
IEEE International Performance Computing and Communications Conference, April 7-9, 2005
Phoenix, AZ.

On Transport Daemons for Small Collaborative Applications over Wide-
Area Networks

Qishi Wu, Nageswara S. V. Rao
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 37831

{wuqn, raons}@ornl.gov

S. Sitharama Iyengar
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803
iyengar@bit.csc.lsu.edu

Abstract

A number of science applications employing
collaborative computations require transport methods
that guarantee end-to-end performance at the application
level. Throughputs achieved by the traditional transport
methods are limited to single default best-effort IP paths,
which are often insufficient for the application tasks. In
this paper, we present a measurement-based approach
that utilizes application-level daemons at the
collaborating sites to enhance the transport performance
by utilizing multiple quickest paths. This method is based
on a linear approximation of the effective bandwidth, and is
computationally efficient and analytically tractable
under fairly general conditions. We implemented and
tested this method at Internet nodes, and the experimental
results show significant performance improvements over
the default TCP.

1. Introduction

Several recent large-scale science applications are
carried out by collaborative teams of geographically
distributed researchers, for example, the Terascale
Supernova Initiative [16]. These computations are
typically distributed over a small number (typically 4-5) of
sites over the Internet, and they require effective transport
methods for exchanging datasets and messages of varying
sizes on demand. Particularly for large datasets, these
applications require sustained high throughputs over long-
haul connections. Often, the throughputs provided by
single default paths are not sufficient even when special
transport methods such as parallel TCP or rate controlled-
UDP methods are used. One of the main limitations is that
these methods may achieve high bandwidth utilization on
the default paths but are not able to exploit the unused
bandwidth on other disparate paths; note that all streams of
parallel TCP typically share the same default IP path.
While separate dedicated networks with sufficient
bandwidth will meet these requirements, the small

collaborative scope of these applications makes Internet-
based methods more practical due to the high cost of the
former. Thus, our objective is to leverage the access to
hosts at the collaborating sites to augment the throughputs
achieved on default IP paths by using additional paths
amongst the sites. Furthermore, solutions that do not
require changes to the infrastructure, such as router/switch
reconfigurations or kernel rebuilds, are always preferable
since these deployments are typically handled by
application scientists and not systems/network
administrators. In particular, networking solutions that can
be deployed at the application level are highly desirable.
While there are performance limitations that cannot be
overcome without infrastructure changes, we will illustrate
that several significant and practical performance
improvements can be achieved by leveraging the multiple
hosts at the collaborating sites instead. Our goal in this
sense is much more modest than developing better
transport methods for the Internet at large.

One of the important challenges in the above class of
applications is to minimize the message delays over wide-
area networks. Over the Internet, messages are
decomposed into data packets and forwarded by the
routers as per the best-effort IP paradigm. Typically, the
packets are routed along paths with minimum number of
hops from source to destination. But such “static” paths
are not necessarily the quickest ones because the dynamic
nature of the “available” path bandwidth may necessitate
choosing different paths for different messages at different
times. In general, the delays experienced over the wide-
area connections by data packets have been shown to have
highly complicated statistical distributions, which make
the end-to-end performance highly unpredictable.
Furthermore, for high bandwidth levels, the delays
measured at the application level may include host-related
components due to factors such as kernel-application and
kernel-NIC (Network Interface Card) packet transfers,
priorities among competing application processes, and
CPU load levels. As a result, ensuring performance at the
transport or lower levels of IP stack does not always

suffice to ensure the application-level performance,
particularly at very high speeds. Since an accurate
analytical prediction of delay distributions at the
application level is not feasible over wide-area networks,
measurement-based approaches have been developed
albeit with an easier goal of identifying close-to-optimal
quickest paths [9-11]. Additionally, by utilizing
application-level daemons to realize alternative or multiple
paths, these works illustrated that the throughputs of the
default TCP connections could be improved. By
strategically routing packets amongst the application-level
daemons, these methods were able to utilize
augmentations and/or alternatives to default IP paths.
However, these works can only be considered as a proof-
of-principle of such approaches; in particular, the
analytical methods in [10] are not readily deployable in
practice, and the results in [11] are based on simulation
only and are not analytically justified.

