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Abstract—Wideband source localization using acoustic sensor
networks has been drawing a lot of research interest recently. The
maximum-likelihood is the predominant objective which leads to
a variety of source localization approaches. However, the robust
and efficient optimization algorithms are still being pursuit by
researchers since different aspects about the effectiveness of such
algorithms have to be addressed on different circumstances. In this
paper, we would like to combat the source localization based on the
realistic assumption where the sources are corrupted by the noises
with nonuniform variances. We focus on the two popular source
localization methods for solving this problem, namely the SC-ML
(stepwise-concentrated maximum-likelihood) and AC-ML (ap-
proximately-concentrated maximum likelihood) algorithms. We
explore the respective limitations of these two methods and design
a new expectation maximization (EM) algorithm. Furthermore,
we provide the Cramer–Rao lower bound (CRLB) for all these
three methods. Through Monte Carlo simulations, we demon-
strate that our proposed EM algorithm outperforms the SC-ML
and AC-ML methods in terms of the localization accuracy, and
the root-mean-square (RMS) error of our EM algorithm is closer
to the derived CRLB than both SC-ML and AC-ML methods.

Index Terms—Cramer–Rao lower bound (CRLB), expectation
maximization (EM) algorithm, source localization.

I. INTRODUCTION

S OURCE localization using low-cost and low-complexity
sensor arrays has been the active research area in the fields

of radar, sonar, geophysics, wireless systems, and acoustic
tracking for years [1], [2]. Recently, the wideband source
localization in the near field has drawn a lot of research interest
in the signal processing applications [3]–[6]. Extensive studies
for the wideband source localization can be found in [3] and
[4]. Among them, the maximum-likelihood (ML) approach in
[3] has been regarded as the optimal and robust scheme for co-
herent source signals. However, when the multiple sources are
present, the ML approach facilitates a nonlinear optimization
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problem, which is impractical especially for the energy-con-
strained sensor networks. In addition, many of the existing
ML estimators are based on the unrealistic spatially white
noise assumption across different sensors [5]–[7], where the
noise process at each sensor is assumed to be spatially uncor-
related-white-Gaussian with an identical variance. It is shown
that under this assumption, the ML estimates of the unknown
parameters (source waveforms/spectra and noise variance) can
be expressed as the respective functions of the source locations
and the number of independent parameters to be estimated is
greatly reduced. Thus, this assumption, although unrealistic,
substantially reduces the search space and usually leads to more
efficient localization algorithms. Hence, various wideband ML
source location estimators were proposed in [3].

However, this spatially white noise (SWN) assumption is un-
realistic in many applications. In several practical applications
[7], the sensors are sparsely placed so that the sensor noise
processes are spatially uncorrelated. However, the noise vari-
ance of each sensor can still be quite different due to either
the variation of the manufacturing process, the imperfection of
the sensor array calibration or the “unquiet” background. As a
result, the spatial noise covariance matrix (across the sensors)
can be modeled as a diagonal matrix where the diagonal ele-
ments in general are not identical. Note that this noise model
is definitely not a special case of the ARMA model as was ex-
plained in [8]. Furthermore, the source location estimators de-
rived from the SWN assumption would often not provide satis-
factory results in the real environment since the algorithms de-
rived from the SWN assumption blindly treat all sensors equally
in the estimated likelihood. Motivated by the arguments above,
in [7], two DOA calculation algorithms, namely stepwise-con-
centrated maximum-likelihood estimator (SC-ML) and approx-
imately-concentrated maximum likelihood algorithm (AC-ML),
have been recently proposed for the multiple wideband sources.
Although both SC-ML and AC-ML methods can be extended
for the source localization, the robustness issue still remain chal-
lenging in this research area. This is the primary reason why we
would like to dedicate this paper to addressing these two issues
by designing a new source localization scheme.

