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Strategic Path Reliability in Information
Networks1

Abstract

We consider a model of an information network where nodes can fail and transmission

of information is costly. The formation of paths in such networks is modeled as the Nash

equilibrium of an N player routing game. The task of obtaining this equilibrium is shown to

beNP -Hard. We derive analytical results to identify conditions under which the equilibrium

path is congruent to well known paths such as the most reliable or cheapest neighbor path.

The issue of characterizing o�-equilibrium paths in the game is addressed and di�erent

path utility metrics proposed. Our �rst metric measures the degree of individual node

suboptimality by evaluating paths in terms of the weakness of the worst-o� player. It is

shown that there exist information networks not containing paths of weakness less than
Vr
3
. Consequently, guaranteeing approximate equilibrium paths of bounded weakness is

computationally diÆcult. We next propose a team game with players having a common

payo� function whose equilibrium outcome can be computed in polynomial time. Finally, a

fair team game with bounded payo�-di�erence is proposed whose equilibrium is also easily

computable.

1 Introduction

In recent years there been a growing body of literature that models the behavior of economic

agents by means of a network. A network is a graph whose vertices represent the agents

and the edges show the links between the di�erent agents. The graph which now completely

de�nes the interaction structure between the agents is used to model di�erent economic

phenomena, ranging from buying and selling goods, to international trade and information


ows. In this paper we model an information network where the Nash equilibrium de�nes

the optimal information 
ow path.2

The model of information 
ow networks was introduced by Bala and Goyal (2000a). It

models the situations where players derive bene�ts from having more information. Each

1We would like to thank Hans Haller for helpful comments. This work was supported in part by DARPA
and AFRL under grant number F30602-01-1-0551.

2Network models of economic pehnomena like collaborative oligopolies (Goyal and Joshi (2002)) and
buying and selling (Kranton and Minehart (2001)) use the notion of pairwise stability introduced by Jackson
and Wolisnky (1996) as the equilibrium concept.
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player can access more information through a process of costly link formation with other

players. In a companion paper Bala and Goyal (2000b) allow for links between players to

fail with uniform probabilities, thereby converting the problem into one of strategic relia-

bility. Haller and Sarangi (2001) generalize the model by allowing for di�erent link failure

probabilities and introduce several variations of the initial model to address potential short-

comings. The focus of these models is on the structure of the network formed and the degree

of overlap between the set of equilibrium networks and eÆcient networks.

In the current paper we introduce a game-theoretic model of strategic reliability to study

the formation of equilibrium paths.3 A source node with valuable information must convey

this bit of information to a destination node through a sequence of nodes each of whom can

fail. Moreover, information transmission is a costly process and maximizing payo�s must

take into account the costs and bene�ts of alternate paths. This model is of signi�cant im-

portance to a new area of research in computer science called distributed sensor networks.

A distributed sensor network is a web of sensors used collectively to perform a wide array

of tasks ranging from military applications such as target detection, location and tracking

to environmental monitoring and surveillance (Brooks, GriÆn and Friedlander (2000)). The

key feature of such networks is that the sensor nodes are unattended and untethered (inde-

pendent). Hence the network must be self-con�guring i.e., the nodes must make information

routing/connectivity decisions in a decentralized manner. Moreover, communication must

be energy eÆcient since battery power cannot be easily replenished. Current models for

communication in these networks use protocols like di�usion routing Intanagonwiwat et al.

(2001), which uses local gradients to identify paths for sending information. However, these

protocols do not optimize network wide reliability in conjunction with minimizing communi-

cation costs. Our contribution in this paper is to propose a model that explicitly optimizes

over both dimensions. Furthermore, the lack of an existing theoretical framework in which

to analyze such information networks often forces researchers to resort to simulations. The-

oretical results when they exist are very speci�c to the model in question. This makes it

quite hard to compare models and derive general conclusions.

We believe that game theory can provide the appropriate theoretical framework to analyze

distributed information networks. By the very nature of their deployment these networks

cannot be controlled at every step by the network designer. This scenario of distributed

decision making �ts very well with the spirit of game theory. By designing the payo�

3As opposed to equilibria that form spanning subgraphs based on edge failure in other game theoretic
models of reliability.
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function suitably the network designer can achieve di�erent degrees of collaborative tasking

among the sensors. Finally, the techniques introduced here can also be adapted to model the

trade-o�s to intelligent network nodes under other optimization criteria such as throughput

or delay and thus will be useful to obtain general conclusions about the operation of such

networks.

We develop a model of strategic reliability based on node failure with the objective of

�nding equilibrium paths. Linial (1994) in his seminal study on the interface between game

theory and theoretical computer science posed four questions which he suggested are of com-

mon interest to both �elds. One of these was to classify basic game-theoretic parameters

such as values, optimal strategies, equilibria as being easy, hard or even impossible to com-

pute and wherever possible develop eÆcient algorithms to this end. We analyze information

networks in this paper from the above perspective. Indirectly the paper also provides in-

sight on another question he posed: How does the outcome of a given game depends on the

players' computational power? We �rst show that the task of �nding the equilibrium path is

itself NP -Hard. Then based on the exogenous parameter values (probability of node failure,

link costs and the value of information) of the game, we identify conditions under which the

equilibrium path coincides with other well known paths like the most reliable path. One

important issue that emerges from the analysis is the task of ranking suboptimal paths from

individual node perspective. We suggest three ways to characterize suboptimal paths. The

�rst of these ranks paths based on their vulnerability, i.e., the weakness of the weakest node.

