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Abstract 
 

A  number   of science    applications    employing 
collaborative   computations   require transport  methods 
that guarantee end-to-end performance at  the application 
level.  Throughputs  achieved   by  the  traditional  transport 
methods are limited to single default best-effort IP  paths, 
which  are  often insufficient for the application tasks.  In 
this  paper,  we  present  a   measurement-based  approach 
that utilizes application-level   daemons      at the 
collaborating  sites  to enhance the transport performance 
by utilizing  multiple quickest  paths. This method  is  based 
on a linear approximation of the effective bandwidth, and is 
computationally    efficient and  analytically tractable 
under   fairly   general   conditions.   We   implemented   and 
tested this method  at Internet nodes,  and the experimental 
results  show  significant   performance  improvements  over 
the default TCP. 

 
 
1.   Introduction 

 

Several   recent   large-scale   science   applications   are 
carried   out   by   collaborative   teams   of   geographically 
distributed    researchers,    for    example,     the Terascale 
Supernova    Initiative    [16].  These computations are 
typically distributed over a small number (typically 4-5) of 
sites over  the  Internet,  and they require effective  transport 
methods for exchanging datasets and  messages of varying 
sizes   on   demand.   Particularly  for   large   datasets,   these 
applications require sustained high throughputs over long- 
haul   connections.   Often,   the   throughputs   provided   by 
single  default  paths  are  not  sufficient  even  when  special 
transport  methods such as  parallel TCP or rate  controlled- 
UDP methods are used. One of the main limitations is that 
these  methods may achieve  high bandwidth  utilization on 
the  default  paths  but  are  not  able  to  exploit  the  unused 
bandwidth on other disparate paths; note that all streams of 
parallel   TCP   typically   share   the   same   default   IP   path. 
While    separate    dedicated networks  with sufficient 
bandwidth   will   meet   these   requirements,   the   small 

 
 
collaborative scope of these  applications  makes Internet- 
based  methods  more practical due to  the high cost of the 
former.  Thus,  our  objective  is  to  leverage  the  access  to 
hosts at the collaborating sites to augment the throughputs 
achieved  on  default  IP  paths  by  using  additional  paths 
amongst   the   sites.   Furthermore,   solutions   that   do   not 
require changes to the infrastructure, such as router/switch 
reconfigurations or kernel rebuilds, are always preferable 
since    these    deployments    are    typically    handled by 
application scientists      and not      systems/network 
administrators. In particular, networking solutions that can 
be deployed at the application level are highly desirable. 
While  there  are  performance  limitations  that  cannot  be 
overcome without infrastructure changes, we will illustrate 
that    several    significant and practical performance 
improvements  can be achieved by leveraging the multiple 
hosts  at  the  collaborating  sites  instead.  Our  goal  in  this 
sense   is   much   more   modest   than   developing   better 
transport methods for the Internet at large. 

One of the important challenges in the above class of 
applications is to minimize the message delays over wide- 
area    networks.    Over    the Internet, messages     are 
decomposed   into   data   packets   and   forwarded   by   the 
routers as  per  the best-effort IP paradigm.  Typically,  the 
packets are routed along paths with  minimum number of 
hops from source to destination. But  such  “static” paths 
are not necessarily the quickest ones because the dynamic 
nature of the “available” path bandwidth may necessitate 
choosing different paths for different messages at different 
times. In general,  the delays experienced  over the wide- 
area connections by data packets have been shown to have 
highly  complicated  statistical  distributions,  which  make 
the end-to-end performance  highly     unpredictable. 
Furthermore,   for   high   bandwidth   levels,   the   delays 
measured at the application level may include host-related 
components due  to factors such as kernel-application and 
kernel-NIC   (Network   Interface   Card)   packet   transfers, 
priorities   among   competing   application   processes,   and 
CPU load  levels. As a result, ensuring performance at the 
transport  or  lower  levels  of  IP  stack  does  not  always 



 

 

suffice to ensure the application-level performance, 
particularly at very high speeds. Since an accurate 
analytical prediction of delay distributions at the 
application level is not feasible over wide-area networks, 
measurement-based approaches have been developed 
albeit with an easier goal of identifying close-to-optimal 
quickest paths [9-11]. Additionally, by utilizing 
application-level daemons to realize alternative or multiple 
paths, these works illustrated that the throughputs of the 
default TCP connections could be improved. By 
strategically routing packets amongst the application-level 
daemons, these methods were able to utilize 
augmentations and/or alternatives to default IP paths. 
However, these works can only be considered as a proof-
of-principle of such approaches; in particular, the 
analytical methods in [10] are not readily deployable in 
practice, and the results in [11] are based on simulation 
only and are not analytically justified. 

