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Abstract—Identification of a low-level point radiation
source amidst background radiation is achieved by a
network of radiation sensors using a two-step approach.
Based on measurements from three sensors, the geometric
difference triangulation method is used to estimate the
location and strength of the source. Then a sequential
probability ratio test based on current measurements and
estimated parameters is employed to finally decide: (i)
presence of a source with the estimated parameters, or (ii)
absence of the source, or (iii) insufficiency of measurements
to make a decision. This method achieves the specified
levels of false alarm and missed detection probabilities,
while ensuring close to minimal number of measurements
to reach a decision. This method minimizes the ghost-source
problem of the current estimation methods and achieves
lower false alarm rate compared to current detection
methods. This method is tested and demonstrated using:
(a) simulations, and (b) a test-bed that utilizes the scaling
properties of point radiation sources to emulate high
intensity ones that cannot be easily and safely handled
in experimentation.

Keywords and Phrases: Point radiation source, detec-
tion and localization, CUSUM, sequential probability
ratio test.

I. INTRODUCTION

There has been an increasing interest in the identi-
fication of low-level radiation sources as a part of the
defense strategy against dirty bomb scenarios. The abil-
ity to identify the signatures of such sources enables us
to detect them before they are set-off, in particular while
they are being transported or stored. In another scenario,
such capability enables us to detect radiation traces
and estimate their extent in “seemingly” conventional
explosions so that first responders can be forewarned and
suitably protected against such low-level yet very haz-
ardous radiation. Typically, in both these scenarios the
radiation levels could be low enough to appear as normal
variations of the background radiation. This problem
is particularly acute since the radiation measurements
follow the Poisson process whose variance is of the
same order as the radiation level itself. While long-term
averages of low-level sources do result in elevated levels

and eventually be detected, our focus is on identifying
them them quickly to ensure fast response. In general,
the area of detecting various radiation sources using
individual sensors has been well established both in
terms of devices and detection methods [14], [18], most
of which are dedicated to single or co-located sensor
systems. Recent advent of sensor network technologies,
however, opened up the potential for improved detection,
and also for the estimation of source parameters by
utilizing measurements from multiple, geographically
dispersed sensors, as reflected in several works (for
example, [7], [10], [15], [19], [21], [22]).

Compared to the identification of high intensity ra-
diation sources, detection and localization of low-level
sources is difficult, particularly when the intensity levels
are only marginally above background radiation levels.
There are two major considerations:
(a) Varied Background Radiation: The background

radiation depends both on local natural and man-
made sources and global sources such as cosmic
rays, and hence may vary significantly from one
deployment region to the other. If not carefully
interpreted, such measurements may lead one to
conclude “ghost” sources that potentially cause
unnecessary response and panic.

(b) Probabilistic Radiation Measurements: The ra-
diation sources give rise to inherently probabilistic
measurements. Typically the gamma radiation from
point sources follows the Poisson distribution to a
first order of approximation [14], [16].

The probabilistic nature combined with varied back-
ground radiation makes it hard to derive a priori thresh-
olds needed by typical detection methods. Furthermore,
the estimation of source location parameters is more
complex compared to the usual triangulation methods
developed for deterministic measurements. Nevertheless,
the estimation can be made more effective when a
network of sensors is employed, although many estima-
tion problem still remain to be solved. In this paper,



we address above Item (a) by in-situ estimation of
background radiation during an initial deployment phase
of the network. We address Item (b) using a combination
of geometric localization method and Sequential Proba-
bility Ratio Test (SPRT).

Probability ratio tests are typically employed in the de-
tection problems to derive thresholds to achieve specified
levels of false alarm rates and missed detection rates in
both centralized [23] and distributed detection systems
[25]. Such approach is described for the detection of
radiation sources using single sensors in [9], [12], [18]
(to name a few) and using copula methods in sensor
networks in [22]. The estimation of the localization and
strength of point radiation sources typically requires
at least three sensors and is solved using least square
methods in [11], [10], [17]. Typically, the parameter
estimation methods implicitly assume that the measure-
ments are due to the source and not the background,
often, by utilizing a preceding detection step. Detection
is not a major challenge for big sources that lead to large
measurements, but for low-level sources these methods
lead to “ghost” sources if the measurements correspond
only to background. On the other hand, the detection
can itself be made more accurate or robust if source
parameters source are known in advance.

