ lim
d→∞

1 − λSRA

λNA
= 1 − (3B + H)

(2B + H)k
(10)

�

Theorem 1 represents an upper bound on the gains that can be obtained
with SRA. For the sample scenario that we studied, if we let d → ∞, we get a
gain of (1 − 88/(72 · 66))100 = 98.2%, which is close to the 95.8% achieved in
the simulation for d = 40.

The above schemes can be generalized for other queries sent to the feature
nodes. For detailed and exact information such as IDs or readings of all nodes
in the feature region, approximate schemes are invalid. Thus the HA and HAC
schemes are the most appropiate. For queries which require a single number to
be sent back, such as query asking for the min/max/average feature reading, a
suitable approach is to perform in-cluster aggregation. The information could
either be aggregated at the cluster-head after receiving all inputs directly from
each node in the cluster, or in a stepwise manner throughout the cluster. The
cluster-head then sends this single number on to the central monitoring node.
The energy gains through these schemes would be quite comparable to those
obtained for the feature-location query with the RA and SRA schemes, respec-
tively.

498 B. Krishnamachari and S.S. Iyengar

5 Related Work

Self-configuration and self-organizing mechanisms are needed in sensor networks
because of the requirement of unattended operation in uncertain, dynamic en-
vironments. Some attention has been given to developing localized, distributed,
self-configuration mechanisms in sensor networks [9], [21] and studying condi-
tions under which they are feasible [25].

Sensor networks are characterized by severe energy constraints because the
nodes will often operate with finite battery resources and limited recharging. The
energy concerns can be addressed by engineering design at all layers. Some of the
energy concerns are being addressed at the hardware and architecture level [14],
[22], [26]. At the physical layer, there is now a significant body of work on min-
imizing energy costs by adjusting the transmit powers of nodes while achieving
global network properties such as connectivity [27], [28]. At the link layer, some
of the work has focused on energy-efficient medium access schemes suitable for
sensor networks [10], [16], [31]. At the networking layer, meta-naming of data and
data-aggregation during routing has been proposed and analyzed as a significant
means for energy savings [1], [7], [8], [12], [13]. At the application layer, it has
been recognized that energy savings can be obtained by pushing computation
within the network in the form of localized and distributed algorithms [2], [23],
[24].

One of the main advantages of the distributed computing paradigm is that it
adds a new dimension of robustness and reliability to computing. Computations
done by clusters of independent processors need not be sensitive to the failure
of a small portion of the network. Wireless sensor networks are an example of
large scale distributed computing systems where fault-tolerance is important.
For large scale sensor networks to be economically feasible, the individual nodes
necessarily have to be low-end inexpensive devices. Such devices are likely to
exhibit unreliable behavior. Therefore it’s important to guarantee that faulty
behavior of individual components does not affect the overall system behavior.
Some of the early work in the area of distributed sensor networks focuses on
reliable routing with arbitrary network topologies [18], [19], characterizing sensor
fault modalities [3], [4], tolerating faults while performing sensor integration
[20], and tolerating faults while ensuring sensor coverage [17]. A mechanism for
detecting crash faults in wireless sensor networks is described in [29]. There has
been little prior work in the literature on detecting and correcting faults in sensor
measurements in an application-specific context.

6 Conclusions

With recent advances in technology it has become feasible to consider the de-
ployment of large-scale wireless sensor networks that can provide high-quality
environmental monitoring for a range of applications. In this paper we developed
a multi-stage solution to a canonical task in such networks – the extraction of
information about regions in the environment with identifiable features.

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 499

In such networks involving thousands of unattended, low-cost, low-capability
devices, reliability, self-organization, and energy-efficiency are paramount con-
cerns. Our solution addresses all these concerns, and illustrates design principles
for this emerging space of application-specific networks.

One of the most difficult challenge is that of distinguishing between faulty
sensor measurements and unusual environmental conditions. To our knowledge,
this is the first paper to propose a solution to the fault-feature disambiguation
problem in sensor networks. Our proposed solution, in the form of a Bayesian
fault-recognition algorithm, exploits the notion that measurement errors due to
faulty equipment are likely to be uncorrelated, while environmental conditions
are spatially correlated.

We presented the Bayesian threshold decision scheme and showed an ana-
lytical expressions for its performance. Our analysis showed that the threshold
decision scheme has good performance in terms of the minimization of errors. The
proposed algorithm has the additional advantage of being completely distributed
and localized - each node only needs to obtain information from neighboring sen-
sors in order to make its decisions. The theoretical and simulation results show
that with the optimal threshold decision scheme, faults can be reduced by as
much as 85 to 95% for fault rates as high as 10%.

