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Multiresolution Data Integration Using Mobile Agents in
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Abstract—We describe the use of the mobile agent paradigm to design
an improved infrastructure for data integration in distributed sensor net-
work (DSN). We use the acronym MADSN to denote the proposed mobile-
agent-based DSN. Instead of moving data to processing elements for data
integration, as is typical of a client/server paradigm, MADSN moves the
processing code to the data locations. This saves network bandwidth and
provides an effective means for overcoming network latency, since large
data transfers are avoided. Our major contributions are the use of mobile
agent in DSN for distributed data integration and the evaluation of perfor-
mance between DSN and MADSN approaches. We develop an enhanced
multiresolution integration (MRI) algorithm where multiresolution anal-
ysis is applied at local node before accumulating the overlap function by
mobile agent. Compared to the MRI implementation in DSN, the enhanced
integration algorithm saves up to 90% of the data transfer time. We de-
velop objective functions to evaluation the performance between DSN and
MADSN approaches. For a given set of network parameters, we analyze
the conditions under which MADSN performs better than DSN and deter-
mine the condition under which MADSN reaches its optimum performance
level.

Index Terms—Distributed sensor network (DSN), mobile agent, multi-
resolution integration (MRI).

I. INTRODUCTION

Distributed sensor networks (DSNs) have recently emerged as an
important research area [1]–[5]. This development has been spurred by
advances in sensor technology and computer networking. Even though
it is economically feasible to implement DSNs, there are several tech-
nical challenges that must be overcome before DSNs can be used for
today’s increasingly complex information gathering tasks. These tasks,
such as battlefield surveillance, remote sensing, global awareness, etc.,
are usually time-critical, cover a large geographical area, and require
reliable delivery of accurate information for their completion.

Wessonet al. [5] were among the first to propose the design of
DSNs. Since then, several efficient DSN architectures have been
presented in the literature, including the deBruijn based network [1],
the flat tree network [2], [4], the multi-agent fusion network [3], and
the hierarchical and committee organization [5]. While improving the
performance of DSNs in different aspects, all these approaches use a
common network computing model: the client/server model, which
supports many distributed systems, such as remote procedure calling
(RPC) [6], common object request broker architecture (CORBA) [7],
[8], etc. In client/server model, the client (individual sensor) sends
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data to the server (processing element) where data processing tasks are
carried out. However, the client/server model is not appropriate for data
integration in DSNs. First, the data integration at the server requires
data transfer from local sensor nodes. When the size of data file is
large and the number of sensor node is big, the network traffic can be
extremely heavy, resulting in poor performance of the system. Second,
suppose connection-oriented service is used (e.g., ftp application uses
protocol), the client/server model requires the network connection to
be alive and healthy the entire time a data transfer is taking place. If the
connection goes down, both the client and the server have to wait until
the connection is recovered to finish the data transfer and do further
analysis, which will affect the system performance as well. Third,
the client/server-based DSN cannot respond to the load changing in
real time. When more sensors are deployed, it cannot perform load
balancing without changing the structure of the network.

Recent advances in sensor technology allow better, cheaper, and
smaller sensors to be used in both military and civilian applications,
especially when the environment is harsh, unreliable, or even ad-
versarial. A large number of sensors are usually deployed in order
to achieve quality through quantity. On the other hand, sensors
typically communicate through wireless networks where the network
bandwidth is much lower than for wired communication. These issues
bring new challenges to the design of DSNs. First, data volumes being
integrated are much larger. Second, the communication bandwidth
for wireless network is much lower. Third, the environment is more
unreliable, causing unreliable network connection, noisy background,
and increasing the likelihood of input data to be in faulty.

In this paper, we design an improved DSN architecture using mo-
bile agents—we refer to this as mobile-agent-based DSN (MADSN).
In traditional DSNs, data are collected by individual sensors, and then
transmitted to a higher-level processing element which performs sensor
fusion. During this process, large amounts of data are moved around
the network, as is the typical scenario in the client/server paradigm.
MADSN adopts a new computation paradigm: data stay at the local
site, while the integration process (code) is moved to the data sites. By
transmitting the computation engine instead of data, MADSN offers
the following important benefits.