The second method adapts the idea of a team game suggested by von Stengel and Koller

(1997). We model the nodes as a group of players whose common adversary is computational

complexity.4 The group now has a common payo� function and this allows us to develop a

simple algorithm. Our �nal method of ranking paths takes into account ease of computation

along with fair use of resources by players in the game.

This paper is organized as follows. Section 2 sets up the basic model. Results are

presented in Section 3. In Section 4 we develop path evaluation metrics to rank suboptimal

paths. The �nal section has concluding remarks about future research directions.

2 The Model

Let S = fs1; : : : ; sng denote the set of players (or sensors), with generic members i and j. For

ordered pairs (i; j) 2 S � S, the shorthand notation ij is used. We assume throughout that

4Linial (1994) suggests treating the faulty nodes as the adversary.
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sn � 3: Without loss of generality the source node sr = s1 has information of value Vr which

it wishes to send to the destination node sq = sn. Vr represents an abstract quanti�cation of

the of the value of event information at node sr. Information is routed through an optimally

chosen set S 0 � S of intermediate nodes by forming links. Link formation occurs by a process

of simultaneous reasoning at each node leading to a path from sr to sq. This link formation

is costly with each node incurring a cost for the link it establishes. We denote the cost of

link ij by cij > 0.5 Furthermore, we assume that node si can independently fail 6 with a

probability (1� pi) 2 (0; 1). Thus G = (S;E; P; C) represents an instance of an information

network in which information of value Vr is to be optimally routed from node sr to node

sq, where S is the set of players interconnected by edge set E, P (si) = pi are the success

probabilities and C(si; sj) = cij, the cost of links in E. We denote a path from any node sa

to sb in G by the node sequence (sa; s2; : : : ; sb).

In this context, we de�ne the following problem called Reliable Query Reporting

(RQR): Given that information transmission in the network is costly and not fully reliable,

how can we induce the formation of maximally reliable paths in G from reporting to querying

nodes where every node is also maximizing its own payo�s? The solution to this problem

lies in designing payo� functions such that the Nash equilibrium of this game corresponds

to the optimally reliable path.7 We now describe the di�erent components of this strategic

game.

Strategies. Each node's strategy is a vector li = (li1; : : : ; lii�1; lii+1; : : : ; lin) and lij 2

f0; 1g for each j 2 Snfig. The value lij = 1 means that nodes i and j have a link initiated

by i whereas lij = 0 means that sensor i does not send information to j. The set of all pure

strategies of player i is denoted by Li. We focus only on pure strategies in this paper. Given

that node i has the option of forming or not forming a link with each of the remaining n� 1

nodes, the number of strategies available to node i is jLij = 2n�1. The strategy space of

all agents is given by L = L1 � � � � � Ln. Notice that there is a one-to-one correspondence

between the set of all directed networks with n vertices or nodes and the set of strategies

L. In order to keep the analysis tractable, in this model we assume that each node can

5For the application we have in mind, this link cost can be an abstraction of packet transmission costs in
terms of required transmission power or available on-�eld sensor battery life, depending on the type of sensor
network being modeled. Keeping this in mind players in the game are sometimes referred to as sensors.

6We assume that the destination node sq never fails.
7Note that our techniques can be adapted to achieve other desired network objectives such as delay or

throughput as well.
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only establish one link. Routing loops are avoided by ensuring that strategies resulting in

a node linking to its ancestors yield a payo� of zero and are thus ineÆcient. Under these

assumptions each strategy pro�le l = (l1; : : : ; ln) becomes a simple directed path from sr

to sq denoted by P. We now proceed to model the payo�s in this game.

A standard noncooperative game assumes that players are sel�sh and are only interested

in maximizing their own bene�ts. This poses a modeling challenge as we wish to design a

decentralized information network that can behave in a collaborative manner to achieve a

joint goal while taking individual operation costs into account. Since the communal goal in

this instance is reliable information transmission, the bene�ts to a player must be a function

of path reliability but costs of communication need to be individual link costs.

Payo�s. Consider a strategy pro�le l = (li; l�i) resulting in a path P from sr to sq.

Since every agent has an incentive to ensure information is routed to sq, the bene�t to any

agent i on P must be a function of the path reliability from i onwards. Since the network

is unreliable, the bene�t to player i should also be a function of the expected value of

information at i. Hence we can write the payo� at i as:

�i(l) =

�
gi(Vr)fi(R)� cij if si 2 P
0 otherwise

where R denotes path reliability.

Fig. 1 illustrates this idea by looking at two adjacent nodes on a path. The expected

value of information at node j is pipjVi, i.e., node j gets the information only when nodes

i and j survive with probability pi and pj respectively. The expected bene�t to player i is

given by pjVi, i.e., player i's bene�ts depend on the survival probability of player j. Hence

the payo� to player i is �i = pjVi � cij.

jv

is js
iv

p
i

p
j

= p vp
i j i

Figure 1: Information transfer on a path.