We then presented a distributed mechanism for nodes in a feature region
to self-organize into a cluster. The proposed mechanism combines shortest-path
routing techniques with a leader-election mechanism. The final result of the
clustering algorithm is the election of a cluster-head and the formation of a
minimum spanning tree connecting all the other nodes to the cluster-head.

This cluster is then used as a precursor for in-network processing when infor-
mation about the feature region is extracted back to the central monitoring node.
We presented and analyzed a number of distinct data-aggregation mechanisms
that provide energy savings by the elimination of redundant information. We
showed that one of these, the stepwise rectangular approximation scheme (SRA)
has the advantage of being robust to boundary-errors in the fault recognition
algorithm, providing a tight approximation of the feature region, and resulting
in order-of-magnitude savings in energy costs. For the simulated scenario, for
example, this saving was over 95%.

There are a number of directions in which this work can be extended. The
most promising is the extension of our work on fault-recognition and fault-
tolerance in sensor networks. We have dealt with a binary fault-feature disam-
biguation problem here. This could be generalized to the correction of real-valued
sensor measurement errors: nodes in a sensor network should be able to exploit
the spatial correlation of environmental readings to correct for the noise in their
readings. Another related direction is to consider dynamic sensor faults where
the same nodes need not always be faulty. Much of the work presented here can
also be easily extended to dynamic feature recognition to deal with environmen-
tal phenomena that change location or shape over time. We would also like to
see the algorithms proposed in this paper implemented and validated on real
sensor network hardware in the near future.

500 B. Krishnamachari and S.S. Iyengar

References

1. C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks,” ACM/IEEE Interna-
tional Conference on Mobile Computing and Networks (MobiCom 2000), August
2000, Boston, Massachusetts

2. D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next Century Challenges:
Scalable Coordination in Sensor Networks,” ACM/IEEE International Conference
on Mobile Computing and Networks (MobiCom ’99), Seattle, Washington, August
1999.

3. K. Marzullo, “Implementing fault-tolerant sensors,” TR89-997, Dept. of Computer
Science, Cornell University, may 1989.

4. L. Prasad, S. S. Iyengar, R. L. Kashyap, and R. N. Madan, “Functional Character-
ization of Fault Tolerant Interation in Disributed Sensor Networks,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Vol. 21, No. 5, September/October
1991.

5. N. Lynch, Distributed Algorithms.
6. B.A. Forouzan, Data Communications and Networking, McGraw Hill, 2001.
7. B. Krishnamachari, D. Estrin, and S. Wicker, “Impact of Data Aggregation in

Wireless Sensor Networks,” International Workshop on Distributed Event Based
Systems, DEBS’02, July 2002.

8. S. Madden, R. Szewczyk, M. Franklin, and D. Culler, “Supporting Aggregate
Queries over Ad-Hoc Wireless Sensor Networks,” IEEE Workshop on Mobile Com-
puting Systems and Applications, 2002.

9. A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring sEnsor Networks
Topologies,” INFOCOM, 2002.

10. Seong-Hwan Cho and A. Chandrakasan, “Energy Efficient Protocols for Low Duty
Cycle Wireless Microsensor Networks”, ICASSP 2001, May 2001.

11. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Gane-
san, “Building Efficient Wireless Sensor Networks with Low-Level Naming,” 18th
ACM Symposium on Operating Systems Principles, October 21–24, 2001.

12. W.R. Heinzelman, J. Kulik, and H. Balakrishnan “Adaptive Protocols for Informa-
tion Dissemination in Wireless Sensor Networks,” Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile Computing and Networking (Mo-
biCom ’99), Seattle, Washington, August 15–20, 1999, pp. 174–185.

13. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan “Energy-Efficient Com-
munication Protocol for Wireless Microsensor Networks,” 33rd International Con-
ference on System Sciences (HICSS ’00), January 2000.

14. J. M. Kahn, R. H. Katz and K. S. J. Pister, “Mobile Networking for Smart Dust”,
ACM/IEEE International Conference on Mobile Computing and Networking (Mo-
biCom 99), Seattle, WA, August 17–19, 1999

15. Rex Min, Manish Bhardwaj, Seong-Hwan Cho, Amit Sinha, Eugene Shih, Alice
Wang, and Anantha Chandrakasan, “Low-Power Wireless Sensor Networks”, VLSI
Design 2000, January 2001.