• Network bandwidth requirement is reduced. Instead of passing
large amounts of raw data over the network through several round
trips, only the agent with small size is sent. This is especially im-
portant for real-time applications and where the communication
is through low-bandwidth wireless connections.

• Better network scalability. The performance of the network is not
affected when the number of sensor is increased. Agent architec-
tures that support adaptive network load balancing could do much
of a redesign automatically [9].

• Extensibility. Mobile agents can be programmed to carry task-
adaptive fusion processes which extends the capability of the
system.

• Stability. Mobile agents can be sent when the network connection
is alive and return results when the connection is re-established.
Therefore, the performance of MADSN is not much affected by
the reliability of the network.

Fig. 1 provides a comparison between DSN and MADSN from both
feature and architectural points of view.

The organization of this paper is as follows. Section II discusses the
definition of mobile agents and application examples that benefit from

1094–6977/01$10.00 © 2001 IEEE
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(a)

(b)

Fig. 1. Comparison between DSN and MADSN. (a) Feature. (b) Architecture.

using mobile agents. It also defines the two problems studied in the
design of MADSN. Section III first reviews the multiresolution data
integration algorithm implemented in traditional DSN, then describes
its implementation using mobile agents. A case study is provided. Sec-
tion IV compares the performance of DSN and MADSN. For a given set
of parameters, it derives the condition under which MADSN performs
better than DSN, also the condition under which MADSN reaches its
optimum performance level. Section V presents the conclusions.

II. BACKGROUND AND PROBLEM STATEMENT

This section reviews the basic DSN architecture and the key charac-
teristics of mobile agents. The problems studied in this paper are for-
mally defined at the end of the section.

A general DSN (Fig. 2) consists of a set ofsensor nodes,a set ofpro-
cessing elements(PEs), and acommunication networkinterconnecting
the various PE’s [1]. One or more sensors is associated with one PE.
One sensor can report to more than one PE. A PE and its associated
sensors are referred to as acluster. Data are transferred from sensors
to their associated PE(s) where the data integration takes place. PEs
can also coordinate with each other to achieve a better estimation of
the environment and report to higher level PEs. Notice that only the
lowest-level PEs are connected to the sensor nodes. Higher-level PEs
only connect to lower-level PEs, but not the sensor nodes. In the con-

Fig. 2. Architecture of a general DSN.

text of this paper, we assume that the sensor field is a two-dimensional
(2-D) surface and the sensor nodes are fixed.

A. Mobile Agents

Generally speaking, mobile agent is a special kind of software
which can execute autonomously. Once dispatched, it can migrate
from node to node performing data processing autonomously, while
software can typically only execute when being called upon by other
routines. Franklin and Graesser provided a formal definition of agent
in [10].
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Definition 1: An autonomous agentis a system situated within a
part of an environment that senses that environment and acts on it, over
time, in pursuit of its own agenda and so as to effect what it senses in
the future.

A good example to describe the difference between an agent and an
ordinary computer program is also given in [10]. A payroll program in
a real world environment is not an agent because its output would not
normally affect what it senses later. A payroll program also fails the
“over time” test of temporal continuity. It runs once and then goes into
a coma, waiting to be called again. A mobile agent is an agent with the
ability to migrate. Note that Java “applets” as used by web browsers are
not mobile agents because they do not satisfy the autonomous and mi-
gration criteria. Java applets only run on the local machine once being
requested and downloaded.

Lange listed seven good reasons to use mobile agents [11], including
reducing network load, overcoming network latency, robust and fault-
tolerant performance, etc. Although the role of mobile agents in dis-
tributed computing is still being debated mainly because of the security
concern [12], [13], several applications have shown clear evidence of
benefiting from the use of mobile agents. For example, mobile agents
are used in networked electronic trading [14] where they are dispatched
by the buyer to the various suppliers to negotiate orders and deliveries,
and then return to the buyer with their best deals for approval. Instead of
having the buyer contact the suppliers, the mobile agents behave like
representatives, interacting with other representatives on the buyer’s
behalf, and alert the buyer when something happens in the network that
is important to the buyer. Another successful example of using mobile
agents is distributed information retrieval and information dissemina-
tion [15]–[18]. Agents are dispatched to heterogeneous and geographi-
cally distributed databases to retrieve information and return the query
results to the end-users. Mobile agents are also used to realize network
awareness [19] and global awareness [20]. Network-robust applications
are of great interest in military situations today. Mobile agents are used
to be aware of and reactive to the continuously changing network con-
ditions to guarantee successful performance of the application tasks.