In this paper, we describe the functional framework of 
a measurement-based transport method that utilizes 
application-level daemons. In this method, active 
measurements are used to estimate the effective bandwidth 
and minimum delay for each link using the linear 
regression technique that provides probabilistic 
performance guarantees under fairly general conditions. 
Based on the link estimates, multiple quickest paths are 
computed to achieve low end-to-end message delays. 
These paths are then realized using a source-based routing 
strategy supported by the application-level routing 
daemons. We also describe a systematic approach to 
optimizing the amount of measurements collected based 
on the statistical design [4,5]. The scope of our work is 
limited to the above mentioned collaborative environments 
with a small number of sites typically operated by 
application scientists, and is not intended for large-scale 
Internet deployment. 

The rest of the paper is organized as follows. We 
describe in Section 2 a general framework of network 
daemons that estimate the link properties and support 
message transfers. Section 3 discusses the estimation of 
effective bandwidth and minimum delay. Section 4 
presents the algorithms for computing multiple quickest 
paths. Section 5 is devoted to the minimization of 
measurements. The implementation details and 
experimental results are provided in Section 6. 

2. Network daemon of measurement-based 
transport method 

A framework of network transport daemons for 
providing end-to-end delay performance using 
measurements is illustrated in Fig. 1 based in part on 
earlier works [9-11]. A transport daemon consists of two 
main components, namely, measurement and transport 
modules. The measurement module has four functional 
units for measurement minimization, end-to-end delay 

measurement, regression estimation of link properties, and 
routing table construction. The transport module 
establishes a virtual link by propagating the source routing 
control information along a pre-computed routing path, 
and also provides data transfer service to user applications 
through API functions. Here, the virtual link refers to the 
communication channel established between two daemons, 
which in turn may consist of multiple routers/switches 
connected together by physical links. 

User Applications

APIs

Minimize Measurement
1. Select a subset of nodes
2. Select a subset of links out of each node
3. Optimize the measuring rate at each
selected node

Perform End-to-End Delay
Measurements

1. Activate transport daemons on selected
nodes while keeping others sleeping
2. Send test messages of various sizes at
optimized rates on selected node links
3. Measure end-to-end delays

Estimate Bandwidth and Minimum Delay
(Regression Estimator using Link

Measurements)
1. Slope = 1/Bandwidth
2. Intercept = Queuing delay + Propagation
delay + Access delay, etc.

Build Routing Table
1. Construct entire network topology of
transport daemon nodes
2. Compute the quickest path
3. Compute the multiple quickest paths
4. Construct/Update routing table

Source Node:
Read & Initiate SendingPath Info

Intermediate Node:
Receive & Forward

Destination Node:
Receive & Store Locally

Data
Stream

Data
Stream

Data
Stream

Messages for end-
to-end delay

measurements
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Fig. 1. Framework of measurement-based 
transport daemon. 

During message transmission, the daemons operate in 
one of three modes: sending, routing, and receiving. A 
sending node reads data from its local applications and 
prepares the source-routing header information. A 
receiving node forwards incoming data to its local 
applications and handles acknowledgements if necessary. 
An intermediate routing node acts as a virtual router at the 
application level, forwarding packets to the next-hop 
daemon node, which is extracted from the path 
information stored in the source-routing header. 

Compared to the earlier works in [9-11], our work 
refines various components, and additionally incorporates 
a measurement optimization component. To save the 
computational and networking resources, not every 
deployed transport daemon needs to collect measurements 
on all links connected to it. Instead, we strategically select 
a subset of them to collect link measurements at optimal 
rates that are determined statistically. The measurement 
results are broadcast to the entire network so that each 



 

 

transport daemon can build the network topology needed 
for source routing via multiple quickest paths. 