In this paper, we describe the functional framework of
a measurement-based transport method that utilizes
application-level daemons. In this method, active
measurements are used to estimate the effective bandwidth
and minimum delay for each link using the linear
regression technique that provides probabilistic
performance guarantees under fairly general conditions.
Based on the link estimates, multiple quickest paths are
computed to achieve low end-to-end message delays.
These paths are then realized using a source-based routing
strategy supported by the application-level routing
daemons. We also describe a systematic approach to
optimizing the amount of measurements collected based
on the statistical design [4,5]. The scope of our work is
limited to the above mentioned collaborative environments
with a small number of sites typically operated by
application scientists, and is not intended for large-scale
Internet deployment.

The rest of the paper is organized as follows. We
describe in Section 2 a general framework of network
daemons that estimate the link properties and support
message transfers. Section 3 discusses the estimation of
effective bandwidth and minimum delay. Section 4
presents the algorithms for computing multiple quickest
paths. Section 5 is devoted to the minimization of
measurements. The implementation details and
experimental results are provided in Section 6.

2. Network daemon of measurement-based
transport method

A framework of network transport daemons for
providing end-to-end delay performance using
measurements is illustrated in Fig. 1 based in part on
earlier works [9-11]. A transport daemon consists of two
main components, namely, measurement and transport
modules. The measurement module has four functional
units for measurement minimization, end-to-end delay

measurement, regression estimation of link properties, and
routing table construction. The transport module
establishes a virtual link by propagating the source routing
control information along a pre-computed routing path,
and also provides data transfer service to user applications
through API functions. Here, the virtual link refers to the
communication channel established between two daemons,
which in turn may consist of multiple routers/switches
connected together by physical links.

User Applications

APIs

Minimize Measurement
1. Select a subset of nodes
2. Select a subset of links out of each node
3. Optimize the measuring rate at each
selected node

Perform End-to-End Delay
Measurements

1. Activate transport daemons on selected
nodes while keeping others sleeping
2. Send test messages of various sizes at
optimized rates on selected node links
3. Measure end-to-end delays

Estimate Bandwidth and Minimum Delay
(Regression Estimator using Link

Measurements)
1. Slope = 1/Bandwidth
2. Intercept = Queuing delay + Propagation
delay + Access delay, etc.

Build Routing Table
1. Construct entire network topology of
transport daemon nodes
2. Compute the quickest path
3. Compute the multiple quickest paths
4. Construct/Update routing table

Source Node:
Read & Initiate SendingPath Info

Intermediate Node:
Receive & Forward

Destination Node:
Receive & Store Locally

Data
Stream

Data
Stream

Data
Stream

Messages for end-
to-end delay

measurements

Link regression
information
exchanged

between nodes

Tr
an

sf
er

 d
at

a
fro

m
/to

 h
os

t

Data size to be transmitted Outgoing data

Measurement Module Transport Module

Fig. 1. Framework of measurement-based
transport daemon.

During message transmission, the daemons operate in
one of three modes: sending, routing, and receiving. A
sending node reads data from its local applications and
prepares the source-routing header information. A
receiving node forwards incoming data to its local
applications and handles acknowledgements if necessary.
An intermediate routing node acts as a virtual router at the
application level, forwarding packets to the next-hop
daemon node, which is extracted from the path
information stored in the source-routing header.

Compared to the earlier works in [9-11], our work
refines various components, and additionally incorporates
a measurement optimization component. To save the
computational and networking resources, not every
deployed transport daemon needs to collect measurements
on all links connected to it. Instead, we strategically select
a subset of them to collect link measurements at optimal
rates that are determined statistically. The measurement
results are broadcast to the entire network so that each

transport daemon can build the network topology needed
for source routing via multiple quickest paths.

