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Identification of a low-level point radioactive source amidst background radiation is achieved by
a network of radiation sensors using a two-step approach. Based on measurements from three or
more sensors, a geometric difference triangulation method or an N-sensor localization method is
used to estimate the location and strength of the source. Then a sequential probability ratio test
based on current measurements and estimated parameters is employed to finally decide: (1) the
presence of a source with the estimated parameters, or (2) the absence of the source, or (3) the
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insufficiency of measurements to make a decision. This method achieves specified levels of false
alarm and missed detection probabilities, while ensuring a close-to-minimal number of measure-
ments for reaching a decision. This method minimizes the ghost-source problem of current esti-
mation methods, and achieves a lower false alarm rate compared with current detection methods.
This method is tested and demonstrated using: (1) simulations, and (2) a test-bed that utilizes the
scaling properties of point radioactive sources to emulate high intensity ones that cannot be easily
and safely handled in laboratory experiments.
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1. INTRODUCTION

There has been an increasing interest in the identification of low-level radioac-
tive sources as a part of the defense strategy against dirty bomb scenarios. The
ability to identify the signatures of such sources will enable their detection
before they are set off, in particular, while the sources are being transported
or stored. Or, in another scenario, we will be able to detect radiation traces
and estimate their extent in seemingly conventional explosions, so that first
responders can be forewarned and suitably protected against the low-level yet
highly hazardous radiation. Typically, in both of these scenarios, the radiation
levels may be low enough to appear as “normal” variations of the background
radiation. The detection problem is particularly acute since the radiation mea-
surements follow the Poisson process, whose variance is equal to the radiation
level itself. While long-term averages of low-level sources do result in elevated
levels which eventually can be detected, our focus is on identifying the sources
quickly to ensure fast response. In general, the area of detecting various ra-
dioactive sources using individual sensors has been well established in terms of
both detection devices and detection methods [Knoll 2000; Nelson et al. 2007],
most of which are dedicated to single or co-located sensor systems. Recent
advances in sensor network technologies, however, have opened up the poten-
tial for improved detection, as well as the estimation of source parameters, by
utilizing measurements from multiple, geographically dispersed sensors; see,
for example, [Brennan et al. 2004; Gunatilaka et al. 2007; Mielke et al. 2005;
Nemzek et al. 2004; Stephens and Peurrung 2004; Sundaresan et al. 2007] for
this line of work.

Compared with the identification of high intensity radioactive sources, de-
tection and localization of low-level sources is difficult due to two major issues.

(A) Varied Background Radiation. The background radiation depends on both
local natural and man-made sources and global sources such as cosmic
rays, and hence it may vary significantly from one deployment region to
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another. If not carefully interpreted, such measurements lead to “ghost”
sources (false alarms) that may cause unnecessary panic.

(B) Probabilistic Radiation Measurements. The radioactive sources generate
inherently probabilistic measurements; typically, gamma radiation from
point sources follows the Poisson distribution [Knoll 2000; Mihalas and
Mihalas 2000].

The combined effect of these two factors makes it hard to derive a priori
thresholds needed by traditional detection methods. Furthermore, the estima-
tion of source location parameters cannot be directly solved by the triangulation
methods developed for deterministic measurements. On the other hand, the es-
timation can be made more effective when a network of sensors is employed,
provided that a number of remaining estimation problems can be solved. In
this paper, we address Issue (A) above by in-situ estimation of background ra-
diation during initial network deployment. We address Issue (B) above using
a combined geometric localization method and the sequential probability ratio
test (SPRT).

Probability ratio tests are typically employed in the detection problems to
derive thresholds to achieve specified levels of false alarm rates and missed de-
tection rates, in both centralized [Trees 1968] and distributed detection systems
[Varshney 1997]. Such an approach is described for the detection of radioactive
sources using single sensors in Fehlau [1993], Jarman et al. [2004], and Nelson
et al. [2007] (to name a few examples) and using copula methods in sensor net-
works [Sundaresan et al. 2007]. The estimation of the location and strength of
point radioactive sources typically requires at least three sensors and is solved
using the least square methods in Howse et al. [2001], Gunatilaka et al. [2007],
and Morelande et al. [2007]. Typically, the parameter estimation methods im-
plicitly assume that the measurements are due to a real source, and not just the
background, often by utilizing a preceding detection step. For low-level sources,
however, it is not as easy to discriminate between source and background mea-
surements, and existing methods often return results corresponding to “ghost”
sources.

In this article, we show that the detection and parameter estimation steps
can reinforce each other, in a two-step decision procedure for low-level radioac-
tive sources. We present a method for the identification—which subsumes the
detection and parameter estimation problems—of a point radioactive source
using a network of three sensors that provide radiation counts. In the first
step, we utilize a localization method to estimate the location of a real or ghost
source, from which we also estimate the source strength. Then, using the es-
timated source parameters, we utilize SPRT to declare: (1) the presence of a
source with the estimated parameters, (2) the absence of the source, or (3) the
insufficiency of the collected measurements to make a decision. The 3-sensor
localization method is derived by adapting the recently developed geometric
difference-triangulation method [Rao et al. 2007] to our problem, which does
not have the numerical vulnerabilities of least squares or linear methods. The
source strength is estimated using a linear combination of the estimates from
individual sensors. The N-sensor localization method is based on the iterative
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pruning (ITP) algorithm in Chin et al. [2008]. ITP increases the robustness of
the estimation in the face of noise and errors in the measurement process. The
detection test utilizes the estimated background radiation of the given deploy-
ment region and the estimated source parameters, to formulate SPRT based
on the Poisson point source model. Ghost sources, if estimated in the first step,
will be rejected by the SPRT to ensure a specified false alarm rate, since they
do not lead to statistically consistent measurements. On the other hand, the
estimated parameters enable us to formulate a more specific SPRT compared
with detecting a general increase in the radiation level, which in turn yields a
decision with the least expected number of measurements. Our approach is in
contrast to conventional approaches in which detection precedes identification
as in several tracking applications [Blackman and Popoli 1999; Bar-Shalom
and Li 1995].

Evaluating identification methods for radioactive sources poses pragmatic
challenges of experimentation, since it is potentially hazardous and too expen-
sive to deploy radioactive sources of all but minimal strengths. We exploit the
simple product form of the radiation model to develop a scaled-down workbench
that emulates higher-intensity sources and larger-scale deployments. In partic-
ular, we map the workbench of a few feet in dimension to emulate deployments
of several hundred meters, and demonstrate the effectiveness of our method
using real but safe low-level radioactive sources.

The balance of the article is organized as follows. In Section 2, we briefly
review related work on the detection and estimation of radiation sources, with
an emphasis on sensor network solutions. We formulate the identification prob-
lem in Section 3. We describe our solution to the source parameter estimation
problem in Section 4 and the detection problem in Section 5. We combine the
estimation and detection results to develop our identification method in Section
6, for both cases of 3 sensors and N sensors. We present our simulation results
in Sections 4, 5, and 6, and test-bed and emulation results in Section 7.

2. RELATED WORK

The detection and identification problems have been studied extensively over
the past several decades in the areas of signal detection [Poor 1998; Macmillan
and Macmillan 2004; Wickens 2002], classification [Devroye et al. 1997; Duda
et al. 2001], estimation [Bar-Shalom and Li 2001; Kushner and Yin 2003],
identification [Ljung 1998] and tracking [Blackman and Popoli 1999], under
various formulations. Traditionally, the presence of a source is confirmed based
on measurements using a detection or classification rule first. Then, the mea-
surements are used to estimate the parameters using an underlying linear or
nonlinear model with random noise components. For example, one of the most
studied formulations, the Kalman filter, assumes a linear process model with
additive independent Gaussian noise. Our formulation requires a combination
of these two approaches since it does not presuppose the presence of a source
and yet requires its parameter estimates if it is indeed present. Furthermore,
the underlying Poisson measurements are inherently random with a high vari-
ance, which are characteristically different from the Gaussian measurements.
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These differences are reflected in our solution which utilizes the source param-
eter estimates to sharpen the decision performance. Furthermore, compared
with these general estimation and identification methods, our source parame-
ter estimates more closely exploit the quadratic decay behavior of the source
strength with respect to distance.