3. Bandwidth and delay measurement 
The link bandwidth is generally regarded as the fastest 

rate at which data can be sent along the link, while the 
available bandwidth is the spare bandwidth “left over” 
after subtracting the cross traffic level from the link 
bandwidth [2,3]. Due to the complex traffic distributions 
over wide-area networks and the non-linear nature of 
transport protocol dynamics (in particular TCP), the 
throughput achieved in actual message transfers is often 
different from both the link and available bandwidths, and 
typically contains a random component. We consider the 
effective path bandwidth to be the maximum throughput 
achieved on a path by a flow given the cross traffic load 
and the transport protocol. Thus, the notion of effective 
bandwidth is specific to the transport protocol employed 
by the transport daemon, and is related to both link and 
available bandwidths, perhaps in a complicated way based 
on the mechanism used by the protocol. We employ an 
active measurement technique to estimate the effective 
path bandwidth and minimum delay for each virtual link 
that connects two daemons. 

There are three main types of delays involved in the 
message transmission over virtual links, namely, link 
propagation delay pd  imposed at the physical link level, 
equipment-associated delay qd  incurred by the processing 
and buffering at hosts and routers/switches, and 
bandwidth-constrained delay BWd , which is determined 
by the currently available path bandwidth and message 
size. Due to the time-varying cross traffic, the delay qd  
often experiences a high level of randomness. Also, since 
the transport protocol reacts to the competing traffic on the 
links, BWd  may also exhibit randomness particularly over 
congested wide-area links. We have the following 
expression for the end-to-end delay or message delay in 
transmitting a message of size r on a path P with l links: 
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1

, rPdPdrPdrPd iq
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++= .     (1) 

Note that ( , )d P r  is a random variable for fixed P and 
r. If the message size r is smaller than the smallest 
Maximum Transmission Unit (MTU) on the path, and the 
network is lightly loaded, the bandwidth-constrained delay 
in Eq. (1) is negligible so that the sum of the queuing and 
propagation delays mostly account for the end-to-end 
delay1. We denote this lower bound of message delay by 

                                                 
1From the transport layer’s viewpoint, the minimum delay for a message 
smaller than the path MTU may also contain a small component 
introduced by the timeout a transport protocol uses to wait for more data 
from applications. This waiting period is usually dependent on the 
implementation of a transport protocol. 
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other hand, if the message size r is considerably large, the 
message delay is mainly contributed by the bandwidth-
constrained delay together with a somewhat smaller but 
random quantity qd . Let EBW(P) denote the effective 
bandwidth of path P. Then, the message delay ),( rPd  for 
transmitting a message of size r can be approximated by 
the following linear model: 

min
1( , ) ( )

( )
d P r r d P

EBW P
≈ + .            (2) 

In a circuit-switched connection such as a light path or 
a dedicated bandwidth channel, the maximum 
transmission rate is fixed and is determined by the 
minimum effective link bandwidth EBW(link) of P: 

( ) min{ ( )}
link P

EBW P EBW link
∈

= .           (3) 

In a packet-switching network wherein data packets 
are stored and forwarded at intermediate nodes, the 
bandwidth-constrained delay accumulates at every link. 
For r<MTU, the EBW is approximated in [11] as: 

1( )
1
( )link P

EBW P

EBW link∈

=
∑

.          (4) 

However, for large message sizes, the pipelining of 
data packets along component links actually makes the 
effective path bandwidth practically close to Eq. (3). 

We use an active measurement technique to estimate 
the effective bandwidth of a virtual link. The measurement 
module generates a set of test messages of various sizes, 
sends them over an outgoing link, and measures the 
message delays. Then, we apply a linear regression to fit 
the measured message size r and end-to-end delay d pairs. 
A first order approximation of the effective path 
bandwidth EBW and the minimum message delay mind  are 
then given by the slope and intercept of the regression line 

min/d r EBW d= + , respectively. The intercept of the 
regression line is sensitive to the delay measurements, and 
sometimes yields a negative value, in which case we 
simply replace the estimate of mind  with a UDP-based 
minimum message delay measurement. 
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Fig. 2. End-to-end delay between LSU and ORNL. 