3. Bandwidth and delay measurement
The link bandwidth is generally regarded as the fastest

rate at which data can be sent along the link, while the
available bandwidth is the spare bandwidth “left over”
after subtracting the cross traffic level from the link
bandwidth [2,3]. Due to the complex traffic distributions
over wide-area networks and the non-linear nature of
transport protocol dynamics (in particular TCP), the
throughput achieved in actual message transfers is often
different from both the link and available bandwidths, and
typically contains a random component. We consider the
effective path bandwidth to be the maximum throughput
achieved on a path by a flow given the cross traffic load
and the transport protocol. Thus, the notion of effective
bandwidth is specific to the transport protocol employed
by the transport daemon, and is related to both link and
available bandwidths, perhaps in a complicated way based
on the mechanism used by the protocol. We employ an
active measurement technique to estimate the effective
path bandwidth and minimum delay for each virtual link
that connects two daemons.

There are three main types of delays involved in the
message transmission over virtual links, namely, link
propagation delay pd imposed at the physical link level,
equipment-associated delay qd incurred by the processing
and buffering at hosts and routers/switches, and
bandwidth-constrained delay BWd , which is determined
by the currently available path bandwidth and message
size. Due to the time-varying cross traffic, the delay qd
often experiences a high level of randomness. Also, since
the transport protocol reacts to the competing traffic on the
links, BWd may also exhibit randomness particularly over
congested wide-area links. We have the following
expression for the end-to-end delay or message delay in
transmitting a message of size r on a path P with l links:

)),()((),(),(,
1

, rPdPdrPdrPd iq

l

i
ipBW ∑

=
++= . (1)

Note that (,)d P r is a random variable for fixed P and
r. If the message size r is smaller than the smallest
Maximum Transmission Unit (MTU) on the path, and the
network is lightly loaded, the bandwidth-constrained delay
in Eq. (1) is negligible so that the sum of the queuing and
propagation delays mostly account for the end-to-end
delay1. We denote this lower bound of message delay by

1From the transport layer’s viewpoint, the minimum delay for a message
smaller than the path MTU may also contain a small component
introduced by the timeout a transport protocol uses to wait for more data
from applications. This waiting period is usually dependent on the
implementation of a transport protocol.

MTUrrPdPdPd iq

l

i
ip <+= ∑

=
)),,()(()(,

1
,min . On the

other hand, if the message size r is considerably large, the
message delay is mainly contributed by the bandwidth-
constrained delay together with a somewhat smaller but
random quantity qd . Let EBW(P) denote the effective
bandwidth of path P. Then, the message delay),(rPd for
transmitting a message of size r can be approximated by
the following linear model:

min
1(,) ()

()
d P r r d P

EBW P
≈ + . (2)

In a circuit-switched connection such as a light path or
a dedicated bandwidth channel, the maximum
transmission rate is fixed and is determined by the
minimum effective link bandwidth EBW(link) of P:

() min{ ()}
link P

EBW P EBW link
∈

= . (3)

In a packet-switching network wherein data packets
are stored and forwarded at intermediate nodes, the
bandwidth-constrained delay accumulates at every link.
For r<MTU, the EBW is approximated in [11] as:

1()
1
()link P

EBW P

EBW link∈

=
∑

. (4)

However, for large message sizes, the pipelining of
data packets along component links actually makes the
effective path bandwidth practically close to Eq. (3).

We use an active measurement technique to estimate
the effective bandwidth of a virtual link. The measurement
module generates a set of test messages of various sizes,
sends them over an outgoing link, and measures the
message delays. Then, we apply a linear regression to fit
the measured message size r and end-to-end delay d pairs.
A first order approximation of the effective path
bandwidth EBW and the minimum message delay mind are
then given by the slope and intercept of the regression line

min/d r EBW d= + , respectively. The intercept of the
regression line is sensitive to the delay measurements, and
sometimes yields a negative value, in which case we
simply replace the estimate of mind with a UDP-based
minimum message delay measurement.

0

2

4

6

8

0 100 200 300 400 500 600 700 800 900 1000
message size (Kbytes)

en
d-

to
-e

nd
 d

el
ay

 (s
)

Fig. 2. End-to-end delay between LSU and ORNL.

The message delay measurements between two
transport daemons deployed at Louisiana State University
(LSU) and Oak Ridge National Laboratory (ORNL), and
the corresponding linear regression estimate are shown in
Fig. 2. The measurements are collected using TCP-based
transport method. The message transmission is carried out
three times for each message size and the average delay is
calculated. From this figure, the effective path bandwidth
EBW of this virtual link is estimated to be about 1.0 Mbps
and the minimum end-to-end delay to be about 35 ms at
the time of experiment. These estimates are generally
consistent with the results obtained from other network
utilities such as iperf.