Within the discipline of radiation detection, the detection and estimation of
radioactive sources of various kinds have been well studied, particularly using
single sensors [Knoll 2000; Archer et al. 2006]. The detection of radioactive
sources amidst background radiation has been studied using SPRT for various
scenarios such as long-term and portal monitoring [Fehlau 1993; Jarman et al.
2004; Nelson et al. 2007]. The existing work using SPRT does not address the
source localization problem.

The use of a network of sensors for detecting and tracking radioactive sources
has been more recently proposed. For the detection of radioactive sources, a lin-
ear arrangement of detectors has been considered in Nemzek et al. [2004], Bren-
nan et al. [2004], and Mielke et al. [2005], and an analysis of sensor network s
olutions has been carried out for a source moving in a linear path [Stephens and
Peurrung 2004]. The detection of a point radioactive source using a sensor net-
work is addressed in Sundaresan et al. [2007], wherein sensor measurements
are combined using a copula function that captures the sensor correlations.

Typically, a detection method is used to first assert the presence of a radiation
source, and then, measurements from multiple sensors are used to estimate the
parameters of the source. The problem of localizing a point radioactive source
has been addressed in Gunatilaka et al. [2007], Morelande et al. [2007], and
Anderson et al. [2006]. Recursive and moving horizon non-linear least square
methods have been proposed to track radioactive sources in Howse et al. [2001].
Overall, the existing estimation methods assume that the measurements cor-
respond to a real source (i.e., the source does exist), whereas the detection
methods are most effective when the source parameters are accurately known.
Our focus in this article is to jointly address the detection and estimation prob-
lems by closely coupling the two decisions.

Detection, localization, and tracking of other types of signal sources have
also been studied in the past, for instance, localization of a chemical plume by
using data taken periodically from a network of chemical sensors [Gunatilaka
et al. 2008]. Their algorithm assumes that the chemical is being released on
the ground continuously. It utilizes a sequential Bayesian framework, and
Monte-carlo integration to compute the most likely position of the chemical
plume. Ding and Cheng [2009] use multi-modal sensor data to localize and
track signal sources by modeling the sources with a Gaussian mixture model
and then using Bayesian Information Criterion, a model selection algorithm, to
estimate the number of sources. Then, an expectation maximization algorithm
and mean-shift algorithm are used to localize and track the sources. All the
above techniques rely on measured signal strengths to infer the location of the
signal source. The localization task in wireless network is accomplished using
Time Difference-of-Arrival (TDOA) methods [Savvides et al. 2001; Cheng et al.
2004; Thaeler et al. 2005] that measure differences in signal arrival times at
different sensors, and Angle-of-Arrival (AoA) methods [Niculescu and Nath
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(a) Measurements from RFTrax radiation sen-
sors. Measurements taken in Purdue University
on November 1st, 2007. Each sample is taken 4
seconds apart.
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(b) Simulated Poisson variables with λ = 10.

Fig. 1. Actual and simulated background radiation measurements.

2003] that measure the signal incident angles at different sensors. Unlike
the signal strength-based methods, the TDOA methods require accurate time
synchronization among the sensors, whereas AoA requires directional antenna
for its operation.

3. PROBLEM FORMULATION

We consider the identification of a point radioactive source S of unknown
strength Au expressed per unit time called the source rate, and located at an un-
known location (xu, yu). The source gives rise to a radiation intensity of I(x, y) =
Au/r2 at any point (x, y), where r = d((xu, yu), (x, y)) =

√
(xu − x)2 + (yu − y)2.

Let mi,1, mi,2, . . . , mi,n be a sequence of radiation counts, each measured per
unit time, at the sensor Mi at known location (xi, yi), for i = 1, 2, 3, . . .. The
radiation count due to the source observed at Mi per unit time is a Poisson ran-
dom variable with parameter λ = I(xi, yi), not accounting for the background
radiation [Knoll 2000; Mihalas and Mihalas 2000].

Let B(x, y) denote the background radiation strength at (x, y) expressed in
unit time, called the background rate. The radiation count measurement (due
to the background radiation) at a sensor i located at (xi, yi) is given by the
Poisson random variable with parameter B(xi, yi). The assumption of Pois-
son distribution for the background measurements may not always be accu-
rate, since the background radiation may be a complex combination of various
sources. However, for our purpose, modeling the background measurements
using the Poisson distribution is accurate enough. Figure 1(b) shows the sim-
ilarity between actual sensor measurements and Poisson-generated random
numbers. We utilize this assumption in our main derivation and later account
for possible deviations. On the other hand, measurements of I(xi, yi), being
from a single point source, are more accurately characterized by the Poisson
distribution. In either case, the measurements are statistically independent
across the temporal dimension, and exhibit significant variations as shown in
Figure 1(a).
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Fig. 2. An example of a region monitored by three sensors forming an acute triangle.

The detection problem is concerned with inferring the presence of a source,
whereas the estimation problem is concerned with estimating the location (i.e.,
the localization problem) and the strength of the source, if present. The esti-
mates of (xu, yu) and Au are denoted by (x̂u, ŷu) and Âu, respectively. We charac-
terize the solution of the detection problem by the false alarm probability P1,0,
corresponding to the probability of declaring the presence of a source when
none exists, and the missed detection probability P0,1, corresponding to the
probability of declaring the presence of only the background radiation when
a source is present in the monitoring region. In addition, we characterize the
timeliness of the solution method by the detection time which is the size of the
time window or the number of measurements needed to declare the presence
or absence of a radioactive source.

4. SOURCE PARAMETER ESTIMATION

4.1 The 3-Sensor Case

In this section, we solve the source parameter estimation using 3 sensors. We
first present a method to estimate (x̂u, ŷu) using an extension of the geometric
triangulation method in Rao et al. [2007]. We then describe a linear fuser
to estimate the source strength Au. We consider a monitoring area contained
within the acute triangle formed by M1, M2, M3 (as shown in Figure 2 for an
example) to simplify the presentation of the localization method; the triangle
property is not needed in practice, as the presented method can be shown to
work for general geometries [Rao et al. 2007; Xu et al. 2010]. We are given three
sequences of measurements, from Mi for i = 1, 2, 3, collected within the same
time window. These measurements are collected from the sensors and sent to
a centralized server for estimating the source parameters.

4.1.1 Location Estimation. The location of the radiation source can be
estimated by adapting the Difference of Time-of-Arrival (DTOA) algorithm to
ln-space as described in the following. Let mi,1, mi,2, . . . , mi,ni denote a sequence
of ni measurements collected by the sensor Mi within a given time window.
Using the measurements, we compute the mean of measurements at each
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Fig. 3. Errors of location estimation method for 50 simulation runs. The curve denotes the best
fit to normal distribution.

sensor given by m̄i = 1
ni

∑ni
j=1 mi, j for i = 1, 2, 3. The mean is an unbiased

estimate of Au/r2
i for ri =

√
(xu − xi)2 + (yu − yi)2. In terms of expectations,

we have 1
2 ln(E[m̄i]/E[m̄k]) = ln ri − ln rk, which is the difference in distances

of the sensors from the source in ln-space. Let δi,k = 1
2 ln(m̄i/m̄k), such that

δi,k = ln ri − ln rk is valid on average. Let Li,k denote the set of all points (xu, yu)
on a plane such that ln ri−ln rk = δi,k. Our localization method is based on binary
search on L1,2 using δ1,3 as an objective function to locate a point (x̂u, ŷu), such
that |xu − x̂u| ≤ ε and |yu − ŷu| ≤ ε. The implementation details of the search
algorithm can be found in Xu et al. [2010].