The payo� function that corresponds to this idea of communal reliability and individual
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costs can now be written as follows:

�i(l) = Vr

iY
t=a

pt

qY
t=i+1

pt � cij

where gi(Vr) = Vr
iQ

t=a

pt and fi(R) =
qQ

t=i+1

pt. We also use �P
i as the payo� to node si in the

strategy pro�le represented by path P.

De�nition 1 A strategy li is said to be a best response of player i to l�i if

�i(li; l�i) � �i(l
0
i; l�i) for all l

0
i 2 Li:

Let BRi(l�i) denote the set of player i's best response to l�i. A strategy pro�le l = (l1; : : : ; ln)

is said to be an optimal RQR path P if li 2 BRi(l�i) for each i, i.e., sensors are playing a

Nash equilibrium. Note that although each agent can form only one link, multiple equilibrium

paths can exist. For a given node we assume that if multiple optimal paths with identical

payo�s exist, the most reliable among them is chosen.

3 Results

This section contains results on two aspects of the RQR problem. We �rst analyze the

complexity of computing the optimally reliable paths in a given sensor network. This is

followed by some analytical results that establish congruence between the equilibrium RQR

path and other well known (global) path metrics.

3.1 Complexity Results

Many of the quantities and parameters studied in game theory can at least in principle be

computed and approximated. Determining the existence of eÆcient algorithms for computing

equilibria (and �nding such algorithms if they exist) is a problem of common interest to

game theory and computer science (Linial 1994). There have been many e�orts made to

characterize the equilibria of di�erent games in terms of their computational complexity.

Gilboa and Zemel (1989) show that �nding an equilibrium of a bimatrix game with maximum

payo� sum is NP-Hard. Koller and Megiddo (1992) show that �nding max-min strategies

for two person zero-sum games is NP-Complete in general, but give the �rst polynomial

time algorithm for such games in extensive form. Koller, Megiddo and von Stengel (1996)
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extend the above result to non-zero sum games, using a complementary pivoting algorithm.

Finding optimal strategies for two person games such as chess and go have been shown to

be NP-Hard (see Garey and Johnson (1979) for an exhaustive list of known NP-Complete

problems). We now address the complexity of �nding the equilibrium of the N -person RQR

game.

Let G = (S;E; P; C) represent an instance of an information network in which informa-

tion of value Vr is to be routed from node sr to sq. Only those strategy pro�les that de�ne

a path from sr to sq are of interest and must be evaluated to compute the optimally reliable

path. To compute this path each player calculates a path through a sequence of descendants

whose reliability (given similar decisions by descendant nodes) relative to the immediate

successor's link cost, is maximum at that node.

Theorem 1 Given an arbitrary network G = (S;E; P; C) with information Vr, computing

the optimal RQR path is NP -Hard.

Proof: Given a solution to the RQR problem, for each node on the path verifying

optimality of the successor requires exhaustively checking all possible paths to sq. Thus

RQR does not belong to the class NP .

We show that the problem is NP -Hard by considering a reduction from the Hamiltonian

Path problem (see Garey and Johnson (1979) for Hamiltonian Path reduction). Let G0 =

(V 0; E 0) be any graph in which a Hamiltonian Path is to be found, where jV 0j = n. We

convert G0 into another graph G = (S;E; P; C) on which an instance of RQR with value8

Vr = 1, must be computed as shown in Fig. 2.

Introduce n+ 1 new vertices to form S = V 0
S
T
S
sq, where jT j = n and sq is the other

new vertex. The new edge set E consists of the original edge set E 0 along with n2 new

edges from E2 = T � V 0 and n new edges from E3 = T � sq. Edges in E 0, E2 and E3 are

assigned costs c1, c2 and c3 respectively. All vertices u 2 V 0 and w 2 T are assigned success

probabilities p1 and p2 respectively. The relationships between the probabilities and costs

are as follows:

8We set Vr = 1 for notational simplicity since results for any Vr can be obtained by scaling edge costs
appropriately.
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Figure 2: Reduction from Hamiltonian path.

p1p2 > (
3

4
)

1
n�1 (1)

c1 =
(p1p2)

n

3
(2)

c2 =
2(p1p2)

n

3
(3)

c3 = (p1p2)
n (4)

Let sr and st be any two nodes in V 0. We claim that there exists an optimal RQR path

of reliability pn1p2 from sr to sq in G if and only if there exists Hamiltonian path from sr to

st in G0.

For the �rst part of the claim, assume there is a Hamiltonian Path H = (sr; : : : ; st) in

G0. Consider the path H followed by the edges (st; x) and (x; sq) in G0, where x is any node

in T . This path has reliability R(H) = pn1p2. The payo� of node st is R(H) � c2 obtained

by linking to node x, which is optimal since there does not exist any other unvisited node in

V 0. Similarly the payo� of node x is also optimal since it can only link to sq. Now consider

the k-th node in H, 1 � k � n� 1. The two choices for this node are either to link to some

node x 2 T or the node in G0 that lies on the Hamiltonian path H . If the �rst option is

chosen, the most reliable alternate path (and hence the maximum possible alternate payo�)

is given by pk1p2� c2 which is less than R(H)� c1 by conditions (1) � (3). Thus, the second
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choice is optimal for this node.