Felder and Weinstein proposed the generic expectation-max-
imization (EM) algorithm in [9] to estimate the parameters
associated with the superimposed signals and employed it
for the array signal processing in [10]. EM-based techniques
have also been applied for the multisensor signal enhancement
[11]–[13]. In addition, EM-based narrowband source localiza-
tion algorithms were proposed by [14] and [15]. In this paper,

1530-437X/$26.00 © 2010 IEEE



LU et al.: ROBUST EM ALGORITHM FOR MULTIPLE WIDEBAND ACOUSTIC SOURCE LOCALIZATION 537

we modify the EM algorithm to tackle with the general mul-
tiple source localization problem when the wideband sources
are present in the near field, which evolves from the simple
DOA estimation method for the narrowband sources in the
far field in [16]. If the wideband sources are considered, the
source signal signature or characteristics is unavailable at the
sensor array and the method in [14]–[16] cannot be applied
according to [17], [18]. Therefore, similar to [17], [18], we use
the discrete-Fourier transform (DFT) filter bank to decompose
the wideband signals collected by the sensors and then estimate
the complete set of parameters involving source waveforms (or
spectra) and source locations. Note that our previous works in
[17], [18] can only deal with the source localization problem
under the unrealistic SWN assumption. In this paper, we refor-
mulate the source localization problem for the realistic SNWN
assumption and design a new EM-based localization algorithm
for multiple wideband sources and it can be shown that our
proposed algorithm is much more computationally efficient
and robust than the existing SC-ML and AC-ML methods (we
have extended the original SC-ML and AC-ML methods in [7]
which could only solve the DOA problem in [8] to combat the
source localization problem).

The rest of this paper is organized as follows. The problem
formulation and the signal model are introduced in Section II.
The maximum-likelihood source-location estimators for both
SWN and SNWN models are introduced in Section III. The
novel EM algorithm for wideband source localization in the near
field under the SNWN assumption is derived and discussed in
Section IV. In addition, the Cramer–Rao lower bound (CRLB)
derivation will be manifested in Section V. Monte Carlo simula-
tion results for demonstrating our proposed new EM method and
illustrating our newly derived robustness analysis will be pro-
vided in Section VI. Conclusion will be drawn in Section VII.

Nomenclatures: The sets of all real and complex numbers are
denoted by and , respectively. A vector is denoted by and
a matrix is denoted by . The statistical expectation operation
is expressed as . Besides, , and

stand for the transpose, conjugate, Hermitian adjoint,
determinant, pseudo-inverse, and trace of the matrix , respec-
tively. In addition, stands for the Hadamard matrix product
operator, and stands for the Euclidean norm.

II. SIGNAL MODEL

According to [3], we consider a randomly distributed array of
sensors to collect the data from sources. Since the sources

are assumed to be in the near field, the signal gains are different
across the sensors. Thus, the signal collected by the th sensor
at a discrete time instant is given by

(1)

for ,
where is the gain of the th source signal arriving at
the th sensor; denotes the th source signal wave-
form; is the propagation delay (in data samples) incurred
from the th source to the th sensor; represents the

zero-mean independently identically distributed (i.i.d.) noise
process. Several crucial parameters are specified as follows:

: the propagation delay from the
th source to the th sensor:

: the th source location,
: the sensor location,

: the source signal propagation speed in meters/second,
: sampling frequency.

Taking the -point DFT of both sides in (1) and reserving a
half of them due to the symmetry property, we have

(2)

where

(3)

and is the th DFT point of . The
symbols for the right-hand side of (2) are clarified as follows:

(4)

consists of steering vectors, each given by

(5)

where

(6)

and . Note that

(7)

consists of individual source signal spectra, each given by
where is the th DFT point of
.

In reality, the source signal spectral vector is unknown
and deterministic. The noise spectral vector is
a complex-valued zero-mean spatially uncorrelated Gaussian
process with the following covariance matrix:

. . .
...

...
. . .

. . .

(8)

In general, , are not necessarily identical to
each other under the SNWN assumption. Hence, we need to deal
with the realistic source localization problem in the presence of
the nonuniform noise variances thereupon.

III. MAXIMUM-LIKELIHOOD FOR SOURCE LOCALIZATION

Prior to the establishment of the log-likelihood for the source
localization in the presence of the nonuniform noise variances
as stated by (8), we start from the conventional maximum-like-
lihood formulation for the identical noise variance across the
sensors.
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A. Conventional Maximum-Likelihood for Source Localization
in the Presence of Identical Noise Variance (SWN)

According to the signal model given by (2) together with the
noise variance constraint as , where is the noise
variance and is a identity matrix, the maximum-like-
lihood source localization formulation can be facilitated as [1],
[3], [7]. We highlight the relevant pivotal formulae here.