We now present simulation results to illustrate the performance of the above
method. The simulation programs are implemented in C using random number
generators from Numerical Recipes [Press et al. 1992] and executed on a Redhat
Linux workstation with a 2.8 GHz Intel processor. In simulations, the position
of sensor M1 and M2 are set at (0 m, 0 m) and (1000 m, 0 m). For M3, the x-
coordinate is randomly chosen from [1, 1000] m while the y-coordinate is fixed
at 1000 m. A radiation source of strength1 Au = 106 counts-per-minute (CPM)
is randomly placed in the 1000 × 1000 m2 surveillance area. The background
radiation is B = 10 CPM. The simulation results are shown in Figure 3. The
average error is 20.07% for 1000 randomly located sources but the errors have a
high variance due to the Poisson measurements. Some example source locations
and their estimators are shown in Figure 5, wherein a line segment joins the
actual location of the source (shown as a filled circle) with its estimator (shown
as a nonfilled circle).

To illustrate the behavior of the location estimation without a radiation
source, we repeat the experiment with background radiation only, where B = 10
and 100 CPM at the sensors. As shown in Figure 6, the ghost sources have been
identified approximately near the centroid of the triangle formed by the sensors
when the measurements are repeated. In the next section, we outline a method
that utilizes the estimated source parameters in SPRT to rule out such ghost
sources.

1The source strengths in the range [105, 106] counts-per-minute (CPM) are still low-level, despite
their apparently large absolute magnitudes, since they generate only small increases (less than
20%) in the measurements over a 1000m × 1000m monitoring area as shown in Figure 4, due to
the quadratic decay of the intensity with respect to distance.
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4.1.2 Source Strength Estimation. Using the source location estimate
(x̂u, ŷu), we have three source strength estimates Au given by Âi = m̄ir̂2

i , for
i = 1, 2, 3, where r̂i =

√
(xi − x̂u)2 + (yi − ŷu)2. We combine these three es-

timators using coefficients that are inversely proportional to their variance
estimates. Since for the Poisson process, both the mean and variance are given
by its parameter m̄i, more weight is given to estimates with a lower variance.
Thus, we have the following fused source strength estimator

Âu =
3∑

i=1

âi Âi

where âi = 1/m̄i∑3
k=1 1/m̄k

.

Using an identical simulation configuration as the previous section, we sim-
ulated 1000 radiation sources randomly placed in the surveillance area with
Au = 5 × 106 CPM and B = 10 CPM. The simulation result shown in Figure 7
indicate significant variations in estimated source strength. The average val-
ues of the fused source term estimator for source strengths in the range of
[5 × 105, 106] CPM are shown in Figure 8.
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4.2 The N-Sensor Case

The parameter estimation problem can also be solved using the iterative prun-
ing (ITP) algorithm [Chin et al. 2008] when N > 3 sensors are available. The
advantage of having more sensors in the same area is that the robustness of
the estimation increases in the face of noise and errors in the measurement
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process. The ITP algorithm executes in two phases. In the first phase, the al-
gorithm computes the position estimates using all combinations of 3 sensors
out of N sensors. For each combination, a ratio of squared distance (RoSD)
method is used to compute the position estimates. The RoSD method uses
the ratio of measured source intensities, which are proportional to the inverse
squared distances between the source and the sensors, to estimate the location
of the source. Given the measured intensities at three locations, Ii = Au/r2

i for
i = 1, 2, 3, RoSD computes two loci L12 and L13 that satisfy the ratio of intensity
measurements where

Lij = {(x, y)|mj/mi = [(xi − xu)2 + (yi − yu)2]/[(xj − xu)2 + (yj − yu)2]}.
An example of the loci and their intersections is shown in Figure 9.
The RoSD method computes the source position estimates by solving the

equation L12 = L13. The solutions of the equation are given by

Âu = [
Lx

12 Ly
12

]� + Lr
12[cos (β ± θ ) sin (β ± θ )]�, (1)

where

β = arctan
Ly

13 − Ly
12

Lx
13 − Lx

12
θ = arccos

Lr
12

2 − Lr
13

2 + C

2Lr
12

√
C

C = (
Lx

13 − Lx
12

)2 + (
Ly

13 − Ly
12

)2

Lx
ij = mixi − mj xj

mi − mj
Ly

ij = mi yi − mj yj

mi − mj
Lr

ij =
√(

xi − xj
)2 + (

yi − yj
)2

mi − mj

√mimj .

In general, there are two solutions to the equation L12 = L13. The ambiguity
is resolved in the second phase of the algorithm. In the second phase, the
algorithm finds the smallest region in which there are at least half of all 2 ×(N

3

)
position estimates, called the candidate estimates. Starting with all the

candidate estimates, the algorithm iteratively prunes at least half of the search
space that contains a smaller number of the candidate estimates, until the
remaining space is smaller than a threshold. Then, the weighted centroid of
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Fig. 10. Example of ghost sources computed by ITP when no radiation source is present. The
triangles denote the locations of the sensors, and the diamonds denote the locations of the ghost
sources.

the remaining candidate estimates is computed as the final position estimate
of the radioactive source.

The overall complexity of ITP algorithm is O(N3 lg A), where A denotes the
area of the surveillance region [Chin et al. 2008]. In the first phase, the com-
plexity of choosing 3 out of N sensors is O(N3), and computing the position
estimate for each combination is O(1). In the second phase, the complexity
of pruning the search space is O(N3 lg A), where A denotes the area of the
surveillance region.

Although localization using N sensors is more robust, the ghost source prob-
lem discussed in Section 4.1.1 applies to ITP localization as well. That is, if we
run ITP localization even if there is no radioactive source present, the algorithm
may still return a position and strength estimate. For instance, Figure 10 shows
a scenario in which there are 20 sensors but no radioactive source. ITP still
estimates a “position” for the ghost source. We need to devise an identification
method to reject such ghost sources.

5. SOURCE DETECTION

In this section, we describe an SPRT for detecting the presence of a source of
estimated rate Âu against the estimated background rate of B̂i. The SPRT is to
be executed at a centralized server because it requires the source parameters
estimated previously at the server (see Section 4).

5.1 SPRT Test

Consider the measurements mi,1, mi,2, . . . , mi,ni collected by sensor Mi within a
given time window and the estimate of background radiation B̂i at this sensor
location. By the definition of the Poisson process with parameter C, we have

P(mi, j) = Cmi, j e−C

mi, j !
.

We utilize the estimate C = Âu/r̂2
i + B̂i if the source is present, and C = B̂i if

the source is not present. Let HC , for C ∈ {Âu/r̂2
i + B̂i, B̂i}, denote the hypothesis

that the measurements correspond to the intensity level C at the sensor Mi.
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Now consider the likelihood function

LÂu/r̂2
i ,B̂i ;ni

=
l(mi,1, mi,2, . . . , mi,ni |HÂu/r̂2

i +B̂i
)

l(mi,1, mi,2, . . . , mi,ni |HB̂i
)

,

where

l(mi,1, mi,2, . . . , mi,ni |HC) =
ni∏

j=1

Cmi, j e−C

mi, j !
.

In the preceding, we utilize the statistical independence property of the mea-
surements. Let the detection error probabilities be P(accept HÂu/r̂2

i +B̂i
|HB̂i

) =
P1,0 (i.e., false alarm rate) and P(accept HB̂i

|HÂu/r̂2
i +B̂i

) = P0,1 (i.e., missed de-
tection rate). It is shown that [Johnson 1961]

E(LÂu/r̂2
i ,B̂i ;ni

|HB̂i
is true and HÂu/r̂2

i +B̂i
accepted) = 1 − P0,1

P1,0
(2)

and

E
(
L−1

Âu/r̂2
i ,B̂i ;ni

|HÂu/r̂2
i +B̂i

is true and HB̂i
accepted

) = P0,1

1 − P1,0
. (3)

Equation (2) states that the expected value of the likelihood ratio is 1−P0,1
P1,0

when
we have a false alarm. In other words, if we declare a source to be present when
LÂu/r̂2

i ,B̂i ;ni
>

1−P0,1
P1,0

, the false alarm rate will be less than P1,0. Hence, we would
obtain nearly the smallest possible number of samples if we declare a detection
as soon as LÂu/r̂2

i ,B̂i ;ni
is larger than 1−P0,1

P1,0
. By a similar argument as Eq. (3),

we would obtain nearly the smallest possible number of samples if we declare
nondetection as soon as LÂu/r̂2

i ,B̂i ;ni
is less than P0,1

1−P1,0
.