In this paper, we show that detection and estimation
steps can reinforce each other using a two-step procedure
for low-level radiation sources. We present a method
for the identification, which subsumes detection and
parameter estimation, of a point radiation source using a
network of three sensors that provide radiation counts. In
the first step, we utilize a geometric localization method
to estimate the location of a real or ghost source from
which we estimate its strength. Then using the esti-
mated source parameters, we utilize SPRT to declare: (i)
presence of source along with its estimated parameters,
or (ii) absence of the source, or (iii) insufficiency of
the collected measurements to make a decision. The
localization method is derived by adapting the recently
developed geometric difference-triangulation method to
this case [20], and source strength is estimated using
a linear combination of the estimates from individual
sensors. The detection test is designed by estimating
the background radiation of the given deployment and
the source parameters to formulate SPRT based on
Poisson point source model. Ghost sources, if estimated
in the first step, will be rejected by SPRT since they
do not lead to statistically consistent measurements. On
the other hand, the estimated parameters enable us to
formulate a more specific SPRT compared to detecting
a general increase in radiation level; in particular, such
SPRT provides the detection decision with least expected
number of measurements. This approach is contract with

the detection followed by identification used in several
tracking application [6], [5].

Testing of the identification methods for radiation
sources poses pragmatic challenges since it is potentially
hazardous and too expensive to deploy the radiation
sources of all but minimal strengths. We exploit the
simple product form of the radiation model to develop
a scaled-down workbench that emulates larger deploy-
ments. In particular, we map the work bench with di-
mension of a few feet to emulate deployments of several
hundred meters, and demonstrate the effectiveness of our
method using real radiation sources.

This paper is organized as follows. In Section II,
we briefly describe the existing works on detection and
estimation of radiation sources with a particular empha-
sis on sensor networks. We formulate the identification
problem in Section III. We describe our solution to
source parameter estimation problem in Section IV and
the detection problem in Section V. We combine these
results to develop our identification method in Section
VI. We describe our simulation results in Sections IV
and VI, and the test-bed results in VII.

II. RELATED WORKS

The detection and estimation of radiation sources of
various kinds has been well-studied particularly using
single sensors [14], [4]. The detection of radiation
sources amidst background has been studied using SPRT
for different scenarios such as long-term and portal
monitoring [8], [12], [18]. These works do not directly
address the source localization.

Utilization of networks of sensors for detecting and
tracking radiation sources has been more recently ad-
dressed. For the detection of radioactive sources, linear
arrangement of detectors have been considered in [19],
[7], [15], and analysis of sensor network solutions was
carried out for source moving in a linear mode in
[21]. The detection of a point radiation source using
a sensor network is addressed in [22] wherein the
detection problem is decomposed into two parts such
that individual sensor distributions are combined using
a copula function that captures the correlations among
sensors.

Typically, a detection method is used to assert the
presence of a radiation source. Then a measurements
from multiple sensors are used to estimate the parameters
of the source. The problem of localization of a point
radiation source has been addressed by [10], [17], [3].
Recursive and moving horizon non-linear least squares
methods was proposed to track radioactive sources in
[11]. Overall, the estimation methods assume that mea-
surements corresponds to a source whereas the detection
methods are most effective when the source parameters
are accurately known.
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(a) Measurements from RFTrax sensors
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(b) Simulated Poisson variables with λ = 10.

Fig. 1. Background radiation counts show high variance.

III. PROBLEM FORMULATION

We consider the identification of a point radiation
source S with unknown strength AU expressed per
unit time called the source rate, and located at an
unknown location (xu, yu). This source gives rise to an
intensity of I(x, y) = AU/r2 at any point (x, y), where
r = d ((xu, yu), (x, y)) =

√

(xu − x)
2
+ (yu − y)

2.
Lets mi,1, mi,2, . . . , mi,n be the sequence of radiation
counts each measured per unit time at the sensor Mi at
known location (xi, yi), for i = 1, 2, 3. The radiation
count due to the source observed at Mi per unit time is
a Poisson random variable with parameter λ = I(xi, yi)
not accounting for the background radiation [14], [16].

Let B(x, y) denote the background radiation strength
expressed in unit time at (x, y) called the background
rate, and the radiation count at sensor located at (x, y)
is given by the Poisson random variable with parame-
ter B(x, y). The assumption of Poisson distribution of
background measurements may not always be accurate
since it could be a complex combination of various
sources; we utilize this assumption for our main deriva-
tion and later account for the deviations. On the other
hand, measurements of I(x, y), being from a single
point source, are more accurately characterized by the
Poisson distribution. In either case, the measurements
are statistically independent across the time units, and
exhibit significant variation as shown in Figure 1.

We consider a monitoring area contained within the

0 200 400 600 800 1000
0

200

400

600

800

1000  sensor

 sensor  sensor

 radiation source

X

Y

Fig. 2. Region monitored by three sensors that form acute triangle.
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Fig. 3. Errors of location estimation method for 50 sources.

acute triangle formed by M1, M2, M3 shown in Figure 2
to simplify the presentation of the localization method;
however, this method is shown to work in general case
[20], [27]. We are given three sequences of measure-
ments collected within the same time-window at Mi,
i = 1, 2, 3. The Detection Problem deals with inferring
the presence of a source, and the Estimation Problem
deals with estimating the location, that is localization,
and also the source strength. The estimates of (xu, yu)
and Au are denoted by (x̂u, ŷu) and Âu, respectively.