Let represent all the unknown parameters in (2)
necessary to be estimated, where

(9)

(10)

In addition, we denote the residual vector as

(11)

Thus, the likelihood function is given by

(12)

Taking the logarithm of (12) and neglecting all the constant
terms, we can derive the log-likelihood function as
follows:

(13)

and the corresponding maximum-likelihood estimates are

(14)

Thus, according to (14), we can write

(15)

and

(16)

B. Maximum-Likelihood for Source Localization in the
Presence of Nonuniform Noise Variances (SNWN)

In this subsection, we will introduce the nonuniform max-
imum-likelihood source localization formulation according to
the recent literature [7], [8] for a more realistic SNWN model.
Let be the parameters to be estimated for this case,

where is the vector consisting of
the diagonal elements in given by (8). The likelihood func-
tion of can be expressed as

(17)

Then, we have the following log-likelihood function
by taking the logarithm of (17) and neglecting

all the constant terms

(18)

where

(19)

(20)

(21)

Consequently, we may obtain the maximum-likelihood esti-
mates for as

(22)

Similar to the derivation in Section III-A, we can obtain the
estimate of the th element in as

(23)

where denotes the th element of the residual vector
and

(24)

Substituting (24), (23) into (18), we can convert the log-likeli-
hood function to a new version in terms of and and then
get the ML estimators for and given by

(25)

(26)
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Substituting (26) into (25), we can obtain the maximum-likeli-
hood estimates of as

(27)

where is defined by (24), and

(28)

IV. EM WIDEBAND SOURCE-LOCALIZATION ALGORITHM FOR

DISTINCT NOISE VARIANCES

A. Individual Likelihood Formulation for Source Localization

The EM algorithm is a well-known iterative algorithm for
the maximum-likelihood estimation. The complicated nonlinear
optimization problem in (22) and (27) can be simplified using
the EM procedure incorporated with the augmented (complete)
data corresponding to the individual incident source signals.
First, we denote the received signal spectrum as

from the th
source to the th sensor. Then, we define the augmented data as

, where
.

In addition, the relationship between the observed (incom-
plete) data and the unobserved latent (complete) data is
established as

(29)

According to (2), (5), (7), and (29), for a single source signal
(the th source), we have

(30)

where is the complex-valued zero-mean un-
correlated Gaussian noise in the sole presence of the th source.

According to (22), (27), and (30), we have

(31)

where and

is the vector consisting of

the diagonal elements in
. Let

(32)

and

(33)

According to (24), we denote the th element of the partic-
ular residual vector as when only source
is present, where

(34)

Similar to the derivation in Section III-B, (31) yields

(35)

where

(36)

Consequently, the maximum-likelihood estimates ,is
given by

(37)

According to (37), the source localization problem can be for-
mulated as the independent maximization subproblems with re-
spect to the individual likelihood functions.

B. New Expectation-Maximization (EM) Algorithm for Source
Localization

In contrast to other existing algorithms for the source local-
ization using the sensor signals in the presence of noises with
identical variance [1], [3], [17], [18], we present a new EM al-
gorithm here to solve the realistic source localization problem
for sensor signals in the presence of noises with different vari-
ances, which has been tackled by [7] recently. Nevertheless, our
proposed EM algorithm can be demonstrated to be more robust
than the method proposed by [7].

The details of our proposed EM algorithm are introduced as
follows (since our proposed algorithm can be decoupled across
different sources in each iteration, we only need to address the
steps for the source and it can be run for other sources as well
in parallel).