In this paper, we use mobile agent in distributed sensor networks to
perform multiresolution data integration. Problems to be studied are
defined in the following section.

B. Problem Statement

We define the mobile agent as an entity of the following five at-
tributes.

1) Identification.
2) Itinerary.
3) Data.
4) Method.
5) Interface.

These attributes are defined as follows.

• Identificationis in the format of 2-tuple(i; j), wherei indicates
the identification number of its dispatcher andj the serial number
assigned by its dispatcher. Each mobile agent can be uniquely
identified by its identification. We useMAi; j to indicate dif-
ferent mobile agents.

• Itinerary includes information about migration route assigned by
processing element before dispatched.

• Data is an agent’s private data buffer which mainly carries inte-
gration results.

• Methodis the implementation of algorithms. In MADSN, the key
method is the multiresolution data integration algorithm.

• Interfaceprovides interface functions for agent and processing
element to communicate with each other, and for processing ele-
ment to access agent’s private data buffer.

Fig. 3. Flowchart for agent creation, dispatch, and migration with single
processing element.

Let PEi represent a certain processing element that is in charge of
the surveillance of a certain area. LetfMAi; 1; � � � ; MAi;mg repre-
sent a group ofm mobile agents dispatched byPEi. Without loss of
generality, we assume that eachMAi; j (j = 1; � � � ; m) visits the
same number of sensor nodes, denoted byn. The problems studied in
this paper are formally defined as follows:

Data Integration Problem:At each sensor site, what kind of data
processing should be conducted and what integration results should be
carried with the mobile agent?

Optimum Performance Problem:How to balance the value ofm
andn, such that the performance of MADSN is superior to DSN?

Fig. 3 outlines the life cycle of a mobile agentMAi; j and its re-
lationship with its dispatcherPEi. Details are explained in following
sections.

III. M ULTIRESOLUTION INTEGRATION ALGORITHM

As mentioned in Section I, MADSN must respond to the challenges
of a larger amount of sensor nodes and higher probability of faulty
sensor readouts due to both environmental noise and physical damage.
More sensor nodes can increase the computation load, while more
faulty sensors can cause the integration results to be more unreliable.
Algorithms are therefore sought which should not be significantly
affected by network scaling, and yet provide better performance
and higher fault tolerance. This section first reviews the original
multiresolution integration (MRI) algorithm proposed for DSNs [21].
Enhancements to the basic MRI algorithm are then described in order
to take advantage of mobile agents to achieve better network scala-
bility and fault tolerance. The enhancements involve a multiresolution
analysis of individual sensor readout to generate a simple function
(the overlap function) at the sensor site, followed by an integration of
the simple functions at the processing element. Compared to the MRI
implementation in DSNs, where the integration of individual sensor
readout (carried out at the processing element) is followed by the
multiresolution analysis of the integrated simple function, the mobile
agent implementation of MRI algorithm reduces the data transfer time
by as much as 90%.

A. Original MRI Algorithm in DSNs

The original MRI algorithm was proposed by Prasad, Iyengar, and
Rao in 1994 [21]. The idea essentially consists of constructing a simple
function (the overlap function) from the outputs of the sensors in a
cluster and resolving this function at various successively finer scales
of resolution to isolate the region over which the correct sensors lie.
Each sensor in a cluster measures the same parameters. It is possible
that some of them are faulty. Hence it is desirable to make use of this
redundancy of the readings in the cluster to obtain a correct estimate
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Fig. 4. Overlap function for a set of seven sensors.

of the parameters being observed. Before detailed discussion, we first
review several relevant definitions.

Definition 2: An abstract sensoris defined as a sensor that reads a
physical parameter and gives out an abstract interval estimate which is
a bounded and connected subset of the real number of a certain dimen-
sion. We classify abstract sensors into two categories:correct sensors
andfaulty sensors.

Definition 3: A correct sensoris an abstract sensor whose interval
estimate contains the actual value of the parameter being measured.
Otherwise, it is afaulty sensor.