For the second part of the claim, we need to show that if no Hamiltonian path exists

in G0, there cannot be an optimal RQR path of reliability pn1p2. Note that linking to any

available node in V 0 with cost c2 is always preferable for any node si 2 T . The worst case

payo� to si via a link of cost c2 is p
n
1p

n
2 � c2, which outweighs the best possible payo� via

a link of cost c3 which is p1p2 � c3. So the optimal path must visit all nodes in V 0. To

maximize payo�s, the optimal path must have the shortest possible length. This will require

minimizing visits to T . The optimal path will thus consist of sequences of long paths in V 0

(the longest possible since any node in V 0 will always prefer to link to another node in V 0, if

feasible), interspersed with visits to T . Since G0 does not contain a Hamiltonian path there

will be at least two visits to nodes in T and hence the reliability of such a path will be at

least pn1p
2
2 which is less than pn1p2 as claimed.

It can be seen easily that the above reduction is still valid when all nodes in V 0 and T

have the same success probability p. Consequently, the RQR problem remains NP -Hard for

the special case when nodes have equal success probabilities. The case when all edges have

the same cost is much simpler, however, as will be shown below.

3.2 Analytical Results

Given the complexity of �nding the equilibrium RQR path, we next identify conditions under

which this path coincides with other commonly used routing paths. In particular, we look at

the most reliable path [MRP] which can be computed using well known techniques such as

Djikstra's shortest path. We also look at paths obtained when nodes select next-neighbors

using a localized criterion, i.e., the cheapest neighbor.

Let G be an arbitrary information network with the source node having value Vr. Then

the following results hold.

Observation 1 Given pi 2 (0; 1] and cij = c for all ij, then the most reliable path always

coincides with the equilibrium path.

Proof: Consider the most reliable path from the reporting node sr to the destination

node sq. Clearly, the maximum payo� to sr is obtained from this path. Given the assumption

of uniform costs the payo� to any other sensor si 2 S on this path must also be maximum.

Otherwise, it would be possible to �nd a more reliable path from sr to sq via si.
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Note that for uniform pi, the equilibrium path also coincides with the cheapest path.

Before proceeding further, we now introduce some notation. For any node si, let c
i
max =

maxfcijg and cimin = minfcijg. Also cmax = max
i
fcimaxg and cmin = min

i
fciming. We use P l

i to

denote a path of length l from si to sq and bene�ts along this path by P l
i .

Proposition 1 Given G and P (si) = p 2 (0; 1]; for all i, the most reliable path from sr to

sq will also be the optimal path if

cimax � cimin < pm(1� p)Vr

for all si on the most reliable path Pm
r .

Proof: Consider an arbitrary node si at a distance i from sr. Since we have uniform p,

reliability is now inversely proportional to path length. Let l be the length of the shortest

path from si to sq, on which si+1 is the next neighbor of si. For si, P
l
� is optimal if

Vrp
i+l � cii+1 > Vrp

i+l+� � cij � = 1; 2; : : :

)
cij � cii+1

Vr
< pi+l(1� p�)

where sj is a neighbor of si through which there is a simple path of length l + �. Since

m = i + l on Pm
r , the reliability term above is minimized for � = 1, whereas the cost term

is maximized at cimax � cimin.

Note that the above result identi�es suÆcient constraints on costs for the most reliable

path to also be optimal. The result shows that while the MRP can be costlier than other

paths, to be optimal it cannot be `too' much more expensive. From the above result, it also

follows that when cmax � cmin < pm(1 � p) the MRP coincides with the optimal, thereby

providing a global bound on costs.

We now look at the situation when the probabilities of node survival are non-uniform.

Let si and si+1 be subsequent nodes on the most reliable path. Denote Ri be the reliability

of the most reliable path from si to sq and R0
i be the reliability along any alternative path

from si. Let �ci = cii+1 � cij where sj is any neighbor not on the optimal path and �Ri is

de�ned similarly.

10



Proposition 2 Given G with P (si) = pi 2 (0; 1] and C = fcijg, the most reliable path from

sr to sq will be optimal if
�ci+1
�ci

<
�Ri+1

�Ri

for all si and si+1 on the optimal path.

Proof: Let Ri represent the reliability on the portion of the most reliable path P from

sr to si. Since P is optimal, si cannot bene�t by deviating if

VrRiRi � cii+1 > VrRiR
0
i � cij

) VrRi >
�ci
�Ri

It follows that VrRi+1 >
�ci+1
�Ri+1

. Since Ri+1 = pi+1Ri, we have Vrpi+1Ri >
�ci+1
�Ri+1

. This can

be rewritten as 1 � pi+1 >
�ci+1
�ci

�Ri

�Ri+1
, which gives us �ci+1

�ci
<

�Ri+1

�Ri
as desired.