 

 

The message delay measurements between two 
transport daemons deployed at Louisiana State University 
(LSU) and Oak Ridge National Laboratory (ORNL), and 
the corresponding linear regression estimate are shown in 
Fig. 2. The measurements are collected using TCP-based 
transport method. The message transmission is carried out 
three times for each message size and the average delay is 
calculated. From this figure, the effective path bandwidth 
EBW of this virtual link is estimated to be about 1.0 Mbps 
and the minimum end-to-end delay to be about 35 ms at 
the time of experiment. These estimates are generally 
consistent with the results obtained from other network 
utilities such as iperf. 

Given a set of test messages with sizes 
},...,2,1|{ kirR i == , and the corresponding message 

delays },...,2,1|{ kidD i == , the following formula from 
[11] gives the coefficient vector of a polynomial 
regression estimate in the least squares sense: 

)()( 1 yXXXa TT KK −= ,  (5) 
where, aK  is the coefficient vector of a polynomial 
regression estimate: 01
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Here we employ the special case n=2. Since the 
message delays have a random component, the 
performance of this method is unclear and has not been 
discussed in [11]. We now analyze the effectiveness of this 
method here under fairly general conditions. For a given 
message of size r, let the corresponding delay d be 
distributed according to the joint probability distribution 

,d rP . Recall that the underlying random components could 
be due to a number of factors such as delays at router or 
host buffers, packet retransmissions due to buffer 
overflows or other losses, and time variations in 
transferring the packets from application buffers to kernel 
buffers then to NIC buffers. In general such variations are 
not a major contributor to the delays, particularly for large 
messages sent at low rates but can become significant at 
high transport rates such as 1Gbps. Nevertheless, it is 
important to assess the effectiveness of the above method 
compared to the best case when one has a complete 
knowledge of the delay distributions. Due to the myriad 
and complexity of the factors that contribute to the 
randomness, it is impractical to estimate the distribution 

,d rP ; so here we assume that it is completely unknown. 

Given a linear estimator 1 0a r a+  for the delay d, its 
expected square error is given by: 

1 0

2
( , ) 1 0 ,( )a a d rI d a r a dP= − −∫ .  (7) 

The best estimator according to Eq. (7) is given by 
* * 1 01 0 ( , )1 0

( , )( , )
min

a a
a aa a

I I= . For this cost measure, however, the 

coefficients of the best estimator cannot be computed even 
in principle since it requires a complete knowledge of 

,d rP ; note that even if the distribution is completely 
known, the minimization problem may not be 
computationally tractable if the distribution is complex. 
Typically ,d rP  is an infinite dimensional quantity and 
cannot be accurately estimated using k delay 
measurements, and in fact it is easier to estimate the 
coefficient pair instead in the following sense. Consider 
that 1 1

1 0a r a+  is an estimator for the delay d computed 
using the above method. We will show that for any 
distribution ,d rP , we have: 

{ } 2
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which implies that the expected error of the computed 
estimate is within ε  of the optimal with probability 
approaching 1 as the sample size k increases. In fact, for 
any given values of k and ε , the right hand side of the 
above expression can be used to compute probability with 
which the error of the estimate is within ε  of the optimal. 
Informally speaking, Eq (8) guarantees that the error of the 
estimator is within ε  of the optimal with the probability 
that approaches 1 as sample size becomes large, and it is 
valid independent of the distribution. This is best type of 
result possible when the distribution ,d rP  is completely 
unknown. Similar results are shown in [10] using a more 
detailed expression for the delay, which results in 
estimators that are significantly more complicated than the 
above linear estimate. There are two important aspects of 
the above performance guarantee. On the positive side, it 
is entirely distribution-free in that it is valid independent of 

,d rP , although stronger guarantees may be possible for 
certain specific distributions if known. On the negative 
side, it only ensures the closeness of the estimator error to 
the best possible linear approximation, but it is quite 
possible that the latter itself is unsatisfactory if the 
underlying relationship is non-linear. However, the linear 
approximation model has been supported by the domain-
specific considerations as shown in the measurements of 
Fig. 2. We will now prove the above performance result. 
Consider the empirical error of the delay estimator 

1 0a r a+  given by: 
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Now note that the above delay estimator 1 1
1 0a r a+  

minimizes this empirical error, which is given by 
1 1

( , )1 01 2 ( , )1 0

1 1
( , )

min
a a

a a
a a

I I= . The estimator class 1 0{ }a r a+  forms a 

vector space of dimensionality 2. Then by using the results 
from Vapnik [14], we have the following: 
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where the last bound is due to the dimension 2 of the 
estimator class (details of this derivation are fairly standard 
and can be found, for example in [7]). 