Given a set of test messages with sizes
},...,2,1|{ kirR i == , and the corresponding message

delays },...,2,1|{ kidD i == , the following formula from
[11] gives the coefficient vector of a polynomial
regression estimate in the least squares sense:

)()(1 yXXXa TT KK −= , (5)
where, aK is the coefficient vector of a polynomial
regression estimate: 01

2
2

1
1 ... arararad n

n
n

n ++++= −
−

−
− .

Column vector Dy =K , and matrix X is constructed as
follows:





















=

−−

−−

−−

1...

.......................................
1...

1...

21

2
2

2
1

2

1
2

1
1

1

k
n

k
n

k

nn

nn

rrr

rrr

rrr

X . (6)

Here we employ the special case n=2. Since the
message delays have a random component, the
performance of this method is unclear and has not been
discussed in [11]. We now analyze the effectiveness of this
method here under fairly general conditions. For a given
message of size r, let the corresponding delay d be
distributed according to the joint probability distribution

,d rP . Recall that the underlying random components could
be due to a number of factors such as delays at router or
host buffers, packet retransmissions due to buffer
overflows or other losses, and time variations in
transferring the packets from application buffers to kernel
buffers then to NIC buffers. In general such variations are
not a major contributor to the delays, particularly for large
messages sent at low rates but can become significant at
high transport rates such as 1Gbps. Nevertheless, it is
important to assess the effectiveness of the above method
compared to the best case when one has a complete
knowledge of the delay distributions. Due to the myriad
and complexity of the factors that contribute to the
randomness, it is impractical to estimate the distribution

,d rP ; so here we assume that it is completely unknown.

Given a linear estimator 1 0a r a+ for the delay d, its
expected square error is given by:

1 0

2
(,) 1 0 ,()a a d rI d a r a dP= − −∫ . (7)

The best estimator according to Eq. (7) is given by
* * 1 01 0 (,)1 0

(,)(,)
min

a a
a aa a

I I= . For this cost measure, however, the

coefficients of the best estimator cannot be computed even
in principle since it requires a complete knowledge of

,d rP ; note that even if the distribution is completely
known, the minimization problem may not be
computationally tractable if the distribution is complex.
Typically ,d rP is an infinite dimensional quantity and
cannot be accurately estimated using k delay
measurements, and in fact it is easier to estimate the
coefficient pair instead in the following sense. Consider
that 1 1

1 0a r a+ is an estimator for the delay d computed
using the above method. We will show that for any
distribution ,d rP , we have:

{ } 2

1 1 * *
1 2 1 2

2
/ 512

(,) (,)

64 641 8 ln k
a a a a

e eP I I e εε
ε ε

− − < > −  
 

, (8)

which implies that the expected error of the computed
estimate is within ε of the optimal with probability
approaching 1 as the sample size k increases. In fact, for
any given values of k and ε , the right hand side of the
above expression can be used to compute probability with
which the error of the estimate is within ε of the optimal.
Informally speaking, Eq (8) guarantees that the error of the
estimator is within ε of the optimal with the probability
that approaches 1 as sample size becomes large, and it is
valid independent of the distribution. This is best type of
result possible when the distribution ,d rP is completely
unknown. Similar results are shown in [10] using a more
detailed expression for the delay, which results in
estimators that are significantly more complicated than the
above linear estimate. There are two important aspects of
the above performance guarantee. On the positive side, it
is entirely distribution-free in that it is valid independent of

,d rP , although stronger guarantees may be possible for
certain specific distributions if known. On the negative
side, it only ensures the closeness of the estimator error to
the best possible linear approximation, but it is quite
possible that the latter itself is unsatisfactory if the
underlying relationship is non-linear. However, the linear
approximation model has been supported by the domain-
specific considerations as shown in the measurements of
Fig. 2. We will now prove the above performance result.
Consider the empirical error of the delay estimator

1 0a r a+ given by:

∑
=

−−=
k

i
iaa arad

k
I

1

2
01),(

1)(1
01 . (9)

Now note that the above delay estimator 1 1
1 0a r a+

minimizes this empirical error, which is given by
1 1

(,)1 01 2 (,)1 0

1 1
(,)

min
a a

a a
a a

I I= . The estimator class 1 0{ }a r a+ forms a

vector space of dimensionality 2. Then by using the results
from Vapnik [14], we have the following:

{ }1 1 * * (,) 1 01 01 2 1 2
1 0

2

1
(,)(,) (,)

(,)

/ 512

sup / 2

64 641 8 ln

a a a aa a a a
a a

k

P I I P I I

e e e ε

ε ε

ε ε
−

 − < > − < 
 

 > −  
 

 (10)

where the last bound is due to the dimension 2 of the
estimator class (details of this derivation are fairly standard
and can be found, for example in [7]).

4. Multiple quickest path computation
The set of nodes selected to deploy transport daemons

and virtual links connecting them form an overlay network
[15]. A typical overlay network with estimated available
path bandwidths and minimum end-to-end delays is shown
in Fig. 3 for illustrative purposes.

vs

v1

v3

v2

v4

vd

0.7Mbps, 80ms

0.35Mbps, 92ms

1.2Mbps, 20ms

1.02Mbps, 45ms

1.7Mbps, 102ms

2.5Mbps, 70ms

0.93Mbps, 37ms

1.49Mbps, 58ms 0.76Mbps, 33ms

Transport
daemon

BW, delay Virtual link

Fig. 3. Overlay network of transport daemons
with bandwidths and end-to-end delays.

An overlay network can be represented by a graph
G=(V, E) with vertices V denoting the transport daemons
and edges E denoting the virtual links. Such an overlay
network graph can be seen as a combination of a weighted
graph and a flow network: each edge is associated with
both the minimum delay corresponding to the edge weight
and the bandwidth corresponding to the flow capacity. The
quickest path problem is to find a path in an overlay
network graph G such that the end-to-end delay required to
send a message of size r from a source node sv to a
destination node dv is minimum. A path in an overlay
network comprises of one or more virtual links, each of
which may contain several physical links in the underlying
network. Since the message delays over a routing path do
not only depend on the minimum delays of component
virtual links, but also on the associated available
bandwidths, the Dijkstra’s single-source shortest path
algorithm cannot be directly applied to compute the
required paths.

For a path iP from sv to iv , the message delay is
given by min/ [] []i ir EBW v d v+ , where][ivEBW is the
effective path bandwidth of iP and][min ivd is the sum of

the minimum virtual link delays along iP . We use the
minimum of the bandwidths of virtual links along path iP
to approximate the effective path bandwidth][ivEBW .
Under these conditions, this problem is the classical
quickest path problem, which is solved by Chen and Chin
[17] using multiple invocations of Dijkstra’s shortest path
algorithm on suitably constructed sub-graphs of G. We
start with the original graph G and compute multiple
quickest paths by repeatedly finding the quickest path on
the residual graph 1G using the 1(,)QP G r algorithm of
[17]. Every time a quickest path is found, its effective path
bandwidth is subtracted from the bandwidths of its
component virtual links in the residual graph before we
compute the next quickest path. This approach is similar to
[9,10] but differs in the utilization of the available
bandwidth estimates described in Section 3. The multiple
quickest path algorithm (, , ,)s dMQP G r v v is illustrated in
Fig. 4.

Fig. 4. Algorithm (, , ,)s dMQP G r v v for computing
multiple quickest paths.