Definition 4: A faulty sensor istamely faulty if it overlaps with
a correct sensor, and iswildly faulty if it does not overlap with any
correct sensors.

Definition 5: Let sensorsS1; . . . ; SN feed into a processorP . Let
the abstract interval estimate ofSj be Ij (1 � j � N), the closed
interval[aj ; bj ] with end pointsaj andbj . The characteristic function
�j of thejth sensorSj is defined as follows:

�j(x) =
1; if aj � x � bj

0; if x > bj or x < aj .

Definition 6: Let 
(x) = N

j=1
�j(x) be the “overlap function”

of theN abstract sensors. For eachx 2 R (R is the set of the real
number of 1-dimension),
(x) gives the number of sensor intervals in
whichx lies; that is, the number of intervals overlapping atx.

Definition 7: Crest is a region in the overlap function with the
highest peak and the widest spread.

Fig. 4 illustrates the overlap function for a set of seven sensors cal-
culated from their characteristic functions. We can observe several key
characteristics from the profile which is common to all overlap func-
tions.

• Tamely faulty sensors cluster around correct sensors and create
high and wide (maximal) peaks in the profile of
(x).

• Wildly faulty sensors on the other hand do not overlap with cor-
rect sensors, and therefore contribute to smaller and narrower
peaks.

Therefore, the actual value of the parameter being measured lies
within regions over which the maximal peaks of
(x) occur with the
widest spread.

1) Multiresolution Analysis of the Overlap Func-
tion: Multiresolution analysis provides a hierarchical framework
for interpreting the overlap function. It is natural and more efficient
to first analyze details at a coarse resolution and then increase the
resolution for only the region of interest.

Given a sequence of increasing resolutions(2�c; 2�c+1; . . . ; 20),
wherec is a positive integer, we define the difference of functionf(x)
at resolution2�c+1 and resolution2�c as the details off(x) at reso-
lution 2�c+1. The algorithm is described as follows.

Fig. 5. Overlap function
(x) and its appearance at different resolutions. (The
shaded region indicates the region needs to be resolved over.)

Algorithm 1: Multiresolution analysis of the overlap function in DSN.
Data
(x), 2 , (�c � k � 0), assuming the coarsest resolution is
: 2 , the highest resolution is2 , [A; B] is the interval of the
: overlap function
(x)
Result the final crest[ ;  ] under resolution2 , where and
: are the lower and higher bounds of the crest respectively
t = �c;

While t <= k do
resolve
(x) at resolution2 by sampling it over the interval[A; B] at
pointsn2 , (bA=2 c � n � bB=2 c), to obtain
 (x);
select the highest peaks from
 (x);
choose from these peaks the one with the widest spread[A ; B ], which
is a crest;

(x) = 
 ([A ; B ]);
A = A ; B = B ;
t = t + 1;
end

 = A;  = B;

This procedure results in the isolation of those regions over which
the overlap function
(x) has a maximum value, corresponding to high
degree of overlapping of individual sensor readouts. The algorithm is
optimal, since the overall time required isO(n logn), which is the
time required to maintain
(x). This algorithm is also robust, satisfies
the Lipschitz condition [22], which ensures that minor changes in the
input intervals cause only minor changes in the integrated result. Fig. 5
illustrates the multiresolution analysis procedure.

B. MRI Implementation Using Mobile Agents

In a DSN, all readouts from the sensor nodes are sent to their corre-
sponding processing elements, where the overlap function at thefinest
resolution is first generated, and the multiresolution analysis procedure
is then applied to find the crest at thedesiredresolution.

In a MADSN, the mobile agents migrate among the sensor nodes
and collect readouts. Therefore,MAi; j always carries apartially in-
tegrated overlap function which is accumulated into a final version at
PEi after all the mobile agents return. During this process, if MADSN
applies the multiresolution analysis method in the same way as DSN
does, that is, lettingMAi; j carry the partially integrated overlap func-
tion in its finest resolution and then use multiresolution analysis (MRA)
to find the crest at desired resolution atPEi, the advantages of mobile
agents will be nullified because of heavy data migration.
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Fig. 6. Readouts from ten sensor nodes at timet.