We characterize the solution by the false alarm prob-
ability, denoted by P1,0, corresponding to declaring a
presence of a source when none exist, and the missed
detection probability, denoted by P0,1, corresponding to
declaring the presence of only the background radiation
when a source is present in the monitoring region. We
also characterize the performance of the solution method
by detection time which is the size of time window or
number of measurements needed to declare the source
or just the background.

IV. SOURCE PARAMETER ESTIMATION

In this section, we first present a method to estimate
(x̂u, ŷu) using an extension of the geometric triangula-
tion method of [20], and then describe a linear fuser to
estimate the source strength AU .
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Fig. 4. Examples sources and their estimators joined by line segments.

A. Location Estimation

Let mi;1, mi;2, . . . , mi;ni
denote a sequence of ni

measurements collected by sensor Mi within a given
time window. Using measurement counts from the
sensors, we compute the mean of measurements at
each sensor given by m̄i = 1

ni

ni
∑

j=1

mj
i , j =

1, 2, 3. which is a measurement of AU/r2
i , ri =

√

(xu − xi)2 + (yu − yi)2. Thus, on the average we
have 1

2 ln
(

E[mi]
E[mk]

)

= ln ri − ln rk, which is the differ-
ence of distances from the source in ln-space. Let δik =
1
2 ln

(

m̄i

m̄k

)

= ln ri − ln rk. Let Lik denote the set of all
points (x, y) in plane such that ln(ri) − ln(rk) = δi,k.
The geometric search method performs a binary search
on L12 using δ1,3 as an objective function to locate a
point (x̂u, ŷu) such that |xu− x̂u| ≤ ε and |yu− ŷu| ≤ ε.
The implementation details of this search algorithm can
be found in [27].

We now establish the correctness of this binary search
method by establishing that on L12 the function δ13

varies monotonically so that binary search can be sup-
ported1. We show the monotonicity in ln-space for the
scenario of Figure 2, and general case can be along the
lines of [27]. Without loss of generality, we assume:
(a) S1 = (0.0), S2 = (x2, 0) and S3 = (x3, y3) such

that x2 > 0, x3 > 0 and y3 > 0. Also, x3 < x2.
(b) Source is S = (x, y) such that x > 0 and

y > 0, and S is closer to S1 than to S2 and S3;
otherwise we can rotate the triangle and re-label the
coordinates of sensors.

In general Si = (xi, yi), i = 1, 2, 3 and d(S, Si) =
√

(x − xi)2 + (y − yi)2 and

∆(Si, Sj) = ln[d(S, Si)] − ln[d(S, Sj)].

Then we have
∂d(S, Si)

∂x
=

(x − xi)

d(S, Si)

1The monotonicity proof of [27] is valid for δi,k = ri − rk that is
in actual distance space as opposed to ln-space here.

and
∂d(S, Si)

∂y
=

(y − yi)

d(S, Si)
.

By Item (b) we have d(S, S1) < d(S, S2) and
d(S, S1) < d(S, S3).

The directional derivative of ∆(S1, S3) on the locus
{(x, y)|∆(S1, S2) = δ12}, for any δ12, is given by

∇∆(S1,S2)∆(S1, S3)

=

[

∂∆(S1,S2)
∂x

∂∆(S1,S2)
∂y

]T

◦
1

√

(

∂∆(S1,S3)
∂x

)2

+
(

∂∆(S1,S3)
∂y

)2

[

∂∆(S1,S3)
∂x

∂∆(S1,S3)
∂y

]

=

[

x
[d(S,S1)]2

− x−x3

[d(S,S3)]2
y

[d(S,S1)]2
− y−y3

[d(S,S3)]2

]T

◦
1

K

[

x
[d(S,S1)]2

− x−x2

[d(S,S2)]2
y

[d(S,S1)]2
− y

[d(S,S2)
]2

]

=

(

x

[d(S, S1)]2
−

x − x3

[d(S, S3)]2

)

(

x

[d(S, S1)]2
−

x − x2

[d(S, S2)]2

)

+

(

y

[d(S, S1)]2
−

y

[d(S, S2)]2

)

(

y

[d(S, S1)]2
−

y − y3

[d(S, S3)]2

)

where K = 1
r

“

∂∆(S1,S3)
∂x

”2
+

“

∂∆(S1,S3)
∂y

”2
. Note that

x2 > 0, x3 > 0 and y3 > 0, and also 1
d(S,S1)

>
1

d(S,S3)
and 1

d(S,S1)
> 1

d(S,S2)
. Then we conclude that

∇∆(S1,S2)∆(S1, S3) > 0 for all x > 0 and y > 0.
We now present simulation results to illustrate the

performance of this method. Using 1000 randomly gen-
erated source locations with AU = 106 and B = 10, and
the errors in location estimation as a percent of distance
between the sensors is shown in Figure 3. The average
error is 20.07% for 1000 sources but the error has high
variance due to the Poisson measurements. Some source
locations and their estimators are shown in Figure 4,
where a line-segment joins the source with its estimator.