In summary, the SPRT procedure can be described as follows:

(i) If LÂu/r̂2
i ,B̂i ;ni

<
P0,1

1−P1,0
, then declare the background, namely HB̂i

;

(ii) Else if LÂu/r̂2
i ,B̂i ;ni

>
1−P0,1

P1,0
, then declare that a source of intensity Âu is

present at location (x̂u, ŷu), namely HÂu/r̂2
i +B̂i

;

(iii) Otherwise, declare that the measurements are not sufficient to make a
decision and continue collecting additional measurements.

The following are the important properties of the SPRT [Johnson 1961].

(a) The expected false alarm and missed detection rates of SPRT are given by
P1,0 and P0,1, respectively.

(b) SPRT also minimizes the expected number of steps needed to reach a de-
cision in a very general sense. More precisely, among all tests to decide
between HÂu/r̂2

i +B̂i
and HB̂i

with the given P1,0 and P0,1, SPRT minimizes
E[ni|HB̂i

] and E[ni|HÂu/r̂2
i +B̂i

] (see Wetherill [1966, Thm, 2.4], for example).

This test can be compactly expressed as

P0,1

1 − P1,0
≤ LÂu/r̂2

i ,B̂i ;ni
≤ 1 − P0,1

P1,0
,
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which can also be expressed in terms of the sum of measurements:

ln
[

P0,1
1−P1,0

]
+ni Âu/r̂2

i

ln
[

Âu/r̂2
i +B̂i

B̂i

] ≤
ni∑

j=1

mi, j ≤ ln
[

1−P0,1
P1,0

]
+ni Âu/r̂2

i

ln
[

Âu/r̂2
i +B̂i

B̂i

] (4)

Notice that the bounds on the measurement sum
∑n

j=1 mi, j increase linearly
with the number of measurements.

The above SPRT is derived under the assumption that the measurements
corresponding to both background and source radiation satisfy the the Poisson
distribution. While point radioactive sources follow such a distribution, it may
not be the case for background radiation of a more complex nature, primarily
because the background radiation could be a combination of multiple sources.
In such a case, the false alarm rate of our SPRT method can be different, and
can be approximated by the area under the background rate distribution PB(x)

for x ≤ ln 1−P0,1
P1,0

+ n Âu/r̂2
i

ln((Âu/r̂2
i +B̂i )/B̂i )

. This distribution can be estimated by utilizing

the empirical distribution of the background radiation at the sensor locations.

5.2 Expected Detection Time

In this section, we show that using an accurate estimate of the source strength
will minimize the expected detection time. We proceed by dividing all sides of
Eq. (4) by ni, yielding

m̄i =
∑n

j=1 mi, j

ni
≤

ln
(

1−P0,1
P1,0

)
+ ni · Âu/r̂2

i

ni ln Âu/r̂2
i +B̂i

B̂i

(5)

for the upper threshold, and

m̄i =
∑n

j=1 mi, j

ni
≥

ln
(

P0,1
1−P1,0

)
+ ni · Âu/r̂2

i

ni ln Âu/r̂2
i +B̂i

B̂i

(6)

for the lower threshold. As the following derivation will be the same for both
Eqs. (5) and (6), we express both equations as

m̄i =
∑n

j=1 mi, j

ni
≶ ln P + ni · Âu/r̂2

i

ni ln Âu/r̂2
i +B̂i

B̂i

(7)

for P = { P0,1
1−P1,0

,
1−P0,1

P1,0
}. Solving the above equation for the critical value of ni

such that the above inequality holds, we have

ni = ln P

m̄i ln Âu/r̂2
i +B̂i

B̂i
− Âu/r̂2

i

(8)

The number of measurements required for SPRT to conclude HÂu/r̂2
i +B (or HB

respectively) is given by Eq. (8) if ni evaluates to a positive value. A nonpositive
value of ni denotes that SPRT will never conclude HÂu/r̂2

i +B̂i
(or HB respectively).
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Fig. 11. Number of samples for SPRT to make a conclusion with varying average sensor measure-
ment for Au/r2

i = 1 CPM, Bi = 10 CPM,P0,1 = 0.01, P1,0 = 0.01.

Differentiating Eq. (8) with respect to Âu yields

∂ni

∂ Âu
=

ln P
(
1 − m̄i

Âu/r̂2
i +B̂i

)

r̂i
2
(
m̄i ln Âu/r̂2

i +B̂i

B̂i
− Âu/r̂i

)2 . (9)

By solving ∂ni

∂ Âu
= 0, we find the threshold Âi that yields the minimum detection

time as

Âu

r̂2
i

= m̄i − B̂i (10)

The preceding computation concludes that the detection/non-detection time is
minimum if the localization step can provide accurate strength and position
estimate of the source as input to the SPRT detection. Because B̂i and Âu/r̂2

i are
estimated, errors in the estimation may cause an undesirably long detection
time. Furthermore, variance of m̄i is relatively large because it is averaged over
a small number of samples. We quantify the number of measurements required
in the presence of imperfect estimations and measurements. Figure 11 shows
the number of measurements required for SPRT to conclude either HÂu/r̂2

i +B̂i
or

HB̂i
for a source measurement that is only 10% higher than the background,

and false alarm and missed detection rates both equal to 1%. The figure shows
that even with a low dose radioactive source, SPRT can make a conclusion
using 97 samples on average. This corresponds to 6 minutes of measurements
using an RFTrax radiation sensor with a 4 second sampling interval.

We use simulations to substantiate the above conclusion. We simulate a
radiation sensor collecting measurements at regular intervals. First, the radi-
ation sensor is subjected to background radiation only for 1500 measurement
samples collected. The background radiation is modeled as a Poisson random
variable with mean λB = 10 CPM. Subsequently, a radiation source is intro-
duced and the measurements are modeled as a Poisson random variable with
mean λAu/r2

i +B = λB + Au/r2
i , where Au/r2

i denotes the strength observed by the
sensor due to the radiation source. We perform SPRT on the measurements col-
lected. In the first attempt, we use a fixed constant multiple of the background
estimate as the source strength estimate Âu/r̂2

i = f B̂i. We explore values of
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Fig. 12. Detection time of different values of f . Au/r2
i = 5, P0,1 = P1,0 = 0.01.

f between 0.1 and 1.0. In the second attempt, we assume perfect estimate of
the source strength and distance, that is, Âu/r̂2

i = Au/r2
i . Figure 12 shows the

detection time using perfect estimates of the strength and location vs. using a
fixed threshold for detection. The figure shows that perfect strength and loca-
tion estimates always yield the minimum detection time. This result indicates
that if the strength and the location of the radiation source are not known in
advance, the proposed identification method will outperform a fixed threshold
detection method.

Despite a shorter detection time, the proposed identification method has
a slightly higher false alarm rate than the fixed threshold detection method,
but the increment does not exceed the specified expected false alarm rate P1,0.
Table I shows the achieved average false alarm rate of the fixed threshold
method (the T column), and the proposed identification method (the P col-
umn). The false alarm of the proposed identification method decreases as the
source intensity increases. The fixed threshold detection method, however, ex-
hibits relatively stable false alarm rate. Table II shows the achieved average
missed detection rate. The result suggests that obtaining accurate estimate of
the strength and location of the radiation source is desirable as it reduces
the missed detection rate. As shown in the table, when Au/r2

i < f B̂i, the
missed detection rate increases beyond the predefined threshold P0,1. This
is because the fixed threshold method expects the source strength to be higher
than the threshold f B̂i. As the actual source strength is lower than the prede-
fined threshold in this case, the method incorrectly concludes that no source is
present, which leads to a high missed detection rate.