TABLE I
TRACING THE CHANGE OF! GENERATED BYMA

TABLE II
TRACING THE CHANGE OF! GENERATED BYMA

We enhance the basic MRI algorithm for MADSNs and present
a more efficient implementation. The key concept underlying the
enhanced algorithm is that MRI is appliedbeforeaccumulating the
overlap function. A one-dimensional (1-D) array,!i; j , can serve as an
appropriate data structure to represent the partially-integrated overlap
function carried byMAi; j . If the size of!i; j is s2 at resolution20,
then at resolution2k (2�k times coarser than20), the size of!i; j is
s2 =2

�k, that is,2�k times less thans2 . The following algorithms
describe the procedure in detail.

LetPEi be the processing element of interest,m the number of mo-
bile agents dispatched,MAi; j the mobile agent dispatched byPEi

(1 � j � m), and[Ai; Bi] the interval that covers readouts from all
the sensors migrated byMAi; j . Algorithm 2 creates the 1-D array!i; j

based on the desired resolution. Algorithm 3 accumulates the sensor
readouts to!i; j and forms the partially integrated overlap function at
the desired resolution. Algorithm 4 integrates the partial overlap func-
tions from allMAi; j dispatched byPEi. The final integration is car-
ried out at the processing element. A case study is provided for better
illustration.

Fig. 7. Overlap function at its finest resolution and the version with 8
times coarser resolution obtained by modified MRI using mobile agent
implementation.

Fig. 8. Performance evaluation between DSN and MADSN:m vs.j.

Algorithm 2: Modified MRI algorithm for MADSN—beforeMA leaves
PE

Data integration interval[A ; B ], highest resolution2 , desired
resolution2 (�c � : k � 0)

Result array! to hold partially-integrated overlap function
s = (B � A + 1)=2 ;
initialize ! as a zero vector withs elements;

Algorithm 3: Modified MRI algorithm for MADSN—MA at sensor node
Data ! , 2 , readout interval from the abstract sensor[a; b] (a bounded
connected: set of real numbers)
Result!
:
find the smallest multiple of2 , d , such thatd � a;
find the largest multiple of2 , d , such thatd � b;

if d � d then
increase elements! [d =2 : d =2 ] by 1, (d =2 and
d =2 are indices of the array)
end
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(a) (b) (c)

Fig. 9. Execution time for DSN and MADSN with respect tom with p = 1000, v = 100 Kbps, andj = 0:25.

Algorithm 4: Modified MRI algorithm for MADSN—MA back toPE
Data ! , 2 , m (total number of agents dispatched byPE ), integration
interval: [A ; B ]

Result final crest[ ;  ] at resolution2
:
create a zero vector with (B � A + 1) elements;
j = 2;
while j � m do
accumulate! to ! ;
j = j + 1;
end
index = 0;
while index < (B � A + 1)=2 do
 [index : index + 2 � 1] = ! [index=2 ];
index = index + 2 ;
end
select the highest peak of . If there are more than one peak with the same
height, then all the peaks should be selected;
choose from these peaks the one with the widest spread[ ;  ], which is a
crest;

1) Case Study:In this section, we present a case study to illustrate
the MADSN-based MRI algorithm. SupposePEi has ten sensor nodes
(s1; . . . ; s10), migrated bym = 2 mobile agents withMAi; 1 cov-
erings1 to s5, andMAi; 2 coverings6 to s10. The readouts of sensors
at timet are listed in Fig. 6. The integration interval[Ai; Bi] is [0, 63].
The overlap function at its highest resolution then has 64 elements.

If the desired resolution is2�3 (or eight times coarser than the finest
resolution), according to Algorithm 2, an array!i; j with 8 = 64=8
elements will be created and initialized by each mobile agent. Table I
and II list the step-by-step execution result for each agent according to
Algorithm 3.