We executed this algorithm when there is no source,
that is, based only on background measurements with
B = 10, 100 at the sensors. As shown in Figure 5, the
ghost sources have been identified approximately near
the centroid of the triangle formed by the sensors. In
the next section we outline a method that utilizes the
estimated source parameters in SPRT to decide on the
presence of a real source, in particular rule out the ghost
sources.
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Fig. 5. Estimated ghost sources with expanded view on right.
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Fig. 6. Variation of source strength estimator for A = 5 × 105.

B. Source Strength Estimation

Using the source location estimate (x̂u, ŷu), we have
three source strength estimates Au given by Âi = m̄ir̂

2
i ,

for i = 1, 2, 3, where r̂i =
√

(xi − x̂u)2 + (yi − ŷu)2.
We combine these three estimators using coefficients that
are inversely proportional to their variance estimates.
Since for Poisson process both the mean and variance
are given by its parameter m̄i, more weight is given
to estimates with lower variance. Thus, we have the
following fused source strength estimator

ÂU =

3
∑

i=1

âiÂi,

where âi = 1/m̄i

3
P

k=1

1/m̄k

. The signal strength estimates for

1000 simulated sources with A = 5 × 105 and B = 10
are shown in Figure 6, and the average value of the fused
source term estimator is shown in Figure 7.

V. SOURCE DETECTION

In this section we describe general SPRT for detecting
the presence of source of intensity A against background
intensity B.

A. SPRT Test

For measurements mi;1, mi;2, . . . , mi;n collected by
sensor Mi within a given time window, by the definition
of Poisson process we have

P (mi;j) =
C−mi;j e−C

mi;j !
,
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Fig. 7. Average fused source strength estimator.

with parameter C = A + B if the source is present
and C = B if source is not present. Let HC , for C ∈
{A, A + B}, denote the hypothesis that measurements
correspond to the intensity level C. Now consider the
likelihood function

l(mi;1, mi;2, . . . , mi;n|HC) =
n
∏

j=1

C−mi;j e−C

mi;j !
,

wherein we utilized the statistical independence property
of the measurements. We now consider the SPRT given
by

LA,B;n =
l(mi;1, mi;2, . . . , mi;n|HA+B)

l(mi;1, mi;2, . . . , mi;n|HB)

Then, we utilize SPRT [13] as follows:
(i) If LA,B;n <

P0,1

1−P1,0
then declare HB ;

(ii) Else if LA,B;n >
1−P0,1

P1,0
then declare HA+B ;

(iii) Otherwise continue collecting additional measure-
ments.

The following are the important properties of SPRT [13]:
(a) The false alarm and missed detection rates of SPRT

are given by P1,0 and P0,1, respectively.
(b) Among all tests to decide between HA+B and HB

with with given P1,0 and P0,1, SPRT minimizes
E [n|HB ] and E [n|HA+B ] (see Theorem 2.4, [26]
for example).

This test can be is compactly expressed as
P0,1

1 − P1,0
≤ LA,B:n ≤

1 − P0,1

P1,0
,

which can be expressed in terms of the mean of mea-
surements:

ln (P0,1/(1 − P1,0)) + nA

ln
(

A+B
B

)

≤

n
∑

j=1

mi;j ≤

ln ((1 − P0,1)/P1,0) + nA

ln
(

A+B
B

) .



Notice that the bounds on the average measurement
m̄i =

n
∑

j=1

mi;j will increase as a linear functions of the

number of measurements.
This SPRT is derived under the assumption that mea-

surements corresponding to both background and source
radiation satisfy the the Poisson distribution. While point
radiation sources follow such distribution, the complex
nature of background radiation may not strictly satisfy
such condition primarily because it could be a complex
combination of multiple sources. In such case, the false
alarm rate of this method can be different and can
be approximated by the area under the distribution
PB(x) for x ≤

ln((1−P0,1)/P1,0)+nA

ln( A+B
B )

. This quantity can
be estimated by utilizing the empirical distribution of
background radiation at the sensor location. To address
this issue, we present a more general detection method in
the next section, whose optimal solution for the special
case of Poisson background radiation is given by the
above SPRT.

B. CUSUM Statistic

The CUSUM statistic CSt at sensor Mi based on the
measurements is given by [?]