6. IDENTIFICATION METHOD

We now combine the source parameter estimation and SPRT methods in the
previous sections to develop a method for source identification. The identifi-
cation method will be executed at a centralized server. Initially, the system is
put into training mode where the background radiation measurements are col-
lected by each sensor and averaged to estimate the local background radiation
level B̂i. Then, the network is put into monitoring mode, and the identification
of the source is achieved using the following procedure.
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Table I. Achieved False Alarm Rates by the Fixed Threshold Detection Method (the T
column) and the Proposed Identification Method (the P column). The Fixed Threshold

is Set to f = 0.3. P0,1 = 0.1

Achieved Average False Alarm Rate

P1,0

Au/r2
i = 1 Au/r2

i = 3 Au/r2
i = 5 Au/r2

i = 10
T P T P T P T P

0.01 0.0055 0.0078 0.0055 0.0055 0.0055 0.0041 0.0055 0.0025
0.05 0.0291 0.0396 0.0293 0.0293 0.0291 0.0217 0.0289 0.0096
0.10 0.0593 0.0817 0.0594 0.0594 0.0593 0.0427 0.0589 0.0179
0.15 0.0868 0.1229 0.0869 0.0869 0.0868 0.0635 0.0865 0.0204
0.20 0.1161 0.1645 0.1162 0.1162 0.1161 0.0764 0.1156 0.0320
0.25 0.1455 0.2086 0.1458 0.1458 0.1457 0.1042 0.1452 0.0347

Table II. Achieved Missed Detection Rates by the Fixed Threshold Detection Method
(the T column) and the Proposed Identification Method (the P column). The Fixed

Threshold is Set to f = 0.3. P1,0 = 0.1

Achieved Average Missed Detection Rate

P0,1

Au/r2
i = 1 Au/r2

i = 3 Au/r2
i = 5 Au/r2

i = 10
T P T P T P T P

0.01 0.6328 0.0124 0.0069 0.0069 0.0001 0.0050 0.0000 0.0026
0.05 0.6726 0.0473 0.0335 0.0335 0.0008 0.0251 0.0000 0.0151
0.10 0.6961 0.0905 0.0647 0.0647 0.0031 0.0490 0.0000 0.0273
0.15 0.7145 0.1334 0.0991 0.0991 0.0081 0.0722 0.0000 0.0302
0.20 0.7283 0.1765 0.1339 0.1339 0.0149 0.0935 0.0001 0.0464
0.25 0.7342 0.2170 0.1580 0.1580 0.0210 0.1293 0.0003 0.0501

(i) Using the readings from the sensors, we estimate the source location (x̂u, ŷu)
and compute the source intensity estimate Âu.

(ii) Using the source location estimate obtained in the previous step, the
thresholds of HÂu/r̂2

i +B̂i
or HB̂i

are determined. We utilize SPRT LÂu/r̂2
i ,B̂i ;ni

to conclude HÂu/r̂2
i +B̂i

versus HB̂i
at sensor Mi. We declare HÂu/r̂2

i +B̂i
or HB̂i

if

and only if the respective threshold conditions, namely LÂu/r̂2
i ,B̂i ;ni

>
1−P0,1

P1,0
or

LÂu/r̂2
i ,B̂i ;ni

<
P0,1

1−P1,0
, are satisfied at a majority of the sensors Mi, i = 1, 2, 3.

Otherwise, more measurements will be collected.

Initially, the default hypothesis is HB̂i
, and the hypothesis will be changed

only if HÂu/r̂2
i +B̂i

is declared by a majority of sensors. The above procedure has
the minimum false alarm rate of the majority sensors that declare HÂu/r̂2

i +B̂i
to

assert the presence of a source. Figure 13 shows a functional diagram illustrat-
ing the identification method.

6.1 Evaluation of Identification Method with 3 Sensors

We evaluate the above identification method by simulations. We measure the
effectiveness of the algorithm by evaluating the detection rate, false alarm
rate, and detection time by varying P0,1, P1,0 and Au. In the simulations, we
randomly generate 1000 radiation sources of strengths Au = 105, 5 × 105, 6 ×
105, 7 × 105, 10 × 105 CPM. The average increase in the radiation level over
the background at these source strengths is below 10% for most of the cases,
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Fig. 13. Functional diagram illustrating the proposed identification method. Thick and thin ar-
rows denote vector and scalar data, respectively.
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Fig. 14. Performance of the proposed identification method.

as shown in Figure 4. However, over a short time period, variations due to the
background could reach 100%. The detection rates for various source strengths
are shown in Figure 14(a) for P0,1 = P1,0 = 0.1, which is 100% for Au = 106 CPM
or higher. Note that the detection rate is higher than 95% for Au = 5×105 CPM
or higher even though the average increase in the radiation level at the sensor
locations is within the range of [5, 10] percent.

The detection times are shown in Figure 14(b), which show a decreasing
trend with increasing Au. The trend is expected as it is easier to detect sources
of higher strengths. The average detection time is less than 300 samples (or
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Fig. 15. Cumulative probability distribution of detection times for the source and background
radiation.

measurements) for Au = 5 × 105 CPM or higher, even though the average
increase in the radiation level at the sensor locations is within [5, 10] percent.
However, the actual detection times show significant variations as shown in
Figure 15(a), for the case of Au = 106 CPM.

When no source is present, the ghost source will be likely located at the
centroid of the triangle formed by the sensors. In this case, however, the corre-
sponding high threshold for HÂu/r̂2

i +Bi
in Step (ii) will not be met and hence, the

false alarm will be cleared. In our simulations with 10000 measurements with
B = 10 and 100 CPM, the proposed method does not generate any false alarm.
However, the average detection times are 159 and 1309 samples for B = 10
and B = 100 CPM, respectively. Nonetheless, the actual detection times have
a high variation as shown in Figure 15(b).

When the expected background radiation level varies among sensors, we ex-
pect the detection time to increase because the location and strength estimates
of the source become less accurate. Generally, the larger the differences in the
background radiation level, the longer the detection time. We evaluate the ef-
fects of the background level by comparing the detection time and detection
rate for dissimilar background levels (〈B1, B2, B3〉 = 〈10, 20, 30〉, 〈10, 30, 50〉)
with the case of a uniform background level (B1 = B2 = B3 = 10). The simu-
lation results presented in Figure 16 agree with our predictions. The average
(and median) detection time with uniform background radiation level is 230.96
(median = 37), whereas the average (and median) detection time with non-
uniform background levels are 341.56 (median = 63) and 619.83 (median =
74) for 〈B1, B2, B3〉 = 〈10, 20, 30〉 and 〈10, 30, 50〉, respectively. In all cases, the
achieved detection is 94%, which is higher than the specified 90% detection
rate.

It is instructive to compare our method with existing approaches.

(a) Compared with the existing detection methods, our method has a more fo-
cused goal of detecting the point source rather than a general increase in
radiation readings. The SPRT guarantees that it is uniformly the most pow-
erful test at a given false alarm rate, in terms of maximizing the detection
rate and minimizing the detection time.
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Fig. 16. Cumulative probability distribution of detection times for varying background at different
sensor locations. The dotted, dash, and solid lines denote uniform background level (B1 = B2 =
B3 = 10), 〈B1, B2, B3〉 = 〈10, 20, 30〉, and 〈B1, B2, B3〉 = 〈10, 30, 50〉, respectively. The sensors are
located at S1 = (0, 0), S2 = (1000, 0), S3 = (600, 1000), P0,1 = P1,0 = 0.1.

(b) Compared with the existing estimation methods, the ghost source phe-
nomenon is strictly controlled by the false alarm probability in our method.
Furthermore, the in-situ estimation of background radiation levels makes
it sensitive to variations in the background radiation across the deployment
region.