Initialization: Randomly initialize . Set the initial
values for the entries in and as

(38)

(39)

respectively.
Input (Given) Parameters at Iteration :

.
Output Variables at Iteration : .
Given the input parameters, the EM algorithm for the th it-

eration is stated next.
Expectation Step (E-Step): Calculate

(40)
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where converts the vector inside the associated braces
into a diagonal matrix containing the vector’s entries as the di-
agonal elements in the same order. Compute

(41)

and

(42)

Calculate

(43)

According to (43), (6), (5), (4), and based on
[7], determine and . Next, follow (20), (21), and
(26) to determine and ,
where is the th element of . Then, determine

(44)

Maximization Step (M-Step): Now, let

(45)

where is the variable coordinate and it has to be estimated
in this step. Then, follow (45), (6), and (5) to facilitate

, which involves the variable coordinate
. Then, according to , construct the following pa-

rameters:

(46)

which also involves the variable coordinate . According to
the result from (44), calculate

(47)

Then, construct

(48)

which involves the variable coordinate as well. Denote
the th element of as . Facilitate

(49)

which involves the variable coordinate . Carry
out

(50)

Besides, calculate . Let .
Enumerate the parameters given by (44), (6), (5), (32), (47),
(48), and (49) in this sequential order. Then, calculate

(51)

Thus, obtain

(52)

The above algorithm facilitates a recursive solution to multiple
wideband source localization.

V. ROBUSTNESS ANALYSIS FOR SOURCE

LOCALIZATION ALGORITHMS

CRLB is often used to characterize the robustness of the es-
timation methods. In this section, by extending the CRLB pre-
sented in [7] for the simple DOA estimation problem, we derive
the CRLB for the source localization problem to benchmark our
EM method and the SC-ML/AC-ML schemes as

(53)

where

(54)

(55)

(56)

(57)

Note that , and are given by (8), (5), (21),
and (4), (7). We can rewrite (55) as

(58)
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Fig. 1. The localization of two wideband (acoustic) sources in the near field
corrupted by the noises with nonuniform variances (SNR is 10 dB). The initial
location estimates and the ultimate location estimates resulted from the EM al-
gorithm (three iterations are taken) are also demonstrated.

where (59) and (60) are shown at the bottom of the page. Note
that and .

VI. SIMULATION

The comparison is made among our newly proposed
EM-based multiple wideband source localization scheme, the
SC-ML method and the AC-ML method here. The sampling
frequency is 100 kHz. The propagation speed is 345 meters/s.
The data is simulated for a circularly-shaped array of five
sensors using the recorded acoustic data acquired from [1]
as shown in Fig. 1 (squares denote the sensor locations and
circles denote the actual source locations). The sample size
is and the DFT size is . Throughout the
simulation, the minimization in our EM method characterized
by (50) is performed by Nelder–Mead direct search [3], while
the optimization steps in both SC-ML and AC-ML methods
are performed using the AM algorithm, which would lead to

better performance than Nelder–Mead direct search in these
two schemes [3], [7]. Moreover, the additive noises in all ex-
periments are randomly generated by a Gaussian process using
the computer and the signal-to-noise ratio (SNR) is defined
according to [7] and [8].

A. A Localization Layout Example

Then we investigate the performance of the EM algo-
rithm for estimating the two source locations in the presence
of sensor noises with nonuniform variances, and compare
with the SC-ML and AC-ML algorithms. The noise pro-
cesses across different sensors have the covariance matrix as

. One hundred Monte Carlo exper-
iments are carried out using our EM method with randomly
initialized source locations for a particular signal-to-noise
ratio ( dB). The localization result from a certain
experiment is depicted in Fig. 1, where the ultimate locations
are achieved after three iterations of EM algorithm. We de-
fault the number of EM iterations as three in all Monte Carlo
experiments.

B. Root-Mean-Square (RMS) Errors and Computational
Complexities for Source Localization

For each SNR value ranging from 0 to 40 dB, we fix the ini-
tial source location estimates as depicted in Fig. 1 and carry out
a hundred Monte Carlo experiments to obtain the average local-
ization accuracy in terms of the root-mean-square (RMS) error
in meters. The three corresponding RMS error curves to the
three aforementioned schemes are depicted in Fig. 2. Then, we
vary the initial location estimates around the circular areas with
a one-meter diameter with respect to the two initial source-lo-
cation estimates depicted in Fig. 1 and redo 100 Monte Carlo
experiments similar to the setup generating Fig. 2. The results
are depicted in Fig. 3. It is obvious that the accuracies of all
three methods degrade from Figs. 2–3 since the initial condi-
tions change. To further study this effect, we spread the initial
location estimates over a broader area as depicted in Fig. 4 and
redo 100 Monte Carlo experiments similar to Fig. 3. The average
RMS error curves are demonstrated in Fig. 5. Next, we would
like to investigate the performances of the three aforementioned

...
...