CSn =

n
∑

j=1

(

mj
i − E [mi]

)

(1)

In absence of radiation source, CUSUM plot oscillates
around value zero. However, when a radiation source
S is present, the expected value of the sensor reading
will increase due to the additive nature of the radiation
counts, which leads to. to a positive slope in CUSUM
plot over long period of time. The slope of the plot
provide information about the strength of S, where
steeper slope implies stronger S. Consider a thresh-
old value τ such that a radiation source is detected
when the CUSUM statistic CSt exceeds the threshold.
The performance of this heuristic is presented in the
next subsection. The value of τ is chosen such that
Pr {CSt ≤ τ |t = 1, 2, . . .} ≥ 1 − α, where α denotes
the false alarm rate (or false positive rate). The value τ
can be obtained empirically by deploying the sensors to
the target locations and collect the radiation readings in
a non-disturbed environment over a long period of time.
This is known as the training period of the system. Lets
N be the number of samples collected in the period, the
cumulative probability distribution (CDF) of CUSUM
for the sensor exposed to background radiation readings
only F B

CS (x) can be estimated using the collected sam-
ples by

F̂ B
CS (x) =

|{CSt |CSt ≤ x, t = 1, 2, . . . , N }|

N
(2)

Using theorems 3.7 and 4.3 in [24], the goodness of
estimated false alarm rate α can be bounded by

Pr
{∣

∣

∣
F̂ B

CS (τ) − F B
CS (τ)

∣

∣

∣
α
}

≤ 8Ne1−α2N/8 (3)

Equation 3 can be used as a guide-line to judge the
length of training period required to reliably estimate the
value of τ .

With threshold τ selected, the expected miss detection
rate (or false negative rate) can be estimated as follow.
Before we analyze the miss detection rate, lets derive the
expected value of CUSUM statistic in a single radiation
source scenario.

Theorem 5.1: Consider a radiation source S of
strength A is introduced into the system at time k. The
sensor at r distance away from S will report radiation
readings of E [st] = E [B] + A/r2 beginning at time
t = k + 1. Prior to k + 1, the sensor reports readings of
E [st] = E [B]. The expected value of CUSUM statistic
of the given scenario is

E [CSt] =







0 1 ≤ t ≤ k
(t − k)

(

1 − 1+t−k
2w

)

A
r2 k + 1 ≤ t ≤ k + w

(

1
2 − 1

2w

)

Aw
r2 t > k + w

(4)

Proof: For interval 1 ≤ t ≤ k, E [st] = E [B]
because there is no detectable radiation source in the
system. Thus, following from Equation ??, we have

E [CSt] = E

[

t
∑

i=1

(

si −

∑i
j=max(i−w,1) sj

w

)]

=

t
∑

i=1

(

E [B] −
w · E [B]

w

)

= 0

(5)

This completes the proof for the first case where 1 ≤
t ≤ k. The equation for interval k + 1 ≤ t ≤ k + w
can be proved by induction on t. Lets the following be
the induction hypothesis: Equation 6 is true for interval
k + 1 ≤ t ≤ k + w.

E [CSt] = (t − k)
(

1 − 1+t−k
2w

)

A
r2 (6)

Assumes Equation 6 is true for t = k + m where 1 ≤
m < w. For the base case where t = k+1, the following
is a result of Equation ??.

E [CSk+1] = E [sk+1] −

(

w − 1

w
E [B] +

1

w
E [sk+1]

)

+ E

[

k
∑

i=1

(

si −

∑i
j=max(i−w,1) sj

w

)]

Using the result of Equation 5 and substituting
E [sk+1] = A/r2 + E [B], the above equation reduces
to

E [CSk+1] =
(

1 − 1
w

)

A
r2



Substituting t = k + 1 into Equation 6 yields identical
equation as the above. This proves the base case.

By induction on t, we proves t = k + m + 1 is true
in the following. As the source remains constant after
introduced to the system, E [sk+m+1] = E [B] + A/r2

From Equation ??, we have
E [CSk+m+1] = E [sk+m+1] + E [CSk+m]

−
(

w−m−1
w E [B] + m+1

w E [sk+m+1]
)

=
(

1 − m+1
w

)

A
r2 + E [CSk+m]

By assumption, substitute E [CSk+m] in the above equa-
tion with Equation 6 and thus yield the following.

E [CSk+m+1] =
(

1 − m+1
w

)

A
r2 + m

(

1 − 1+m
2w

)

A
r2

=
[

m + 1 − m+1
w − m(m+1)

2w

]

A
r2

= (m + 1)
(

1 − 2+m
2w

)

A
r2

(7)
Substituting t = k + m + 1 into Equation 6 yields iden-
tical equation as above, thus the induction hypothesis
holds.