(c) Compared with existing methods that utilize a detection method followed
by estimation, the proposed method achieves a lower false alarm rate since
the SPRT does not have to account for all the possible source levels.

6.2 Evaluation of Identification Method with N Sensors

We now evaluate the identification method in conjunction with the N-sensor
ITP algorithm reviewed in Section 4.2. Similar to the 3-sensor case, we measure
the effectiveness of the algorithm by evaluating the detection rate, false alarm
rate, and detection time by varying P0,1, P1,0 and Au in simulations. We use
the same simulation setup as in Section 6.1, except that ITP is now used as
the localization method. Note that the size of the surveillance area remains
unchanged although the number of sensors has increased.

The CDF and statistics of the detection times are shown in Figure 17 and
Table III, respectively, for two levels of the source strength. A system with N > 3
sensors achieves faster detection compared with the case of 3 sensors. With 20
sensors, the median detection time is merely 6 samples compared with 188
samples for 3 sensors (the DTOA plot in Figure 17(b) shows the detection time
in log scale). The improvement is due to the increased localization accuracy
of ITP, which increases as the number of sensors increases. As discussed in
Section 5.2, the detection time is at a minimum when the source strength and
position estimates are exact.

The detection time of a lower-strength source is longer because such a source
is harder to distinguish from background radiation. This is shown in Figure 17,
in which the median detection time is 117 samples for a source strength of
1 × 105 CPM, compared with 5 samples for a strength of 10 × 105 CPM. In
addition, we observe that the detection time grows as the number of sensors
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Fig. 17. Cumulative probability distribution of detection times with 5, 10, and 20 sensors. Back-
ground radiation = 10 CPM, P1,0 = P0,1 = 0.1.

Table III. Statistics of Detection Time for 20000 Repetitions with 5, 10,
and 20 Sensors. Background Radiation = 10 CPM, P1,0 = P0,1 = 0.1

Au = 1 × 105 CPM Au = 10 × 105 CPM
Number of Sensors 5 10 20 5 10 20
Average 209.65 284.09 454.35 5.56 6.06 7.37
Median 117 207 360.5 5 5 6
StDev 263.94 256.20 328.49 3.76 3.58 3.96

increases. Comparing Figure 17(a) and Figure 17(b), we notice that the me-
dian detection time increases from 117 samples for 5 sensors, to 360.5 sam-
ples for 20 sensors. This is because increasing the number of sensors means
that more sensors need to agree on the same conclusion before a decision is
made. For instance, when there are 5 sensors, only 3 of them need to conclude
HÂu/r̂2

i +B̂i
before declaring a detection. When there are 20 sensors, 14 of them

need to conclude HÂu/r̂2
i +B̂i

before declaring a detection. With a low-strength ra-
dioactive source, requiring many sensors to reach the same conclusion will
take longer. Furthermore, some of the sensors may be far away from the
source, and their measurements will have little difference from the background
radiation.

For real deployments, it is oftentimes useful to have a short detection time,
so that any identified threat can be handled promptly. A shorter detection time
can be achieved by relaxing the specified false alarm rate of the system, but
there is a tradeoff between fast detection and reliability. Figure 18 shows that
increasing the allowed false alarm rate from 2% to 10% reduces the detection
time by as much as 50%. Beyond 10%, the reduction in detection time be-
comes smaller as the allowed false alarm rate further increases. On the other
hand, varying the specified missed detection rate does not reduce the detection
time significantly, as shown in Figure 19. The false alarm rate, but not the
missed detection rate, determines the detection time because each additional
sample generally increases the likelihood that a source is present (since the
source is actually present). The algorithm’s output remains inconclusive before
the certainty about the source has reached the specified level, which is the false
alarm rate and not the missed detection rate. If the sensor measurements are
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Fig. 20. Detection rate and time with 5, 10, and 20 sensors. Background radiation = 10 CPM,
P1,0 = P0,1 = 0.1.

close to the background level, for example, the source is not present, then the
missed detection rate plays a major role in the SPRT decision.

The detection rate metric shows the sensitivity of SPRT when dealing with
low-dose radioactive sources. Figures 20(a) and 20(b) show the detection rate
and the corresponding detection time for various source strengths: 1 × 105,
5×105, 6×105, 7×105, 10×105, and 11×105 CPM. The results show that the
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SPRT can effectively detect sources of very small strengths. The detection rate
is close to 100% and the average detection time is less than 10 samples most of
the time. The only exception is when the source strength is extremely low, at
1 × 105 CPM, and there are only 5 or 10 sensors. In such a case, the detection
rate drops to 95% (for 5 sensors) and 90% (for 10 sensors). The detection rate for
10 sensors is lower than that of 5 sensors, because in the 10 sensor case, some
of the sensors are too far away for reliable measurements of the low-strength
source. Because of this, it is harder for the algorithm to get a majority vote of the
sensors to conclude a detection, thus lowering the detection rate. Even so, the
missed detection rate does not drop below the specified missed detection rate of
10%. The result illustrates the ability of SPRT to guarantee the detection rate.
The price of providing the guarantee is in the longer decision time when the
measurements are less clear, that is, when the source is of a lower strength.
This phenomenon is illustrated in Figure 20(b), where the detection time for
a 1 × 105 CPM source is much longer than for the higher source strengths.
Comparing Figure 20(a) and 20(b), notice that even a 20-sensor network gives
a high detection rate (close to 100%) when given a low-dose radioactive source,
but the detection time is longer.

Compared with identification using three sensors (the DTOA plot in
Figure 20), identification using N sensors improves the detection rate signifi-
cantly, especially for low-strength radioactive sources. In addition, the detection
time improves dramatically. For example, with a 1 × 105 CPM source, the de-
tection time decreases from 904 samples for 3 sensors to 210 samples for five
sensors. For a high source strength such as 10 × 105 CPM, the detection time
decreases from 154 samples to only 6 samples.

A false alarm happens when SPRT concludes a detection when there is in
fact no radioactive source present. The situation happens because the radia-
tion measurements are highly variable even when there is only the background
radiation present. To evaluate the false alarm rate of SPRT, we simulate sce-
narios in which there is no radioactive source present and P1,0 and P0,1 are
varied from 5% to 30%. Our results in Figure 21 show that the actual false
alarm rates achieved are well below the specified threshold. With 5 sensors in
the surveillance area, the false alarm rate is only 0.33% for P0,1 = P1,0 = 10%.
With 10 and 20 sensors, there are no false alarms at all. The results show that
SPRT is effective in rejecting ghost sources, while also effective in identifying
the real sources. Moreover, SPRT is able to exploit information by more sensors
to arrive at more accurate answers.

Unlike identification with three sensors, a varying background radiation
level has minimal impact on the method with N-sensors. We simulate three
scenarios with 5, 10, and 20 sensors, and three variations of the background
radiation level. The first variation has all background level fixed at 10 CPM. The
second variation has the background level randomly generated from a normal
distribution with μ = 20 and σ = 10, and the third variation has μ = 30 and σ =
20. The exact values used are listed in Table IV. The false alarm rate, missed
detection rate, and source strength used in the simulations are P0,1 = P1,0 = 0.1
and Au = 5 × 105 CPM, respectively. Our simulation results in Figure 22 show
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Fig. 21. False alarm rate of the identification with 5 sensors using ITP localization algorithm.
Background radiation = 10 CPM.

Table IV. Background Radiation Level at Each Sensor

Bi (CPM) Bi (CPM)
i Uniform Small var. Large var. i Uniform Small var. Large var.
1 10 14 40 11 10 39 15
2 10 19 8 12 10 15 49
3 10 18 37 13 10 16 40
4 10 18 19 14 10 22 40
5 10 26 23 15 10 10 52
6 10 22 63 16 10 33 10
7 10 36 47 17 10 24 56
8 10 13 51 18 10 28 29
9 10 28 3 19 10 38 21

10 10 19 24 20 10 24 30

that the detection time does not change significantly even when the background
radiation varies a lot. This is because the larger background radiation actually
reduces the detection time slightly at some sensors due to larger variance in the
readings. Although this may increase the false alarms at individual sensors,
these false alarms do not impact the overall performance of the system with an
increased number of sensors participating in the SPRT. The detection rate of
the system remains close to 100% even at a high level of background radiation.
This finding agrees with the result presented in Figure 20.