The easiest way to interpret this result is by rearranging the terms so that we can write

it as �ci+1
�Ri+1

< �ci
�Ri

. Then each fraction can be interpreted as the marginal cost of reliability

of deviating from the optimal path. Since each subsequent node on the optimal path has

lower expected value of information, this results suggests that the marginal cost of deviation

in terms of reliability must be higher for each node's ancestor where the expected value of

information is also higher.

We de�ne the cheapest neighbor path [CNP] from sr to sq as the path obtained by each

node choosing its successor via its cheapest link. In a sense, this path re
ects the optimal

route obtained when each node merely cares about minimizing its local communication costs.

The following proposition identi�es when it will coincide with optimal path.

Proposition 3 Given G and P (si) = p 2 (0; 1); for all i, the optimal path is at least as

reliable as the cheapest neighbor path. Furthermore, the CNP will be optimally reliable if

minfcknckming � ckmin > Vrp
l(1� pt�l)

where l is the length of the shortest path from sr to sq and t is the length of the CNP.

Proof: Consider an arbitrary node sk which is k hops away from sq on the CNP. Clearly,

for the CNP to be optimal sk should not get higher payo� by deviating to an alternative
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path. Also, we do not need to consider alternative paths that have lengths greater than

k to sq since that would decrease bene�ts and the CNP already has the lowest cost edges.

Let m be the path length along the CNP from sr to sk. For alternative paths of length

i = 1; : : : ; k � 1; from sk to sq to be infeasible, we need

ci > co + Vrp
m+i(1� pk�i)

where co is the edge cost along the CNP, and ci the edge cost along alternative paths. By

de�nition, for any node on the CNP m+ i � l. Also at sk we have co = ckmin, with ci being at

most minfcknckming. Thus, when minfcknckming� ckmin > Vrp
l(1�pt�l), the CNP will coincide

with the optimal path.

The above proposition illustrates that the CNP does not have to be the most reliable

in order to be optimal, it only needs to be suÆciently close. For networks in which some

paths are overwhelmingly cheap compared to others, routing along CNPs may be reasonable.

However, in networks where communication cost are not dissimilar, routing based on local

cost (for instance energy utilization) gradients is likely to be less reliable.

4 Individual Payo�s versus Global Outcomes

Our modeling of sensor interaction in game-theoretic terms captures the lack of intervention

by a central authority, which is the fundamental operational constraint for such information

networks. This attractive feature however, poses its own challenges. Equilibrium paths are

computed by individually rational players who maximize their own payo�s. But, once we

are o� the equilibrium path, it becomes diÆcult to rank the di�erent sub-optimal paths.

For example, a certain sub-optimal path may yield high payo�s for player i with low payo�s

for player j. In another sub-optimal path, the exact opposite situation may prevail, making

it diÆcult to compare these two paths. Note that traditional approaches to �nding `good'

paths in such networks use a single distinguishing attribute (a scalar) to rank di�erent

paths, like minimizing total cost or overall latency. On the other hand, the game-theoretic

formulation yields a vector of payo�s. And it will rarely be the case that a sequence of payo�

vectors will satisfy a strict inequality, allowing us to order the di�erent suboptimal paths

by comparing them with each other and the equilibrium path. While game theorists have

proposed numerous techniques for �nding approximate Nash equilibria, these methods are

not suitable for our purposes due to a number of reasons. Many of these techniques are only
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suitable for two-player games. Another problem is that they are not guaranteed to work in

all instances. Finally, we are only interested in pure strategy equilibria, while most of these

methods rely on the use of mixed strategies.

In this section, we set out to propose criteria for ranking o�-equilibrium paths. Game-

theory o�ers a multitude of ways to re�ne equilibria, but the work on coarsening the set

of equilibria is rather limited. Rationalizability (Bernheim (1984), Pearce (1984)) and curb

sets (Basu and Weibull (1991), Hurkens (1995)) are among the more popular ideas here and

not quite appropriate for the task at hand. Both these approaches use rationality to suggest

what `other' strategies the player might consider feasible but neither approach provides

a way to rank suboptimal outcomes. The speci�c objective in the type of information

networks modeled here is to �nd a path from the source to the destination. The task of

incorporating game-theoretic notions into such route-determination problems requires us to

rank the alternate paths precisely. Here we suggest three ways to rank paths: path weakness,

path computability and path fairness.9

Our objective is to derive uniform evaluation metrics for ranking o�-equilibrium paths

in terms of their suboptimality. For this purpose we are interested in de�ning a scalar that

measures the degree of suboptimality of the entire path (in a sense a global outcome of

the game) while also accounting for individual node behavior. One measure that achieves

this compromise between eÆcient global path characterization and individual node payo�s

is aggregate node payo� on the path. However, this is not a suitable measure since it

is possible to �nd paths whose cumulative payo�s are higher than that of the optimal!

Given the underlying premise of decentralized decision making, any path evaluation metric

must primarily account for the sub-optimality of individual node behavior rather than the

aggregate response of nodes on the path.