4. Multiple quickest path computation 
The set of nodes selected to deploy transport daemons 

and virtual links connecting them form an overlay network 
[15]. A typical overlay network with estimated available 
path bandwidths and minimum end-to-end delays is shown 
in Fig. 3 for illustrative purposes. 
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Transport
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Fig. 3. Overlay network of transport daemons 
with bandwidths and end-to-end delays. 

An overlay network can be represented by a graph 
G=(V, E) with vertices V denoting the transport daemons 
and edges E denoting the virtual links. Such an overlay 
network graph can be seen as a combination of a weighted 
graph and a flow network: each edge is associated with 
both the minimum delay corresponding to the edge weight 
and the bandwidth corresponding to the flow capacity. The 
quickest path problem is to find a path in an overlay 
network graph G such that the end-to-end delay required to 
send a message of size r from a source node sv  to a 
destination node dv  is minimum. A path in an overlay 
network comprises of one or more virtual links, each of 
which may contain several physical links in the underlying 
network. Since the message delays over a routing path do 
not only depend on the minimum delays of component 
virtual links, but also on the associated available 
bandwidths, the Dijkstra’s single-source shortest path 
algorithm cannot be directly applied to compute the 
required paths. 

For a path iP  from sv  to iv , the message delay is 
given by min/ [ ] [ ]i ir EBW v d v+ , where ][ ivEBW  is the 
effective path bandwidth of iP  and ][min ivd  is the sum of 

the minimum virtual link delays along iP . We use the 
minimum of the bandwidths of virtual links along path iP  
to approximate the effective path bandwidth ][ ivEBW . 
Under these conditions, this problem is the classical 
quickest path problem, which is solved by Chen and Chin 
[17] using multiple invocations of Dijkstra’s shortest path 
algorithm on suitably constructed sub-graphs of G. We 
start with the original graph G and compute multiple 
quickest paths by repeatedly finding the quickest path on 
the residual graph 1G  using the 1( , )QP G r  algorithm of 
[17]. Every time a quickest path is found, its effective path 
bandwidth is subtracted from the bandwidths of its 
component virtual links in the residual graph before we 
compute the next quickest path. This approach is similar to 
[9,10] but differs in the utilization of the available 
bandwidth estimates described in Section 3. The multiple 
quickest path algorithm ( , , , )s dMQP G r v v  is illustrated in 
Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Algorithm ( , , , )s dMQP G r v v  for computing 
multiple quickest paths. 

As for the data transmission, the source node first 
retrieves multiple quickest paths from the routing table, 
divides the data into multiple parts appropriately, and then 
sends them to the corresponding next nodes concurrently. 
Suppose that m quickest paths have been found, denoted 

Algorithm ( , , , )s dMQP G r v v  
begin 
    Initialize the residual graph 1G  with G ; 
    Initialize the quickest path index i = 1; 
    while sv  and dv  are connected in 1G  do 

        Compute the quickest path iP  from sv  to dv  in 1G  using  

        Chen and Chin 1( , , , )s dQP G r v v  algorithm; 

        For each edge e in path iP , reduce the link bandwidth of edge 

        e in 1G  by EBW( iP ); 
        i = i + 1; 
end 
 
Algorithm 1( , , , )s dQP G r v v  
begin 
    Find a set of distinct bandwidths  
    1 1 2{ ( ) | } { , , , }qBW e e G b b b∈ = … , q: no of distinct BWs in 1G ; 

    for each bandwidth , 1, 2, ,jb j q= …  in the bandwidth set do 

        Construct a sub-graph of 1G , each link with bandwidths larger 

        than or equal to jb ; 

        Apply Dijkstra’s algorithm with key value min,/ j jr b d+  to  

        compute shortest path from sv  to dv ; 
    Compare the above q shortest paths and return the one with the 
minimum min,/ j jr b d+ ; 

end 



 

 

by mPPP ,,, 21 … . The partitioning of user data of size r 
into m parts, given by mrrr ,,, 21 … , requires that the 
transmission times along all routing paths are equal: 
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Particularly, when the number of quickest paths 
2=m , we use the following equation to partition the data 

of size r [9]: 









−=
+

−⋅⋅
+

+
⋅

=

12

21

1221

21

1
1 )()(

)]()([)()(
)()(

)(

rrr
PEBWPEBW

PdPdPEBWPEBW
PEBWPEBW

rPEBWr  (13) 

and the equations for the partition in the general case are 
described in [10]. 