7. EXPERIMENTAL TEST-BED RESULTS

In this section, we present our test-bed experiments. First, we describe the con-
figuration of our testbed in Section 7.1. Then, we present the sensor hardware
and software in Section 7.2. We describe how we use the testbed to emulate
stronger radiation sources and larger deployments in Section 7.3. In Section 7.4,
we present the background radiation data collected for sensor calibration.
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Fig. 22. Cumulative probability distribution of detection times for varying background at different
sensor locations. P1,0 = P0,1 = 0.1, Au = 5 × 105 CPM.

Subsequently, Section 7.5 and 7.6 present evaluation results of the proposed
identification method.

7.1 Test-Bed System Setup

We have set up three radiation detection testbeds at (1) the SensorNet Labo-
ratory at Oak Ridge National Laboratory (ORNL), (2) Purdue University, and
(3) University of Illinois at Urbana-Champaign. All three testbeds have sim-
ilar configurations. Figure 23 shows the equipment layout of the test-bed for
the experiments and Figure 24 shows the test-bed setup at ORNL. The test-
bed at ORNL is intended to emulate an outdoor environment similar to the
ORNL courtyard shown in Figure 25. The components of the test-bed include
a collection of Rad-CZT radiation sensors (currently 3 sensors) from RFTrax
Inc. [RFTrax ], a SensorNet node, and a wireless router.
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Fig. 23. Equipment setup in the radiation test-bed.

Fig. 24. Radiation detection workbench at ORNL emulating the larger courtyard shown in
Figure 25.

Fig. 25. Courtyard at ORNL emulated using a small scale testbed shown in Figure 24.

For the experiments, the SensorNet node software is configured to poll each
sensor every 4 seconds and store the sensor readings in a MySQL database.
Because of limited storage in the SensorNet node, the database is configured
to store only the 10,000 most recent samples of data. In addition to storing the
sensor readings, we have augmented the SensorNet node software to send the
sensor data to a workstation in real time for on-line analysis.
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Fig. 26. The SensorNet node hardware.

7.2 The SensorNet Node

The SensorNet node (see Figure 26) is a rugged hardware platform developed
at ORNL with the goal of allowing a wide variety of sensors to be monitored
and managed over a nation-wide distributed network. The wireless router al-
lows the SensorNet nodes to communicate with each other as well as with an
Ethernet switch connecting the sensors. The radiation sensors (RS485 devices)
connect to the SensorNet node via iServer [iServer]. The iServer proxies the
RS485/232 interface (for the radiation sensors in this case) to an Ethernet in-
terface, thus providing access to the sensors via TCP/IP. In some configurations,
the SensorNet node may be furnished with a broadband modem for connectiv-
ity over a cellular network. This may serve as a backup link if the primary
connection over Ethernet/802.11 fails.

The SensorNet node runs the standard Linux operating system (Fedora
Core) and a software package (the node software) developed by ORNL. The
node software consists of a set of daemons that, under steady-state conditions,
will perform the following operations.

—Query the sensors connected to the SensorNet node for data, and populate the
MySQL database with the data. In addition, the node software analyzes the
data to determine if an alert event should be issued. It utilizes IEEE 1451 as
a means to communicate with a wide variety of sensors/actuators. IEEE 1451
wrappers are implemented for legacy devices that do not support the stan-
dard. For modern sensors that talk IEEE 1451, plug-and-play operation can
be supported.

—Listen to the control center for configuration commands, for example, setting
the sensor polling rate and alert rules.

—Update the current location information for mobile SensorNet nodes and
sensors.

—Archive the sensor data to a control center when requested; for example, for
offline data analysis.

For communication with the control center, each SensorNet node has mul-
tiple network connections. The node software uses at least two independent
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means to communicate with the control center, of which one is assigned as
the primary connection. If the primary connection fails, the data are automati-
cally rerouted through the secondary connection. The connectivity management
module (CMM) monitors the health of all the network links available. The CMM
periodically checks the connectivity to the control center, and reconfigures the
network interface if the control center is unreachable.

7.3 Emulation of Larger Deployments and Stronger Sources

Our test-bed is implemented on a 100 × 100 square-inch workbench shown
in Figure 24 using a radioactive point source of 0.95 μCi. Larger monitor-
ing areas such as the courtyard at ORNL shown in Figure 25 and stronger
sources can be emulated using the testbed as follows. Let remulated and rtestbed

be the emulated distance and actual distance on the test-bed and work-
bench, respectively, such that remulated = sf × rtestbed. Sensor measurements
of a radioactive source of strength Atestbed/r2

testbed in the test-bed correspond
to the measurements of a source of strength Aemulated = s2

f Atestbed in the
emulated configuration. For example, remulated is in meters for the courtyard
shown in Figure 25 and rtestbed is in inches for the workbench. Then, we have
sf = 1 m/1 inch = 100 cm/2.54 cm = 39.37. Thus, we can emulate sources with
Aemulated = 1549.99 × Atestbed in the courtyard. The emulated source can have
a strength of 1472 μCi, which is much higher than the safe level. Thus much
stronger sources can be emulated, for the purpose of sensor measurements, in
our test-bed using only much lower intensity sources, because the distances
between the source and a sensor are also scaled. Hence, we are able to retain
the complexity of the identification problem in the test-bed without using ac-
tual high intensity sources in the experiments. In particular, this emulation
method can be used to map public open areas where radioactive sources cannot
be easily deployed. However, sensors can be deployed in such areas to obtain
background radiation measurements, which can then be used as measurements
in the test-bed. This approach is somewhat limited when the background mea-
surements are not the same in the emulated and workbench areas, but it would
be more accurate than a simulation-only approach.

7.4 Background Radiation Profile

The three radiation sensors were activated to collect background radiation
readings on two different days to build a background radiation profile. A total
of 9,900 samples were collected at a rate of one sample every 4 seconds, for an
equivalence of 11 hours’ worth of data. Figure 27 reports the distribution of
the background radiation. The statistics of the data collected are reported in
Table V.

We performed the z-test for comparing the means of two independent sam-
ples to compare the radiation counts of the three sensors on the testbed. The
test results show that the probability of two sensors producing the same mean
value is 0.63% at the maximum. In other words, the mean values are different
with a 99.37% level of significance, even though the sensors are located within
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Fig. 27. Background radiation distribution in ORNL SensorNet Laboratory. Measurements were
taken on July 23, 2007.

Table V. Statistics of Background Radiation in SensorNet Lab

Day 1 Day 2
Sensor Mean Stdev #Samples Sensor Mean Stdev #Samples
RFTrax1 7.80 7.12 9900 RFTrax1 7.62 7.13 9900
RFTrax2 7.46 7.01 9900 RFTrax2 7.54 7.07 9900
RFTrax3 8.08 7.46 9900 RFTrax3 8.00 7.30 9900

2 feet of each other at the maximum. This experiment concludes that each
sensor requires a separate background radiation profile.

7.5 Localization Method

In this section, we evaluate the localization method on our testbed and report
the localization errors achieved by the algorithm. On our testbed, a CS-137 ra-
dioactive source of strength 0.95 μCi was used with RFTrax RAD-CZT sensors
to collect measurements to estimate the locations of the source using the differ-
ence triangulation method described in Section 4.1.1. In each case, the number
of measurements were within the range of [140, 170] samples. In Figure 28(a),
we show example cases with different source locations and their estimates,
and in Figure 28(b) we show repeated measurements with the same source and
sensor locations. The performance of the localization method is summarized
in Table VI, wherein the top six rows correspond to different sensor and/or
source locations and the other rows correspond to repeated measurements for
the same sensor and source locations. The errors in the location estimates are
plotted in Figure 29 with an average error of 4.87 inches. When no source is
present, the localization method returns ghost sources, as shown in the two
examples in Figure 30.