I. Path Weakness

We formally de�ne our �rst path utility metric as follows: Consider any node si on the given

path P. Let P̂iq be the optimal path to sq from si in the subgraph Gnfsr; : : : ; si�1g. Thus

P̂iq represents the best that node si can do, given the links already established by nodes

sr; : : : ; si�1. De�ne �i(P) = �i(P̂iq) � �i(P) as the payo� deviation for si under strategy

pro�le P. �(P) =maxi�i(P) represents the payo� deviation at the node which is `worst-

o�' in P. What can be said about this parameter for nodes participating in optimal and

sub-optimal paths?

9Note that one can easily think of alternate and/or application-speci�c path evaluation metrics. We
believe that the metrics suggested here are most relevant to the RQR problem.
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Observation 2 �(P 0) > 0 for all non-optimal paths P 0.

However observe that �i(P
0){the weakness of individual nodes on o�-equilibrium paths

can take both positive and negative values. On the other hand, �(P) = 0 if and only if P

is the Nash equilibrium path of the game. Thus from a global point of view, �(P) identi�es

the maximum degree to which a node on the path can gain by deviating. This allowing us

to rank the `vulnerability' of di�erent paths. This embodies the idea that a path is only as

good as its weakest link. We label this path utility measure path weakness.
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Figure 3: Network for illustrating path weakness.

We now compute bounds for �nding paths with low path weakness. We will show that

there exist networks not containing paths of bounded weakness. Our proof relies on con-

structing a speci�c example of a network whose best suboptimal paths satisfy certain weak-

ness characteristics. This network is constructed below.

Consider an arbitrary sensor network G = (S;E) as shown in Fig. 3 with the following

parameters: The vertex set S is the union of vertex set S1 with nodes sa, sb and sq. G
0 =

(S1; E1) is an arbitrary network, where jS1 = fsr = s1; : : : ; sngj = n. The edge set E for S is

the union of disjoint edge sets E1, E2 and E3, where E2 = f(sa; si)g
S
f(sb; si)g; 8si 2 S1, and

E3 = (sa; sq)
S
(sb; sq). There are two types of edge costs in C{edges in E3 cost c2 with all

other edges costing c1. The node success probabilities are P (si) = p1, 8si 2 S1, P (sa) = p2

and P (sb) = p3. Vr is the value of information to be routed from sr to sq. These parameters

are related to each other as follows:

14



p3 < pn�21 (5)

p3 < p2 (6)

p1p2(1� p1p3)Vr < c2 � c1 (7)

c1 < c2 < pn1p2p3Vr (8)

We now look at the strategy choices for nodes in G on any path from sr to sq, when

receiving Vr. Condition 8 ensures that all edges in the network are feasible since all payo�s

are greater than zero. Also, sq is reachable only through sa and sb and all edges from any

node in S1 have identical costs. Thus if sa (sb) is the parent of any node in S1, this node

will immediately prefer to link to sb (sa) to maximize its payo�. Coupled with condition 7,

this implies that if node sa is visited before sb in any path, sa prefers to link to any available

node in S1 instead of linking to sq, regardless of the number of nodes visited in S1 prior to

sa. A similar situation holds true for sb if it is visited before sa.

Now consider paths Pik = (s1; : : : ; sk; si; sq)g, where i = a; b is the penultimate node for

k = 1; 2; : : : ; n and similarly Pk = (s1; : : : ; sk; sa; sk+1; sb; sq), k = 1; : : : ; n�1, assuming they

exist. The observations above can be used to calculate the path weakness of Pak as follows.

First,

�a(Pak) =

8><
>:
Vrp

k
1p2(p1p3 � 1) + (c2 � c1); 1 � k � n� 1

0; k = n

(9)

Also, for each node sj, 1 � j � k,

�j(Pak) =

8>>>><
>>>>:

Vrp
k
1p2(p

n�k
1 � 1); 1 � k � n� 1; if Pan exists

Vrp
j
1p2(p1p3 � p

k�j
1 ); 1 � k � n� 1; otherwise

0; k = n

(10)

To understand (9){(10), �rst note that Pak cannot be the equilibriumRQR path whenever

k < n. The optimal choice for sa is always to link to any available node in S1. Condition
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(5) implies that nodes in S1 would prefer to link to nodes in S1 and sa and avoid visiting sb

en route to sq, if possible. Hence, the optimal payo� for sj is via Pan if it exists, and via the

path (s1; : : : ; sj; sa; sj+1; sb; sq), otherwise.

It can be seen that �j(Pak) � 0, for all j and k. Thus �(Pak), the path weakness of Pak,

is given by �a(Pak). Similarly, �(Pbk) can be obtained by interchanging p2 and p3 in (9).

Now consider paths of type Pk, 1 � k � n� 1. �a(Pk) = �k+1(Pk) = �b(Pk) = 0, since

these three nodes are choosing their neighbors optimally. Therefore the path weakness of Pk

is given by

�(Pk) = �1(Pk) =

8<
:

Vrp
k+1
1 p2(p

n�k�1
1 � p3); if Pan exists

Vrp
2
1p2p3(1� pk�21 ); otherwise

(11)

Similarly, it can be shown that all paths in which sb is visited before sa or in which

multiple nodes in S1 are visited in between sa and sb, are weaker than the above paths.