Similar for interval t > k+w, the expected value of st

equals to gt as all samples in the moving average window
are sampled after the radiation source introduced into the
system. In other word, the system has adapted to the new
environment. For t = k+w+1, the following is a result
of Equation ??.

E [CSk+w+1] = E [CSk+w ] + E [sk+w+1]

−
(

w−1
w · A

r2 + 1
w E [sk+w+1]

)

= E [CSk+w ] =
(

1
2 − 1

2w

)

Aw
r2

As E [st − gt] = 0, we have E [CSt] = E [CSt−1] for
all t > k + w following Equation ??. Hence, we obtain
Equation 4.

Using Theorem 5.1, the detection time tD in terms of
number of samples can be obtain by the following.

tD = arg min
t

{E [CSt] > τ}

and the miss detection rate is as the following.

PD = Pr
{(

1
2 − 1

2w

)

Aw
r2 < τ |A, r, w, τ

}

VI. IDENTIFICATION METHOD

We now combine source parameter estimation and
SPRT methods of previous sections to develop an identi-
fication method. Initially the background radiation mea-
surements are collected by each sensor and averaged
to estimate the local background radiation level B̂i.
Then, the network is put into monitoring mode, and
the identification of the source is achieved using the
following procedure:
(i) Using the readings from three sensors, we estimate

the source location (xu, yu) and compute source
intensity estimate ÂU .
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(ii) We utilize SPRT LÂ/r̂i,B̂i;n
to conclude HÂ/r̂i+B̂i

versus HB̂i
at sensor i. We declare HÂ/r̂i+B̂i

and HB̂i
if and only if the respective threshold

conditions are satisfied at two or three sensors Mi,
i = 1, 2, 3. Otherwise measurement collection will
be continued.

Initially, the default hypothesis is HB̂i
, and is changed

only if HÂ/r̂i+B̂i
is declared by a majority of sensors.

This procedure has a minimum false alarm rate of the
two or three sensors that declared HÂ/r̂i+B̂i

to assert the
presence of a source. This method was tested using 1000
randomly generated sources with A = 105, 5× 105, 6×
105, 75, 10× 105. The average increase of the radiation
level over the background at these source strength is
below 10% for most of them as shown in Figure 8, but
over a short time-period the variation due to background
could be 100%. The detection rates for various source
terms are shown in Figure 9(a) for P0,1 = P1,0 = 0.1,
which is 100% for A = 106 or higher. Note that the
detection rate was higher than 95% for A = 4 × 105 or
higher even though the average increase in the radiation
level at the sensor locations is within the range [5, 10]
percent.

The detection times are shown Figure 9(b) which
shows a decreasing trend with increasing A - as expected
it is easier to detect sources with higher strengths. The
average detection time was less than 300 for A = 4×105

or higher even though the average increase in the ra-
diation level at the sensor locations is within [5 − 10]
percent. However, the actual detection times showed
significant variation as shown in Figure 10(a) for the
case A = 106.

When no source is present, the ghost source will
likely be located at the centroid of the triangle formed
by the sensors. But the corresponding high threshold
for HÂ/r̂i+Bi

in Step (ii) will not be met, and hence
the false alarm will be cleared. In our simulations with
10000 measurements with B = 10, 100, this method did
not generate a single false alarm. However, the average
detection time is 1309 and 159 for B = 10 and B = 100,
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respectively, but their the actual detection times have a
high variation as shown in Figure 10(b).

It is instructive to compare this method with two
exiting approaches:
(a) Compared to existing detection methods, this

method has a more focused goal of point source
rather than general increase in measurements. SPRT
in Step (ii) guarantees that it is uniformly most
powerful test at given false alarm rate in terms
of maximizing detection rate and minimizing the
detection time.

(b) Compared to the estimation methods, this ghost
source phenomenon is strictly controlled by the
false alarm probability. Furthermore, the in-situ
estimation of background radiation levels makes is
sensitive to variations in the background radiation
across the deployment region.

(c) Compared to existing methods that utilize a de-
tection method followed by estimation, the present
method achieves lower false alarm rate since SPRT
in Step (ii) does not have to account for all possible
source levels.