As for the data transmission, the source node first
retrieves multiple quickest paths from the routing table,
divides the data into multiple parts appropriately, and then
sends them to the corresponding next nodes concurrently.
Suppose that m quickest paths have been found, denoted

Algorithm (, , ,)s dMQP G r v v
begin
 Initialize the residual graph 1G with G ;
 Initialize the quickest path index i = 1;
 while sv and dv are connected in 1G do

 Compute the quickest path iP from sv to dv in 1G using

 Chen and Chin 1(, , ,)s dQP G r v v algorithm;

 For each edge e in path iP , reduce the link bandwidth of edge

 e in 1G by EBW(iP);
 i = i + 1;
end

Algorithm 1(, , ,)s dQP G r v v
begin
 Find a set of distinct bandwidths
 1 1 2{ () | } { , , , }qBW e e G b b b∈ = … , q: no of distinct BWs in 1G ;

 for each bandwidth , 1, 2, ,jb j q= … in the bandwidth set do

 Construct a sub-graph of 1G , each link with bandwidths larger

 than or equal to jb ;

 Apply Dijkstra’s algorithm with key value min,/ j jr b d+ to

 compute shortest path from sv to dv ;
 Compare the above q shortest paths and return the one with the
minimum min,/ j jr b d+ ;

end

by mPPP ,,, 21 … . The partitioning of user data of size r
into m parts, given by mrrr ,,, 21 … , requires that the
transmission times along all routing paths are equal:

















+=+

+=+

+=+

−
−

−)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

1
1

1

3
3

3
2

2

2

2
2

2
1

1

1

m
m

m
m

m

m Pd
PEBW

r
Pd

PEBW
r

Pd
PEBW

r
Pd

PEBW
r

Pd
PEBW

r
Pd

PEBW
r

""
 (11)

and

rr
m

i
i =∑

=1
 (12)

Particularly, when the number of quickest paths
2=m , we use the following equation to partition the data

of size r [9]:









−=
+

−⋅⋅
+

+
⋅

=

12

21

1221

21

1
1)()(

)]()([)()(
)()(

)(

rrr
PEBWPEBW

PdPdPEBWPEBW
PEBWPEBW

rPEBWr (13)

and the equations for the partition in the general case are
described in [10].

A source daemon partitions the dataset based on the
measurements results and sends the components via
multiple quickest paths. As an overlay router, an
intermediate transport daemon receives incoming data
components, extracts routing path information, and
forwards them to the next hop on the routing path. The
destination node simply receives data components and
stores them locally. If all data components have arrived,
an acknowledgement is sent from the destination daemon
to the source to notify the completion of transmission.

5. Measurement rate minimization
In high-speed networks, it is impractical to collect

delay measurements for every message for the purpose of
computing the effective bandwidth of every link. Even if
all measurements are available, estimating EBW may
consume computational resources on data that does not
necessarily contribute useful information. In this section,
we adapt the general method of [7] based on the statistical
design of experiments [5] to the EBW estimation problem.
We allocate suitable rates for various links and re-compute
the estimates using the measurements collected so far.

We now briefly describe the general formulation of
the statistical design of experiments [5], to which the
network measurement problem can be mapped in more
than one ways. Consider the model of [4] given by:

() ()t t i t iY U x xε= + , (14)
where tY is the observation taken at time t corresponding
to the variable ix and tε is the measurement error. In our

case ix corresponds to a path or virtual link and tY is its

EBW estimate. Let ()1 2(), (),..., () T
sU u x u x u x= denote

estimators at all nodes. Let [] 0uE U U= and

()()0 0
T

uVar U U U U K − − =  . (15)

We consider the design problem given by
() (){ }1 1, , , ,n np x p xξ = " such that /i ip r N= and

1

n

i
i

N r
=

= ∑ . Let 1()U ξ be a predictor of U , and its quality

is given by the matrix of expected squared residuals:

()()1 1
,() () ()

T

uD E U U U Uεξ ξ ξ = − −  
. (16)

The observational errors are assumed to have zero
means and be uncorrelated such that:

[]| () 0u t iE xε ε = , (17)

1 1
2

| () ()u t i it tt
E x xε ε ε σ δ  =  . (18)

Let ϕ be a criterion of optimality. One of the simplest
problems is to select a design *ξ that minimizes

()Dϕ ξ   , where D is the residual matrix. Several

methods for computing the optimal design *ξ are
presented in [5] for estimating the delays. In this
formulation, we fixed the sites and found the optimal
measuring rates at each of the chosen sites so that the total
measurement rate is no more than N during the time
window [0,T]. At fixed measurement rates, the solution
here optimizes the allocation of measurement rates among
the chosen sites, which yields more accurate estimation
than equally distributing the measurement rates.