A source daemon partitions the dataset based on the 
measurements results and sends the components via 
multiple quickest paths. As an overlay router, an 
intermediate transport daemon receives incoming data 
components, extracts routing path information, and 
forwards them to the next hop on the routing path. The 
destination node simply receives data components and 
stores them locally. If all data components have arrived, 
an acknowledgement is sent from the destination daemon 
to the source to notify the completion of transmission. 

5. Measurement rate minimization 
In high-speed networks, it is impractical to collect 

delay measurements for every message for the purpose of 
computing the effective bandwidth of every link. Even if 
all measurements are available, estimating EBW may 
consume computational resources on data that does not 
necessarily contribute useful information. In this section, 
we adapt the general method of [7] based on the statistical 
design of experiments [5] to the EBW estimation problem. 
We allocate suitable rates for various links and re-compute 
the estimates using the measurements collected so far. 

We now briefly describe the general formulation of 
the statistical design of experiments [5], to which the 
network measurement problem can be mapped in more 
than one ways. Consider the model of [4] given by: 

( ) ( )t t i t iY U x xε= + ,  (14) 
where tY  is the observation taken at time t corresponding 
to the variable ix  and tε  is the measurement error. In our 

case ix  corresponds to a path or virtual link and tY  is its 

EBW estimate. Let ( )1 2( ), ( ),..., ( ) T
sU u x u x u x=  denote 

estimators at all nodes. Let [ ] 0uE U U=  and 

( )( )0 0
T
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We consider the design problem given by 
( ) ( ){ }1 1, , , ,n np x p xξ = "  such that /i ip r N=  and 
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= ∑ . Let 1( )U ξ  be a predictor of U , and its quality 

is given by the matrix of expected squared residuals: 

( )( )1 1
,( ) ( ) ( )

T

uD E U U U Uεξ ξ ξ = − −  
. (16) 

The observational errors are assumed to have zero 
means and be uncorrelated such that: 

[ ]| ( ) 0u t iE xε ε = ,  (17) 

1 1
2

| ( ) ( )u t i it tt
E x xε ε ε σ δ  =  .         (18) 

Let ϕ  be a criterion of optimality. One of the simplest 
problems is to select a design *ξ  that minimizes 

( )Dϕ ξ   , where D is the residual matrix. Several 

methods for computing the optimal design *ξ  are 
presented in [5] for estimating the delays. In this 
formulation, we fixed the sites and found the optimal 
measuring rates at each of the chosen sites so that the total 
measurement rate is no more than N during the time 
window [0,T]. At fixed measurement rates, the solution 
here optimizes the allocation of measurement rates among 
the chosen sites, which yields more accurate estimation 
than equally distributing the measurement rates.  

6. Implementation and experimental results 
The transport daemons described in Section 2 are 

implemented in C++ on Linux operating system. TCP is 
used for both message delay measurements and user data 
transmissions. We construct a simple overlay network 
solely for performance evaluation purposes by deploying 
transport daemons at three sites, LSU, ORNL, GaTech 
(Georgia Institute of Technology). The topology of this 
test overlay network is shown in Fig. 5. Since there is 
always an IP path connecting any two hosts on the 
Internet, the overlay network is essentially a complete 
graph. 
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Fig. 5. Overlay network of transport daemons 

over Internet. 



 

 

We conducted two sets of transport experiments 
between ORNL and LSU: one using a single default TCP 
stream, and the other using two quickest paths computed 
by the transport daemons. The first quickest path is the 
direct IP connection to destination while the second one is 
via the intermediate transport daemon deployed at GaTech 
as a virtual router. A user-defined header containing both 
data and path information such as data type, data size, path 
delay, path bandwidth, and a list of sequential routing 
nodes, is propagated from the source node to the 
destination node to set up a data channel via the transport 
daemons. 