The following lemma can be used to compute a lower bound on the path weakness of

suboptimal paths.

Lemma 1 For any � 2 (0; Vr
3
] in the network G, there exists a path Q and probabilities

p1; p2; p3, such that either Q is the equilibrium RQR path or 0 < Vr
3
��(Q) < � and there

is no other o�-equilibrium path weaker than Q.

Proof: Consider all paths PnPan in G.

min
PnPan

f�(P)g = min
k

�
Pak;Pbk;Pk

	
where Pak, Pbk and Pk are as de�ned before.

Using (6), �(Pbk) > �(Pak), and hence Pbk is always weaker than Pak. Additionally

from (9), and (11), it can be seen that

min
PnPan

f�(P)g = min
�
Pa1;P1

	
(12)

To obtain the result in the lemma, we set Q to be the path P1 and solve to obtain the

corresponding p values as below.

pn�21 > p3 > max

�
1

p1(1 + pn�21 )
;

1 + pn�11

p1(2 + pn�21 )

�
(13)
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The �rst term in the maximum is obtained using conditions (7) and (8) simultaneously

for the network G. Solving for situations when Pa1 exceeds P1 and then using (7) gives the

second term. Thus a network G with the above probability values will have the property

that

min
PnPan

f�(P)g = �(P1) =

8<
:

Vrp
2
1p2(p

n�2
1 � p3); if Pan exists

0 otherwise
(14)

Identifying the upper bound of �(P1), subject to the constraints in (13) yields the

desired bounded weakness result.

Since G0 is an arbitrary subgraph of G, the above lemma implies the existence of in�nitely

many graphs without any suboptimal paths of weakness bounded by (Vr
3
��). Stated another

way, path weakness better than Vr
3
is diÆcult to achieve, as shown in the next result.

Theorem 2 There exists no polynomial time algorithm to compute approximately optimal

RQR paths of weakness less than (Vr
3
� �) unless P = NP .

Proof: Let A be an algorithm that outputs a path with weakness at most Vr
3
� � in

polynomial time. For the given �, choose G with p1; p2; p3 as per lemma 1. We can then use

A as a decision algorithm to solve the Hamiltonian path problem in G0. If a Hamiltonian

path exists in G0, by lemma 1 we have �(P1) >
Vr
3
� �. In that case, the only path with

weakness less than Vr
3
� � in G and therefore output by A is Pan, which of course contains

a Hamiltonian path in G0. Algorithm A will return some other path in G (which can be

veri�ed as non Hamiltonian in polynomial time) only if no Hamiltonian path exists in G0.

Thus A is a polynomial time decision algorithm for solving the Hamiltonian path problem.

This is impossible unless P = NP .

II. Path Computability

In the previous section we have seen that �nding paths of bounded weakness is computa-

tionally diÆcult. While game theory can model the autonomous formation of good routing

paths in the network as an equilibrium of rational strategies, the e�ect of computational

complexity on the above process is not easily quanti�able. In this section we take the view

that computational complexity is an external adversary inhibiting the `easy' formation of
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good routing paths by nodes in the network. What then is the best that cooperating agents

can do in the face of this adversary?

The idea of a team of players cooperating against a common adversary to maximize

their payo�s can be found in the work of von Stengel and Koller (1997). Similarly, worst

case analysis of computer algorithms assumes the existence of an adversary who is free to

choose the worst possible input at each instance. One can minimize the adverse in
uence of

computational complexity in �nding equilibrium paths by considering a group version of the

RQR problem. As before, sensors try to select a routing path that maximizes their payo�.

However, to model the worst case outcome, the adversary is allowed to select any of these

payo� functions as the group payo� which is to be shared by the entire set of participating

nodes. Thus players must now cooperate in the face of the adversary to maximize the

common payo� of the group. This notion is similar to the concept of maxmin equilibria in

common adversarial games introduced by von Stengel and Koller (1997). Also, aligning the

interests of the players such that they have a common optimization objective, confers the

added bene�t of making this equilibrium easy to compute, as shown below.

We formally de�ne a team version of the RQR problem labeled as the Group-RQR

problem as follows. Consider an information network G = (S;E; P; C) with information of

value Vr. The payo�s to nodes in the network are de�ned as follows:

�i(l) =

8>><
>>:

Vr

qQ
t=r

pt � max
(si;sj)2P

cij if si 2 P

0 otherwise

(15)

All nodes on the path share the payo� of the worst-o� node on it. Rather than selecting a

neighbor to maximize their individual payo�s as in the original game, nodes in the group-

RQR model compromise by maximizing their least possible payo�. Note that this shared

payo� e�ectively de�nes a group bene�t. The Nash equilibrium of the group-RQR game is

the path from source to destination containing the node with the highest least cost-reliability

trade-o� over all paths. In case of multiple equilibria, the path with highest reliability is

selected.