6. Implementation and experimental results
The transport daemons described in Section 2 are

implemented in C++ on Linux operating system. TCP is
used for both message delay measurements and user data
transmissions. We construct a simple overlay network
solely for performance evaluation purposes by deploying
transport daemons at three sites, LSU, ORNL, GaTech
(Georgia Institute of Technology). The topology of this
test overlay network is shown in Fig. 5. Since there is
always an IP path connecting any two hosts on the
Internet, the overlay network is essentially a complete
graph.

LSU

ORNL

GaTechPa
th

 o
ne

Path two

Fig. 5. Overlay network of transport daemons

over Internet.

We conducted two sets of transport experiments
between ORNL and LSU: one using a single default TCP
stream, and the other using two quickest paths computed
by the transport daemons. The first quickest path is the
direct IP connection to destination while the second one is
via the intermediate transport daemon deployed at GaTech
as a virtual router. A user-defined header containing both
data and path information such as data type, data size, path
delay, path bandwidth, and a list of sequential routing
nodes, is propagated from the source node to the
destination node to set up a data channel via the transport
daemons.

In each experiment, we transferred datasets of
different sizes from ORNL to LSU through the transport
daemons we deployed at these sites. The data is partitioned
into two parts for two quickest paths according to Eq. (13)
based on the data size as well as the effective bandwidth
and minimum end-to-end delay measurements. The
throughput performances of these experiments using
different transport methods are tabulated in Table 1 for
comparison.

Table 1. Throughput performances of two
transport methods from ORNL to LSU.

Experiment
index

File size
(Mbytes)

Single TCP
stream (Mbps)

Two quickest paths
(Mbps)

1 1 1.63 3.31
2 5 1.40 2.36
3 10 1.38 2.68
4 15 1.35 2.55
5 20 1.16 2.41
6 25 1.07 2.10
7 30 0.84 1.80
8 35 0.92 1.75
9 40 1.44 3.79
10 45 1.88 4.26
11 50 1.01 2.03
12 55 0.98 1.68
13 60 0.66 1.13
14 65 0.82 2.17
15 70 1.11 2.06
16 75 1.03 2.48
17 80 0.79 1.37
18 85 1.26 3.39
19 90 1.21 2.83
20 95 0.92 1.72
21 100 1.16 2.74

In consideration of recent interest in parallel-TCP

method that employs a number of concurrent TCP streams,
we briefly compared our method with it. The data packets
of parallel-TCP travel along the same IP route to the
destination and therefore share all communication
resources. However, the data packets of the multi-path
transport are delivered via different routes with the support
of overlay routers and are intended to avoid resource
contention between different paths, especially on the
bottleneck link. The multi-path transport exhibits similar
throughput performance to parallel-TCP when there is no
congestion or the congestion only occurs at two ends. The
advantage of using the multi-path transport over parallel-
TCP becomes evident when the second quickest path
bypasses the congested zone experienced by the first
quickest path. Fig. 6 shows such a case that the multi-path
transport method outperforms parallel-TCP when an
increasing number of parallel streams saturate the default

IP route. The x-axis in Fig. 6 represents the number of
parallel streams that run along the default route (or the first
quickest path in the multi-path transport), and the y-axis is
the corresponding throughput measured in Mbps.

0

5

10

15

0 20 40 60
number of parallel streams

th
ro

ug
hp

ut
 in

 M
bp

s

multi_path multi_stream

0

5

10

15

0 20 40 60
number of parallel streams

th
ro

ug
hp

ut
 in

 M
bp

s

multi_path_bypass multi_stream_bypass

Fig. 6 Comparison of throughput performance
between multi-stream and multi-path transports:

(a) upper plot: no congestion is bypassed;
(b) lower plot: congestion is bypassed.