According to Algorithm 4,!i; 1 and!i; 2 are summed up to generate
[0, 2, 3, 5, 2, 1, 1, 1], which is then extended to i as

[0; . . . ; 0

8

; 2; . . . ; 2

8

; 3; . . . ; 3

8

; . . . ; 1; . . . ; 1

8

; 1; . . . ; 1

8

]

Compared to the results from DSN as shown in Fig. 7, they are exactly
the same. If we define the unit data transfer time as the time spent
for oneMAi; j migrating from one node to another, carrying a one-
element array, then MADSN spends8� 5+ 8� 2 = 56 units of time
(assumingMAi; 1 andMAi; 2 are executed in parallel when migrating
from node to node or fromPEi to node which costs8 � 5 units of
time, and in serial when returning toPEi which costs8 � 2 units of
time), while DSN spends64�10 = 640 units of time. Hence, MADSN
offers a save of up to 91.25% of data transfer time in this case. Here, we
assume the size of mobile agent is very small and thus can be ignored.

Fig. 10. Performance evaluation between DSN and MADSN:m vs.1=v .

Notice that in this case study, the performance gain is actually due to
the parallel fusion carried out by mobile agents.

IV. PERFORMANCECOMPARISONBETWEENDSN AND MADSN

The case study from Section III-B-1 shows that while obtaining
the same integration results, MADSN saves 91.25% of data transfer
time compared to DSN. However, this does not necessarily mean that
MADSN is always better than DSN since MADSN also introduces
overhead, such as the extra time spent for agent creation and dispatch.
On the other hand, DSN needs to transfer data files toPEi which also
causes overhead due to file accesses. In this section, we analyze the
relative performances of DSN and MADSN, and determine conditions
under which an MADSN is more efficient than a DSN. These con-
ditions are determined by a set of parameters, including the network
transfer ratevn, the data processing ratevd, the data file sizesf , the
mobile agent data buffer sizesa, overhead of agentoa, overhead of
file accessof , the number of sensor nodesp, and the balance between
the number of agentsm and the number of sensor nodesn that each
agent migrates (Notice thatp = m � n). Equations (1) and (2) are
two formulas estimating the execution time for MADSN (tmadsn) and
DSN (tdsn). In both equations, the three components calculate the
data transfer time, the overhead, and the data processing/integration
time respectively

tmadsn =
(m+ n)sa

vn
+moa +

(m+ n� 1)sa
vd

(1)

tdsn =
mnsf

vn
+mnof +

(mn� 1)sf
vd

: (2)
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(a) (b) (c)

Fig. 11. Execution time for DSN and MADSN with respect tom with j = 0:25, p = 1000, andv = 500 Kbps.

We usem as the variable. Assumek andj are positive scalars, and
sf = ksa, of = joa, v0n = 1=vn, v0d = 1=vd, in order to ensure that
tmadsn � tdsn, (3) must be satisfied, that is,m must be chosen within
a certain interval

�m2
� �m+  � 0 (3)

where

� = sav
0

n + oa + sav
0

d

� = sav
0

d � ksav
0

d + kpsav
0

n + kpsav
0

d + jpoa

 = psav
0

n + psav
0

d:

In the following sections, we evaluate the performance variation of
MADSN with respect to relationships betweenm andj,m andv0n, and
m andp. m is the number of nodes migrated by each mobile agent.j

is the overhead ratio between DSN and MADSN.v0n is the reciprocal
of network transfer rate.p is the total number of sensor nodes. These
parameters play a more important role than others.

A. Performance Evaluation:m vs.j

Suppose the size of agent is 1 KB, the overhead of agent is 0.5 s
(including agent creation time), the network transfer rate is 100 Kbps,
data processing rate is 100 Mbps, the number of sensor nodes is 1000,
and the data size is 10 KB. Fig. 8 is a profile of the maximum value of
m satisfying (3) when changing the overhead ratio between MADSN
and DSN.

We then fixj at 0.25, that is, the overhead of file access is one fourth
of the overhead of mobile agent, where the corresponding maximum
m satisfying (3) is 441. By changingm from 1 to 441, we generate the
performance curves for MADSN and DSN using the execution time:
tmadsn andtdsn.