. . .
... (59)

(60)
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Fig. 2. Average RMS localization errors versus SNR for the sources corrupted
by the noises with nonuniform variances. The initial location estimates are
plotted in Fig. 1.

Fig. 3. Average RMS localization errors versus SNR for the sources corrupted
by the noises with nonuniform variances. The initial source location estimates
here are randomly chosen within the areas which are one meter around the initial
location estimates used in Fig. 1.

localization methods for the sensor noises with identical vari-
ances (SWN). Thus, we choose the sensor noise covariance ma-
trix as now. With this new noise co-
variance matrix, we redo the Monte Carlo experiments similar
to those generating Figs. 2, 3, and 5. The corresponding results
are plotted in Figs. 6–8, respectively. According to these two
sets of experiments, our proposed EM algorithm greatly out-
performs both SC-ML and AC-ML methods in all conditions.
In addition, the accuracies of all three methods degrade due to
the changes in the initial conditions for the SWN scenario as
well. Besides, the performances of all these three schemes for
the SWN case are not much different from those for the SNWN

Fig. 4. The 18 different initial source location estimates.

Fig. 5. Average RMS localization errors versus SNR for the sources corrupted
by the noises with nonuniform variances. The initial source location estimates
are plotted in Fig. 4.

case, since the SWN model is a particular case of the SNWN
model.

C. Robustness Analysis of Source Localization

We fix the initial source location estimates as those generating
Fig. 1 and carry out a hundred Monte Carlo experiments again.
The corresponding CRLBs for our EM method, the SC-ML (or
AC-ML) method are depicted in Fig. 9. We also depict the av-
erage RMS error curves in the same figure. According to Fig. 9,
we discover that the RMS errors resulted from our EM algorithm
are much closer to the CRLBs than the SC-ML and AC-ML
methods. Note that all the three source localization schemes in
comparison are quite sensitive to the initial condition. This still
remains as a very challenging problem for the wideband source
localization. Note that our experimental results illustrated in this
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Fig. 6. Average RMS localization errors versus SNR for the sources corrupted
by the noises with identical variances. The initial source location estimates are
plotted in Fig. 1.

Fig. 7. Average RMS localization errors versus SNR for the sources corrupted
by the noises with identical variances. The initial source location estimates are
randomly drawn from the areas which are one meter around the initial source
location estimates in Fig. 1.

paper can be generalized for other conditions. It means that if we
change the source locations and use all the three algorithms sub-
ject to the same initial conditions, the experimental results under
every different condition specified in Sections VI-A–VI-C will
be very similar to Figs. 2–9.

VII. CONCLUSION

In this paper, we propose a novel EM-based multiple wide-
band source localization scheme in the presence of nonuniform
noise variances. For our EM method and the conventional
SC-ML and AC-ML methods, the performance is rather sensi-
tive to the initial source location estimates. Our proposed EM
algorithm can lead to an outstanding localization performance

Fig. 8. Average RMS localization errors versus SNR for the sources corrupted
by the noises with identical variances. The initial source location estimates are
plotted in Fig. 4.

Fig. 9. Cramer–Rao lower bounds and simulated RMS localization errors (ac-
tual variances) versus different SNR values for the three schemes in comparison.

given a reasonably good initial condition. Moreover, our pro-
posed EM algorithm can always outperform the conventional
SC-ML and AC-ML methods when the initial source location
estimates are randomly chosen. The Monte Carlo simulation
results demonstrate the superiority of our proposed EM method.
To provide the robustness analysis for the source localization
algorithms, we present the CRLB associated with these three
schemes. The CRLB analysis demonstrates that our proposed
EM algorithm is much closer to the achievable minimum
variance than the two other methods in all SNR conditions. In
addition, according to our complexity analysis, the complexity
measure for our proposed algorithm is of which is
much less than those for the SC-ML and AC-ML methods [both
with a complexity measure of ].
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