16. A. Woo and D.E. Culler, “A Transmission Control Scheme for Media Access in
Sensor Networks,” ACM/IEEE International Conference on Mobile Computing
and Networks (MobiCom ’01), July 2001, Rome, Italy.

17. K. Chakrabarty, S. S. Iyengar, H. Qi, E.C. Cho, “Grid Coverage of Surveillance and
Target location in Distributed Sensor Networks” To appear in IEEE Transaction
on Computers, May 2002.

Efficient and Fault-Tolerant Feature Extraction in Wireless Sensor Networks 501

18. S.S. Iyengar, M.B. Sharma, and R.L. Kashyap, “Information Routing and Relia-
bility Issues in Distributed Sensor Networks” IEEE Tran. on Signal Processing,
Vol.40, No.2, pp. 3012–3021, Dec. 1992.

19. S. S. Iyengar, D. N. Jayasimha, D. Nadig, “A Versatile Architecture for the Dis-
tributed Sensor Integration Problem,” IEEE Transactions on Computers, Vol. 43,
No. 2, February 1994.

20. L. Prasad, S. S. Iyengar, R. L. Rao, and R. L. Kashyap, “Fault-tolerant sensor
integration using multiresolution decomposition,” Physical Review E, Vol. 49, No.
4, April 1994.

21. K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, “Protocols for Self-Organization
of a Wireless Sensor Network,” IEEE Personal Communications, vol. 7, no. 5, pp.
16–27, October 2000.

22. G. Asada et al., “Wireless Integrated Network Sensors: Low Power Systems on a
Chip,” Proceedings of the 1998 European Solid State Circuits Conference.

23. M. Chu, H. Haussecker, F. Zhao, “Scalable information-driven sensor querying and
routing for ad hoc heterogeneous sensor networks.” International Journal on High
Performance Computing Applications, to appear, 2002.

24. P. Bonnet, J. E. Gehrke, and P. Seshadri, “Querying the Physical World,” IEEE
Personal Communications, Vol. 7, No. 5, October 2000.

25. B. Krishnamachari, R. Bejar, and S. B. Wicker, “Distributed Problem Solving
and the Boundaries of Self-Configuration in Multi-hop Wireless Networks”, Hawaii
International Conference on System Sciences (HICSS-35), January 2002.

26. R. Min et al., “An Architecture for a Power-Aware Distributed Microsensor Node”,
IEEE Workshop on Signal Processing Systems (SiPS ’00), October 2000.

27. P. Gupta and P. R. Kumar, Critical power for asymptotic connectivity in wireless
networks. Stochastic Analysis, Control, Optimization and Applications: A Volume
in Honor of W.H. Fleming, W.M. McEneaney, G. Yin, and Q. Zhang (Eds.),
Birkhauser, Boston, 1998.

28. B. Krishnamachari, R. Bejar, and S. B. Wicker, “Phase Transition Phenomena in
Wireless Ad-Hoc Networks,” Symposium on Ad-Hoc Wireless Networks, Globecom
2001, 2001.

29. S.Chessa, P.Santi, “Crash Faults Identification in Wireless Sensor Networks,” to
appear in Computer Communications, Vol. 25, No. 14, pp. 1273–1282, Sept. 2002.

30. D. Estrin et al. Embedded, Everywhere: A Research Agenda for Networked Systems
of Embedded Computers, National Research Council Report, 2001.

31. W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC Protocol for
Wireless Sensor Networks,” INFOCOM 2002, New York, NY, USA, June, 2002.

32. N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost Outdoor Localization
For Very Small Devices,” IEEE Personal Communications Magazine, 7 (5), pp.
28–34, October, 2000

33. R. A. Maxion, “Toward diagnosis as an emergent behavior in a network ecosystem,”
in Emergent Computation, Ed. S. Forrest, MIT Press, 1991.

34. V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm
for Mobile Wireless Networks,” INFOCOM 1997.

35. N. Megiddo, Linear time algorithm for linear programming in R3 and related prob-
lems, SIAM J. Comput. 12(4) (1983) 759–776.

36. M.E. Dyer, Linear time algorithms for two and three-variable linear programs,
SIAM J. Comput. 13(1) (1984) 31–45.

	Introduction
	Fault-Feature Disambiguation
	Feature Cluster Formation
	Compact Feature Extraction
	Related Work
	Conclusions