VII. EXPERIMENTAL RESULTS

A. Test-bed System Setup

We setup three radiation sensing test-beds at (i) Sen-
sorNet Laboratory at Oak Ridge National Laboratory
(ORNL), (ii) Purdue University, and (iii) University of
Illinois at Urbana-Champaign. All three test-beds have
similar configuration except the number of radiation
sensors available. Figure 12 shows the equipment layout
of the test-bed for the experiments. The components of
the test-bed include a collection of Rad-CZT radiation
sensors by RFTrax Inc. [1], a Sensornet node, and a
wireless router. The SensorNet node (see Figure 11) is a
hardware platform developed in ORNL intended to allow
a wide variety of sensors to be monitored and managed
over a nation-wide distributed network. The wireless
router allows communication among multiple Sensornet
nodes as well as a Ethernet switch for connecting the
sensors. The radiation sensors (RS485 device) connect to
the Sensornet node via iServer [2]. The iServer proxies
the RS485/232 interface (the radiation sensors in this
case) to Ethernet interface and thus provide access to the
sensors via TCP/IP. The Sensornet node runs standard
Linux operating system (Fedora Core) and Sensornet
node software developed by ORNL. The software is con-
figured to poll each sensor in 4 second interval and stores
the sensor readings in a MySQL database. In addition of
storing the sensor readings, we augmented the Sensornet
node to send the sensor data to a workstation in real-time
for on-line analysis.
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Fig. 11. The Sensornet node hardware.
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Fig. 12. Radiation Sensing Test-bed Equipment Setup.

Day 1
Sensor Mean Stdev #Samples
RFTrax1 7.80 7.12 9900
RFTrax2 7.46 7.01 9900
RFTrax3 8.08 7.46 9900

Day 2
Sensor Mean Stdev #Samples
RFTrax1 7.62 7.13 9900
RFTrax2 7.54 7.07 9900
RFTrax3 8.00 7.30 9900

TABLE I
STATISTIC OF BACKGROUND RADIATION IN SENSORNET LAB.

B. Background Radiation Profile

The three radiation sensors were activated to collect
radiation readings from on two different days. All total
9,900 samples were collected at 4 second intervals.
Figure 13 shows the distribution of background radiation
as reported. The statistic of the data collected is reported
in Table I.

We performed z-test for comparing the means of two
independent samples to compare the radiation counts
at three sensors of the test-bed. The test result shows
that the probability of two sensors producing the same
mean value is 0.63% at the maximum. In other words,
the mean values are different with 99.37% level of
significant even the sensors are located within 2 feet
apart to each other at maximum. We conclude that each
sensor requires separate background radiation profile.

C. Radiation Sensor Emulator

The background radiation distribution as shown in
Figure 13 can be used directly in simulation application.
However, we can achieve similar result by emulating
the radiation sensor. This approach provides us better
control on the radiation level in simulation. The RFTrax
Rad-CZT radiation sensors being used in the test-bed
performs filtering to the particle counts data collected.
In particular, the filter approximates the traditional expo-
nential filtering. We approximate the background radia-
tion particles arrive at the sensor by a Poisson variable
with λ = E [B]. Then, we emulate the sensor firmware
to perform particle counting and exponential filtering.
Figure 14 shows the distribution of actual background
radiation and approximation using the method described.
The approximation achieve chi-square statistic of χ2 =
179.95.

D. CUSUM Detection

We performed Monte Carlo simulation to determine
the false alarm rate as well as detection time of CUSUM.
We setup a simulation environment where a virtual
RFTrax radiation sensor is receiving P Poisson (7.80)
radiation particle every minute (background radiation
rate) for time 1 ≤ t ≤ k where k = 1296000sec or
15 days. For time t > k, the virtual RFTrax radiation
sensor is receiving P Poisson(λ) radiation particle every
minute for λ = 10, 20, 30, 40, 50. The CUSUM alarm
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Fig. 14. Actual background radiation reading collected on day 1
versus approximation by emulation

threshold is set to τ = 100, 200, . . . , 1000. The sensor
was configured to perform exponential filtering with
filter depth of 6 samples and was being polled every
4 seconds. The simulation is repeated for N = 2000
times and the average false alarm rate and detection time
is computed.

Because there is no radiation source presence for 1 ≤
t ≤ k, all alarm signaled represent false alarms. We
compute the false alarm rate PF as the following.

PF =
|{CSt |CSt ≥ τ, 1 ≤ i ≤ k }|

k
(8)

The sensor is picking up readings with the radiation
source presence at time t > k. The detection time is
defined as the interval since the radiation source is first
presence k until CSt first exceed the threshold τ after
the radiation source is presence. Mathematically, the
detection time td is defined as

td = arg min
t

{CSt ≥ τ |t > k } − k (9)

Figure 15 shows the simulation result of CUSUM
detection. We found that the average false alarm rate
achieved decreases sub-linearly with respect to the de-
tection threshold. In fact, it is very hard to reduce the
false alarm rate lower than 23%. Unlike the decreasing
trend of miss detection rate in Neyman-Pearson test, the
average detection time of CUSUM highly dependent on
the intensity of the radiation source and less dependent
on the false alarm rate.
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(b) Average detection time.

Fig. 15. Simulation result of CUSUM.