7. Conclusion
In this paper, we presented a measurement-based

approach to minimize the message delays between the
nodes of small collaborative applications distributed over
the Internet using multiple quickest paths. These disparate
overlay paths are realized by specially designed transport
daemons at the collaborating sites that enable the source
routing. We developed an active measurement method
using a linear approximation technique to estimate the
effective bandwidth and minimum end-to-end delay of a
virtual link, and showed it to be computationally efficient
and analytically tractable under fairly general conditions.
We presented an algorithm to compute multiple quickest
paths between the collaborating nodes using the link
estimates. We also used a measurement minimization
technique to reduce the computing and communication
overhead incurred by the active measurement method. All
these functional components are integrated into a single
transport daemon implemented at the application level for
easy deployment. The test results collected from the
experiments conducted in Internet environments
demonstrated its superior transport performance over the
default TCP/IP method and also parallel TCP. This
approach is primarily intended for collaborative
applications that are distributed over a small number of

sites connected over the Internet, and requires no
infrastructure changes. It is, however, not intended for
wide Internet deployment or large collaborative teams.

There are a number of possible directions for future
investigations. First, the current TCP-based method used
in the measurement and transport modules could be
replaced with other UDP-based transport protocols to
further improve bandwidth utilization or to match the
underlying connections such as dedicated channels.
Second, the measurement optimization method may be
extended to identify a subset of nodes to collect
measurements while still assuring the desired performance.
Also, the practical advantages of the measurement
optimization method may be explored in further detail.
Finally, our goal is to deploy these transport daemons in
real applications and provide improved transport
performance to collaborative computations over the
Internet.

References
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

algorithms. the MIT Press, 2000.
[2] J. Curtis, T. McGregor, Review of bandwidth estimation

techniques. New Zealand Computer Science Research
Students' Conference, University of Canterbury, New
Zealand, 19-20th April 2001.

[3] C. Dovrolis, P. Ramanathan, D. Moore, Packet dispersion
techniques and capacity estimation. Submitted to the
IEEE/ACM Transactions in Networking, 2002.

[4] V. V. Fedorov, D. Flanagan, T. Rowan, and S. G. Batsell,
Analysis and monitoring design for networks, Technical
Report, ORNL-TM-13620, Oak Ridge National
Laboratory, 1998.

[5] V. V. Fedorov and P. Hackl, Model-oreinted design of
experiments, Springer-Verlag, Berlin 1997.

[6] M. Jain, C. Dovrolis, End-to-end available bandwidth:
measurement methodology, dynamics, and relation with

TCP throughput. Proceedings of ACM SIGCOMM, August
2002.

[7] N. S.V. Rao, Vector space methods for sensor fusion
problems, Optical Engineering, vol 37, no. 2, pp. 499-504,
1988.

[8] N. S.V. Rao, On design of measurements for end-to-end
delay minimization in wide-area networks, the 9th
International Conference on Advanced Computing and
Communications, 2001.

[9] N. S.V. Rao, NetLets for end-to-end delay minimization in
distributed computing over Internet using two-Paths,
International Journal of High Performance Computing
Applications, 2002, vol. 16, no. 3, 2002.

[10] N. S.V. Rao, Overlay networks of in-situ instruments for
probabilistic guarantees on message delays in wide-area
networks, IEEE Journal on Selected Areas of
Communications, vol 22, no. 1, 2004.

[11] N. S.V. Rao, Y. C. Bang, S. Radhakrishnan, Q.Wu, S. S.
Iyengar, and H. Cho, NetLets: measurement-based routing
daemons for low end-to-end delays over networks,
Computer Communications, vol. 26, no. 8, pp. 834-844,
2003.

[12] N. S.V. Rao, S.G. Batsell, Algorithm for minimum end-to-
end delay paths, IEEE Communications Letters, 1999.

[13] N. S.V. Rao, W. C. Grimmell, Y.C. Bang, S.
Radhakrishnan, On algorithms for quickest paths under
different routing modes, to appear in IEICE Transations on
Communications, 2004.

[14] V. Vapnik, Nature of Statistical Learning, Springer-Verlag,
1996.

[15] Q. Wu, Control of Transport Dynamics in Overlay
Networks, Ph.D. Dissertation, Dept of Computer Science,
Louisiana State University, May 2003.

[16] Terascale Supernova Initiative, http://tsi.phys.ornl.gov
[17] Y. L. Chen and Y. H. Chin, The quickest path problem,

Computers and Operations Research, vol. 17, no. 2, pp.
153-161, 1990.