Fig. 9(a) shows the variation oftdsn with respect to the number of
mobile agentsm. It is a straight line sincetdsn is independent of the
number of mobile agents and the total number of sensor nodes is a
constant. Fig. 9(b) illustrates the variation oftmadsn with respect tom.
The execution timetmadsn reaches its minimum whenm is 4. Note that
even though in the range ofm 2 [1; 441], tmadsn is always less than
tdsn, after a decreasing segment at the very beginning, and reaching a
minimum whenm = 4, tmadsn starts to increase. This is because of
the overhead from mobile agent: the more agents used, the heavier the
overhead, the longer execution time needed; on the other hand, the less
the agents, the lighter the overhead, but the longer the migration time.
In order to investigate this further, we define the relative difference rate
betweentdsn andtmadsn as(tdsn�tmadsn)=tdsn. Fig. 9(c) shows that
the relative difference rate is maximum whenm is chosen to be 4.

Fig. 12. Performance evaluation between DSN and MADSN:m versusp.

B. Performance Evaluation:m vs.v0n

In this set of experiments, we fixj at 0.25, but vary the network
transfer rate from 100 Kbps to 100 Mbps. Fig. 10 shows the variation
of m with respect tolog(1=vn).

We then fix1=vn at5�10�5, that is, the network transfer rate is 500
Kbps, where the corresponding maximumm satisfying (3) is 269. We
again generate the performance curves (Fig. 11) for MADSN and DSN
using the execution time,tmadsn andtdsn, with respect tom. Notice
that we generate three similar profiles as those in Fig. 9, except that the
optimalm is close to three instead of four since the network transfer
rate has been increased from 100 Kbps to 1 Mbps.

C. Performance Evaluation:m vs.p

In this set of experiments, we first keepvn at 500 Kbps, and change
p (the total number of sensor nodes) from 10 to 1000. The variation of
m with respect top is shown in Fig. 12.

We then fixp at 3000, where the corresponding maximumm satis-
fying (3) is 867. We generate the performance curves for MADSN and
DSN using the execution time,tmadsn and tdsn, with respect tom.
Again, we generate three similar profiles (Fig. 13) as those in Fig. 9,
except that the optimalm is close to four since the number of sensor
nodes has been increased three times.

Table III summarizes some typical parameter values and the corre-
sponding performance. From the last row of Table III, we can see that
based on the parameter value we choose, when MADSN reaches its op-
timum performance, it can save more than 98% of execution time than
DSN which mainly contributes from the less data transfer time spent.
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(a) (b) (c)

Fig. 13. Execution time for DSN and MADSN with respect tom with j = 0:25, v = 500 Kbps, andp = 3000.

TABLE III
SUMMARY OF PERFORMANCECOMPARISONBETWEENDSN AND MADSN

V. CONCLUSION

This paper describes the use of the mobile agent paradigm to design
an improved infrastructure for data integration in distributed sensor net-
work (DSN). We use the acronym MADSN to denote the proposed mo-
bile-agent-based DSN. Compared to the traditional client/server para-
digm used in DSN, where data are moved from the client to the pro-
cessing center, MADSN moves the processing code to the data loca-
tions. This saves network bandwidth and provides an effective means
for overcoming network latency, since large data transfers are avoided.
We studied two important problems related to MADSN design: the
distributed data integration problem, and the optimum performance
problem.

We show that by applying multiresolution analysis at each sensor
node instead of processing element, MADSN saves up to 90% of data
transfer time. However, MADSN is not always better than DSN, since
the involvement of mobile agents also adds overhead. We analyze the
conditions under which MADSN performs better than DSN and the
conditions under which MADSN achieves its optimum performance.
The conditions are determined by a set of parameters, and the most
important ones include the network transfer rate, the overhead ratio
between DSN and MADSN, and the total number of sensor nodes.
The evaluation shows that when MADSN reaches its optimum per-

formance, it can save more than 98% of execution time (mainly con-
tributed from the less data transfer time spent). We conclude that mo-
bile agent paradigm is a promising approach for distributed computing,
especially when the amount of data transfer is very huge which is the
typical case in distributed sensor networks.
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Fuzzy Temporal Rules for Mobile Robot Guidance in
Dynamic Environments

M. Mucientes, R. Iglesias, C. V. Regueiro, A. Bugarín, P. Cariñena,
and S. Barro

Abstract—This paper describes a fuzzy control system for the avoidance
of moving objects by a robot. The objects move with no type of restriction,
varying their velocity and making turns. Due to the complex nature of this
movement, it is necessary to realize temporal reasoning with the aim of
estimating the trend of the moving object. A new paradigm of fuzzy tem-
poral reasoning, which we call fuzzy temporal rules (FTRs), is used for this
control task. The control system has over 117 rules, which reflects the com-
plexity of the problem to be tackled. The controller has been subjected to
an exhaustive validation process and examples are shown of the results ob-
tained.