7.6 Identification Method

In this section, we evaluate the effectiveness of the proposed identification
method using our testbed. In all cases, we vary P0,1 and P1,0 to measure the
detection time of the proposed method. Our results show that the identification
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Fig. 28. Localization accuracy of a Cs-137 radioactive source with different sensors and source
locations (a–f), and different measurements with the same source and sensor locations (g).

method rejected the ghost sources computed based on the background read-
ings. However, the decision time is a function of the false alarm rate P1,0. When
P1,0 = 0.001, the detection time was 339 samples but was reduced to 28 sam-
ples when the false alarm rate was increased from 2% to 40%, as shown in
Figure 31.

The source detection rate varied based on τ , the number of initial measure-
ments used before the SPRT was applied in the experiments. The radiation
levels averaged over 10 minute intervals varied across the measurement sets
both when a source was present and absent as indicated in Figure 32. For the
case in Table VI with P0,1 = 0.1, for τ ≤ 10, the empirical false alarm rate was
0.3, and was improved to 0.1 when τ = 25, and reached 0.0 when τ = 75. We
next examine in details the configuration that missed the detection for τ = 25,
corresponding to Row 5 in Table VI, by varying P0,1 in four repeated sets of
measurements. The detection times are shown in Figure 31, which have lower
values as we increase P0,1 = 0.001, 0.01, 0.1, 0.2, 0.3. Among the four sets of
measurements, one set missed detecting the source for P1,0 = 0.1, 0.2, 0.3.
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Table VI. Experiments with a Real Radioactive Source of Strength 0.95 μ Curies. The Error
Column Shows the Euclidean Distance between the Actual Source Position and Estimated

Source Position

Sensor M1 Sensor M2 Sensor M3 Actual Source Estimated Error
(inches) (inches) (inches) (inches) (inches) (inches)

(0.000, 0.000) (30.602, 0.000) (13.675, 19.949) (13.406, 4.386) (17.115, 2.381) 4.217
(0.000, 0.000) (30.602, 0.000) (13.594, 18.953) (13.406, 4.386) (15.136, 1.739) 3.163
(0.000, 0.000) (22.247, 3.171) (0.580, 24.782) (9.635, 16.086) (8.544, 10.046) 6.138
(0.000, 0.000) (21.417, 3.053) (−0.777, 24.123) (8.651, 14.781) (10.082, 11.542) 3.541
(0.000, 0.000) (20.600, 2.937) (−2.147, 23.407) (7.679, 13.477) (9.818, 10.890) 3.357
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (10.743, 14.296) 3.133
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (14.519, 10.626) 7.952
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (14.225, 12.680) 6.103
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (11.588, 11.532) 6.000
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (13.602, 14.254) 4.518
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (13.223, 13.972) 4.468
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (12.517, 13.061) 4.849
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (10.743, 14.296) 3.133
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (13.007, 12.783) 5.325
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (14.143, 14.415) 4.819
(0.000, 0.000) (30.833, 4.395) (−2.780, 26.101) (10.365, 17.406) (11.626, 11.798) 5.748
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Fig. 29. Cumulative probability distribution of location estimation errors corresponding to
Table VI.

8. CONCLUSIONS

We have addressed the identification problem of a low-level point radioactive
source amidst background radiation. Our solution is achieved by a network
of radiation sensors working in a tightly coupled two-step procedure. Based
on measurements from the three or more sensors, the geometric difference
triangulation method or the ITP algorithm is used to estimate the location
and strength of the source. Then, a sequential probability ratio test based on
current measurements and estimated parameters is employed to finally decide:
(1) the presence of a source with the estimated parameters, or (2) the absence
of the source, or (3) the insufficiency of measurements to make a decision. This
method achieves the specified levels of the false alarm and missed detection
probabilities, while ensuring a close-to-minimum number of measurements for
reaching a decision. The proposed method minimizes the ghost-source problem
of current estimation methods and achieves a lower false alarm rate compared
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Fig. 31. Detection times of the identification method with varying false alarm and missed detec-
tion rates.
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with current detection methods. We have tested and demonstrated our method
using: (1) simulations, and (2) a test-bed that utilizes the scaling properties
of point radioactive sources to emulate high intensity sources that cannot be
easily/safely handled in practice.

Currently, the proposed identification method does not perform well when
the radiation source is moving or there are multiple sources in the surveillance
area. For further research, a more comprehensive identification method with
low latency would be useful to identify multiple moving sources. Moreover, it
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may be possible to improve the estimation of the source strength by using a
training step wherein the fuser can be calibrated, for example, by determining
both an offset and a scale factor.

APPENDIX

A. PROOF OF CORRECTNESS OF DTOA BINARY SEARCH METHOD

We prove the correctness of the binary search method by establishing that
on L1,2 the function δ1,3 varies monotonically so that the binary search can
be supported.2 We show the monotonicity in ln-space for the scenario where
M1 = (0, 0), M2 = (1000, 0) and M3 = (400, 1000). The general case can be
proved along the lines of Xu et al. [2010]. Without loss of generality, we assume:

(a) M1 = (0, 0), M2 = (x2, 0) and M3 = (x3, y3) such that x2 > 0, x3 > 0 and
y3 > 0. Also, x3 < x2.

(b) The source S is located at (xu, yu) such that xu > 0 and yu > 0, and S is
closer to M1 than to M2 and M3; otherwise, we can rotate the triangle and
re-label the sensors by their coordinates.

We have d(S, Mi) = ri =
√

(xu − xi)2 + (yu − yi)2, and let 
(Mi, Mj) =
ln[d(S, Mi)] − ln[d(S, Mj)], for i, j = 1, 2, 3. Then, we have

∂d(S, Mi)
∂xu

= (xu − xi)
d(S, Mi)

and
∂d(S, Mi)

∂yu
= (yu − yi)

d(S, Mi)
.

By Item (b) we have d(S, M1) < d(S, M2) and d(S, M1) < d(S, M3).
The directional derivative of 
(M1, M3) on the locus {(xu, yu)|
(M1, M2) =

δ12}, for any δ12, is given by

∇
(M1,M2)
(M1, M3)

=

⎡
⎢⎢⎣

∂
(M1, M2)
∂xu

∂
(M1, M2)
∂yu

⎤
⎥⎥⎦

T

◦ 1
K

⎡
⎢⎢⎣

∂
(M1, M3)
∂xu

∂
(M1, M3)
∂yu

⎤
⎥⎥⎦

=

⎡
⎢⎣

xu

[d(S, M1)]2
− xu − x3

[d(S, M3)]2

yu

[d(S, M1)]2
− yu − y3

[d(S, M3)]2

⎤
⎥⎦

T

◦ 1
K

⎡
⎢⎣

xu

[d(S, M1)]2
− xu − x2

[d(S, M2)]2

yu

[d(S, M1)]2
− yu

[d(S, M2)]2

⎤
⎥⎦

=
(

xu

[d(S, M1)]2
− xu − x3

[d(S, M3)]2

) (
xu

[d(S, M1)]2
− xu − x2

[d(S, M2)]2

)

2The monotonicity proof of Xu et al. [2010] is valid for δi,k = ri −rk in the distance space as opposed
to the ln-space here.
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+
(

yu

[d(S, M1)]2
− yu

[d(S, M2)]2

)(
yu

[d(S, M1)]2
− yu − y3

[d(S, M3)]2

)

where K = [(
∂
(M1,M3)

∂xu

)2 + (
∂
(M1,M3)

∂yu

)2]−1/2.
Note that x2 > 0, x3 > 0 and y3 > 0. Also d(S, M3) > d(S, M1) and d(S, M2) >

d(S, M1). Then, we conclude that ∇
(M1,M2)
(M1, M3) > 0, for all xu > 0 and
yu > 0.
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