E. Localization Method

A Cs-137 radiation source of strength 0.95 µ Curies
was used on a table top with RFTrax RAD-CZT sensors
to collect measurements to estimate the locations of
the source using the difference triangulation method de-
scribed in Section IV-A. In Figure 16(a) we show exam-
ples with different source locations and their estimates,
and in Figure 16(b) we show repeated measurement
with same source and sensor locations. The performance
of this method is summarized in Table II wherein top
six rows correspond to different sensor and/or source
locations and the other rows correspond to repeated
measurements with same sensor and source locations.
The errors in the location estimates are plotted in Figure
17 with an average error of 4.87 inches. When no source
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Fig. 17. Plot of location estimation errors corresponding to Table II.

is present the localization method returns ghost sources
shown in two examples in Fig. 18(a).

In both cases, the SPRT declared that no radiation
source is present, and the number of measurements
needed for making this varied from 28 to 339 are the
false alarm rate is reduced from 40% to 2% as shown
in Fig. 18(b).
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Fig. 18. Ghost sources computed and rejected.
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Fig. 19. A case that missed the detection.

F. Identification Method

The identification method rejected the ghost sources
computed based on background reading shown in Figure
18 in both cases but the decision time was a function of
false alarm rate P1,0. When P1,0 = 0.001, detection time
was 339 but was reduced to 28 when false alarm rate is
reduced from 40% to 2% as shown in Fig. 18(b).

The source was present detection rate varied based
on τ the number of initial measurements used before
SPRT was applied for experiments. For the case in Table
II with P0,1 = 0.1, for τ ≤ 10 the false alarm rate
is 0.3, improved to 0.1 when τ = 25, and reached
0 when τ = 75. We now examine the configuration
that missed detection for τ = 25, corresponding to
row five of Table II, in detail by varying P0,1 using
four repeated measurement sets. The detection times are
shown in 19 which take lower values as we increased



TABLE II
EXPERIMENTS WITH REAL RADIATION SOURCE (0.95 µ CURIES)

Radiation Radiation Estimated Estimated
Sensor1 Sensor2 Sensor3 Source Source Source Source Error
(inches) (inches) (inches) (X-Coord) (Y-Coord) (X-Coord) (Y-Coord) (inches)

(0.000000,0.000000) (30.602287,0.000000) (13.675448,19.949490) 13.405861 4.386448 17.115189 2.381002 4.216743
(0.000000,0.000000) (30.602287,0.000000) (13.593755,18.952833) 13.405861 4.386448 15.135843 1.739075 3.162503
(0.000000,0.000000) (22.247314,3.171276) (0.580224,24.782320) 9.634589 16.085903 8.543552 10.045546 6.138101
(0.000000,0.000000) (21.416813,3.052891) (-0.777120,24.122522) 8.651486 14.781301 10.081639 11.542296 3.540690
(0.000000,0.000000) (20.600409,2.936517) (-2.147295,23.407032) 7.679018 13.477128 9.818337 10.890409 3.356755
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 10.743387 14.296099 3.132995
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 14.519333 10.625864 7.951770
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 14.225346 12.679550 6.102694
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 11.587751 11.531683 6.000380
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 13.601833 14.253601 4.518353
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 13.222704 13.971645 4.467906
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 12.517107 13.061058 4.848851
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 10.743387 14.296099 3.132995
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 13.006941 12.783309 5.324514
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 14.143291 14.415342 4.818738
(0.000000,0.000000) (30.833141,4.395156) (-2.780083,26.101171) 10.365036 17.406164 11.625648 11.797838 5.748257

P0,1 = 0.001, 0.01, 0.1, 0.2, 0.3. Among the four sepa-
rate measurement sets, only one set missed detecting the
source for P1,0 = 0.1, 0.2, 0.3.

VIII. CONCLUSIONS

We addressed the identification of a low-level point
radiation source amidst background radiations achieved
by a network of radiation counters using a two-step
approach. Based on measurements from three sensors,
the geometric difference triangulation method is used
to estimate the location and strength of the source.
Then a sequential probability ratio test based on current
measurements and estimated parameters is employed to
finally decide: (i) the presence of a source with the
estimated parameters, or (ii) the absence of the source,
or (iii) insufficiency of measurements to make a deci-
sion. This method achieves the specified levels of false
alarm and missed detection probabilities, while ensuring
close to minimal number of measurements to reach
a decision. This method minimizes the ghost-source
problem of the current estimation methods and achieves
lower false alarm rate compared to current detection
methods. This method is tested and demonstrated using:
(a) simulations, and (b) a test-bed that utilizes the scaling
properties of point radiation sources to emulate high
intensity ones that cannot be easily handled in practice.

There several potential directions for future research.
First the localization method can be extended to net-
works involving more than 3 perhaps large number of
sensors. More experimental validation would be useful
by using sources of multiple strengths. The estimation
of the source strength can be improved using a training
step wherein the fuser can be calibrated for example by
determining offset and a scale factor.
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