Note that the group-RQR problem bears some similarity to the bottleneck shortest path

problem, which minimizes the cost of the longest edge on the path from the source to the

destination node. Indeed, the optimal group RQR path can be interpreted as the bottleneck

path to node sq with the highest path reliability. Let Pc represent the most reliable path

from sr to sq that does not traverse any link exceeding cost c. Then P , the equilibrium path
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of the group-RQR game is given by

P = argmax
ci2C

n
VrR(Pci)� ci

o
(16)

for each distinct edge cost ci in C. An intuitive technique for computing the optimal group-

RQR path is to repeatedly determine the most reliable path in the graph that is obtained

by successively removing edges of decreasing distinct cost. In the worst case m most reliable

path calculations are made, where m is the number of distinct edge costs in the network. De-

tails of a simple algorithm for computing the optimal path can be found in the the appendix.

III. Path Fairness

We now introduce the notion of path fairness. The optimal group-RQR path maximizes the

payo� of the node with the lowest payo�. However, in terms of individual payo�s as de�ned

in the original RQR model, the payo� of the best-o� node on the group-RQR path can be

arbitrarily larger than the team payo�. For information networks of the type studied in

this paper, one can assume the existence of an external network controller who is interested

not only in the autonomous formation of reliable routing paths but also in the continued

operation of the network. Since the network nodes are assumed to have a limited amount of

(non-replenishable) energy for communication, continuous operation of the network would

seem to depend on the various (active) network components spending approximately the

same amount of energy for communication.

One can thus construe a measure of path fairness in which the disparity in individual

node payo�s is minimized at the equilibrium outcome. This can be viewed as contributing

to the longevity of the sensor networks overall operation, since all nodes on the path are

consuming approximately the same energy for their link costs. Since acheiving fairness at

the cost of reliability is against the overall path routing objective, this equilibrium should

also satisfy the team notion of the RQR game (with the added bene�t of easy computability).

Thus individual payo�s should be as close to the team payo� as possible.

Formally, the payo�s to nodes in the network in the fair-group-RQR game are de�ned as

follows:

�i(l) =

8>>><
>>>:

Vr
qQ

t=r

pt� max
cij2P

cij

max
cij2P

cij� min
ckl2P

ckl
if si 2 P

0 otherwise

(17)
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Thus the equilibrium path is the one which achieves the highest group payo� with the

least payo� di�erence. This path can be found by repeatedly determining the optimal group-

RQR path that does not pass through edges greater than a given maximum and smaller than

a given minimum cost. Let ~Pc2
c1

represent the most reliable path from sr to sq that does not

traverse any link exceeding cost c1 or lower than cost c2. Then

FP = argmax
ci�cj2C

(
VrR( ~P

cj
ci )� ci

ci � cj

)
(18)

is the equilibrium path of the fair-group-RQR game.

5 Conclusion

We introduce game-theoretic techniques to model intelligent behavior in an information

network. The formation of reliable communication paths from a source to a destination

node are analyzed. Certain extensions of the model suggest themselves immediately. The

simultaneous presence of multiple source-destination pairs of sensors is the most obvious one.

Dynamic models of network formation usually consider myopic players. In a recent paper

Watts (2002) looks at the formation of circle networks assuming non-myopic players. We

believe that studying the dynamic evolution of paths in an information network with non-

myopic nodes failing over time would also be an useful extension. Other interesting versions

of the problem could incorporate uncertainty and localized information. For instance, each

player could perhaps be aware only of the failure probabilities and costs of link formation in a

neighborhood set of nodes. Decisions made under these constraints could lead to dramatically

di�erent results from the full information model analyzed here. Uncertainty in the model

could be of the form where a player is only aware of the probability distribution from which

link formation costs are drawn instead of knowing these costs precisely. We believe these

extensions would be of great practical interest.

The other direction for future research would be to focus on the complexity aspect of the

problem. An important task in this context is to develop axiomatic path characterisations

for evaluating suboptimal paths. As already argued, a path metric that maximizes the payo�

function of one node could very well minimize the payo� function of another node. In the

current paper we suggest several alternative techniques to rank sub-optimal paths. The �rst

of these rank paths by determining the weakest link in the communication chain. The second

method provides a means to obtain a computaionally easy path. The �nal method ranks
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paths on the basis of equitable resource use modeled through the costs of forming links. The

three methods suggested here are by no means the only possible ones. We believe that this

area needs to explored further in order to model similar problems in computer science using

game-theoretic concepts.

Finally, the techniques introduced here can also be used to model certain types of behav-

ior on the Internet. One example could be the reliable communication of information between

di�erent web servers. Alternative payo� functions based on di�erent link-establishment crite-

ria also need to be explored in this context. Congestion control, pricing of links and multicast

issues are all possible application areas of the game-theoretic formulation introduced here.
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Appendix

A simple algorithm for computing the optimal group-RQR path is shown below.

Group-RQR Path Algorithm

1. Let G = (S;E; P;C) be a sensor network of value Vr in which the group-RQR path from sr
to sq is to be found.

Let C = fc1; c2; : : : cmg be the set of distinct edge costs in G sorted in decreasing order.

2. For i = 1 to m

(a) Compute Pci in G using standard shortest path techniques such as Djikstraa's algo-

rithm.

(b) PGRQR = maxf PGRQR; VrR(Pci)� cig.

(c) G = Gnci
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