In each experiment, we transferred datasets of 
different sizes from ORNL to LSU through the transport 
daemons we deployed at these sites. The data is partitioned 
into two parts for two quickest paths according to Eq. (13) 
based on the data size as well as the effective bandwidth 
and minimum end-to-end delay measurements. The 
throughput performances of these experiments using 
different transport methods are tabulated in Table 1 for 
comparison. 

Table 1. Throughput performances of two 
transport methods from ORNL to LSU. 

Experiment 
index 

File size 
(Mbytes) 

Single TCP 
stream (Mbps) 

Two quickest paths 
(Mbps) 

1 1 1.63 3.31 
2 5 1.40 2.36 
3 10 1.38 2.68 
4 15 1.35 2.55 
5 20 1.16 2.41 
6 25 1.07 2.10 
7 30 0.84 1.80 
8 35 0.92 1.75 
9 40 1.44 3.79 
10 45 1.88 4.26 
11 50 1.01 2.03 
12 55 0.98 1.68 
13 60 0.66 1.13 
14 65 0.82 2.17 
15 70 1.11 2.06 
16 75 1.03 2.48 
17 80 0.79 1.37 
18 85 1.26 3.39 
19 90 1.21 2.83 
20 95 0.92 1.72 
21 100 1.16 2.74 

  
In consideration of recent interest in parallel-TCP 

method that employs a number of concurrent TCP streams, 
we briefly compared our method with it. The data packets 
of parallel-TCP travel along the same IP route to the 
destination and therefore share all communication 
resources. However, the data packets of the multi-path 
transport are delivered via different routes with the support 
of overlay routers and are intended to avoid resource 
contention between different paths, especially on the 
bottleneck link. The multi-path transport exhibits similar 
throughput performance to parallel-TCP when there is no 
congestion or the congestion only occurs at two ends. The 
advantage of using the multi-path transport over parallel-
TCP becomes evident when the second quickest path 
bypasses the congested zone experienced by the first 
quickest path. Fig. 6 shows such a case that the multi-path 
transport method outperforms parallel-TCP when an 
increasing number of parallel streams saturate the default 

IP route. The x-axis in Fig. 6 represents the number of 
parallel streams that run along the default route (or the first 
quickest path in the multi-path transport), and the y-axis is 
the corresponding throughput measured in Mbps. 
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Fig. 6 Comparison of throughput performance 
between multi-stream and multi-path transports: 

(a) upper plot: no congestion is bypassed; 
(b) lower plot: congestion is bypassed. 

7. Conclusion 
In this paper, we presented a measurement-based 

approach to minimize the message delays between the 
nodes of small collaborative applications distributed over 
the Internet using multiple quickest paths. These disparate 
overlay paths are realized by specially designed transport 
daemons at the collaborating sites that enable the source 
routing. We developed an active measurement method 
using a linear approximation technique to estimate the 
effective bandwidth and minimum end-to-end delay of a 
virtual link, and showed it to be computationally efficient 
and analytically tractable under fairly general conditions. 
We presented an algorithm to compute multiple quickest 
paths between the collaborating nodes using the link 
estimates. We also used a measurement minimization 
technique to reduce the computing and communication 
overhead incurred by the active measurement method. All 
these functional components are integrated into a single 
transport daemon implemented at the application level for 
easy deployment. The test results collected from the 
experiments conducted in Internet environments 
demonstrated its superior transport performance over the 
default TCP/IP method and also parallel TCP. This 
approach is primarily intended for collaborative 
applications that are distributed over a small number of 



 

 

sites connected over the Internet, and requires no 
infrastructure changes. It is, however, not intended for 
wide Internet deployment or large collaborative teams. 

There are a number of possible directions for future 
investigations. First, the current TCP-based method used 
in the measurement and transport modules could be 
replaced with other UDP-based transport protocols to 
further improve bandwidth utilization or to match the 
underlying connections such as dedicated channels. 
Second, the measurement optimization method may be 
extended to identify a subset of nodes to collect 
measurements while still assuring the desired performance. 
Also, the practical advantages of the measurement 
optimization method may be explored in further detail. 
Finally, our goal is to deploy these transport daemons in 
real applications and provide improved transport 
performance to collaborative computations over the 
Internet. 
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