Index Terms—Avoidance of moving obstacles, fuzzy control, fuzzy tem-
poral rules (FTRs), robot guidance.

I. INTRODUCTION

One of the principal fields of research in robotics is the development
of techniques for the guidance of autonomous robots. There are many
complex problems in this field, mainly due to the nature of the real
world (environments which are difficult to model) and the great un-
certainty in these environments: the knowledge about an environment
is often incomplete, uncertain and approximated, the information usu-
ally supplied by the robot sensors is limited and not totally reliable and
the environment in which the robot is located usually has a dynamism
which cannot be predicted. For all these reasons, fuzzy logic is a useful
tool in the field of robotics [1], as has also been demonstrated in nu-
merous studies carried out for guidance in real environments [2], [3],
obstacle avoidance [4], route planning [5], etc.
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A number of approaches for tackling the problem of robot naviga-
tion in the presence of a moving obstacle have been presented. Some
studies deal with estimating the moving object’s future positions using
either an autoregressive model [6] or neural networks [7]. Reference
[8] describes a method based on attractive and repulsive forces. On the
other hand, in [9], an approach based on the concept of a collision cone
is presented. In [10], a system for the monitoring of trajectories to be
followed is described. The trajectories of the robot as well as of the
moving objects are made up of linear segments along which they move
at a constant speed. In [11] and [12], the avoidance of a moving ob-
stacle is solved in a geometrical manner. Finally, in [13] and [14] the
avoidance of moving obstacles is done using a fuzzy control system.

With respect to these solutions, a number of aspects should be
pointed out. First, the fact that in some approaches the moving objects
have restrictions in their movements. On the other hand, a robot usually
acts according to the position of the moving object in the immediate
past. In certain cases, this may lead to carrying out precipitated and
inadequate actions. For instance, given two identical situations at
present time, if one of them has been produced due to a hard brake
of the moving object and the other one due to an acceleration of this
object, they should be solved in a different way, although at present
time both situations may look exactly the same.

Our approach to the problem aims to solve this by taking into ac-
count the history of more or less recent values of determined variables,
which enable us to reflect the different scenarios through which the ob-
stacle has been passing and, thus, verify what its trend is. In this way,
one can deduce what the behavior of the robot should be, and take cor-
responding actions (modification of its speed and/or turning the robot)
in order to obtain a behavior pattern in tune with the recent situations.
This system is robust in its working, as it permits the avoidance of col-
lisions even when the moving object behaves in a totally unexpected
manner. The need to evaluate past situations and previous values of the
variables (which in many cases are fuzzy) and principally, to reason
them out, has led us to incorporate a temporal reasoning model which
we call fuzzy temporal rules (FTRs). The use of conventional fuzzy
rules would not permit the direct treatment of this knowledge, since
use of average values of variables, would not reflect sharp variations of
a variable in a cycle, or it would take a long time to detect a gentle and
constant change in a variable. Use of derivatives of variables is even
less valid, since it does not permit reasoning with values from the past.

This paper describes a knowledge-based control system for the
avoidance of a free-moving mobile object by a robot [16] in a limited
environment.1The moving objects move varying their speed or turning
with no restriction. The system operates in real time (sending the
robot three orders/s), it is robust, it enables the robot to operate with
imprecise knowledge and takes into account the physical limitations
of the environment in which the robot moves, obtaining satisfactory
responses for a large number of different situations analyzed by means
of the simulation software.

In the following section the problem is posed. In Section III the con-
trol system is described in detail, along with the presentation of the
temporal reasoning model that is used. Section IV analyzes the results
obtained for the simulations carried out and conclusions are given in
Section V.

II. POSING OF THEPROBLEM

As has already been mentioned, the movement of a robot in a dy-
namic environment is an extraordinarily complex problem. Besides
avoiding the collision with the moving object, the robot must move

1The robot used is a Nomad 200 by Nomadic Technologies [15].
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