
Pattern Recognition 37 (2004) 1699–1711
www.elsevier.com/locate/patcog

A fast expected time algorithm for the 2-D point pattern
matching problem

P.B. Van Wamelena ;∗, Z. Lib, S.S. Iyengarb;1
aDepartment of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

bDepartment of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

Received 27 May 2003; accepted 1 December 2003

Dedicated to Professor R.L. Kashyap on the occasion of his 61st birthday (Purdue University)

Abstract

Point set pattern matching is an integral part of many pattern recognition problems. We study a randomized algorithm for
the alignment approach to model-based recognition.

Under certain mild assumptions we show that if our scene is a set of n points and our model is a set of m¡n points our
algorithm has expected running time O(n(logm)3=2) for 5nding an occurrence of the model in the scene. This is signi5cantly
faster than any existing algorithms in the literature. We then describe some experimental results on randomly generated data
using a practical version of our algorithm. These results agree well with the theoretical analysis.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Point pattern matching expected time algorithm

1. Introduction

The design and analysis of data structures and algorithms
is an important area of point pattern matching algorithms.
In recent years there have been several signi5cant advances
in this area, ranging from O(n6) complexity to O(n2) algo-
rithms. These advances have focused on developing faster
algorithms and furthermore the results have kindled a lot of
interest in obtaining an optimal algorithm in this area. These
results have produced e9cient solutions to many real-life
problems. For details, see Refs. [1–8]. See also the survey
article [9]. A comparison of these results is provided in
Table 1.

∗ Corresponding author. Tel.: +1-225-578-1675;
fax: +1-225-578-4273.

E-mail addresses: wamelen@math.lsu.edu (P.B. Van
Wamelen), zhili@bit.csc.lsu.edu (Z. Li), iyengar@bit.csc.lsu.edu
(S.S. Iyengar).

1 Partially supported by a DOE-ORNL grant.

Alignment [3] is one of the basic approaches to
model-based object recognition. The method consists of
choosing an ordered pair of points from the model and
then, for every ordered pair of distinct points in the scene,
computing a transformation mapping the model pair to the
scene pair. This transformation is then tested to see whether
it maps the entire model into the scene.

Apparently, the 5rst researchers to consider randomiza-
tion in connection with point pattern matching by alignment
was Irani and Raghaven [5]. Their computational result is
the most e9cient in the literature. We will build on and im-
prove their results. In all the situations they consider their
algorithm always has running time �(n2). This is because
they always align two points in the model with two arbitrary
points in the scene. As there are n2 possible pairs of points in
the scene and any of these can correspond to the model they
all need to be tested. The main idea of this paper is to make
use of the fact that we are looking for the model to occur
in the scene without lots of extra scene points in between
the images of the model points. That is, close neighbors in
the model must map to close neighbors in the scene. We are
looking for a telephone in a room, not a constellation in the

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2003.12.009

mailto:wamelen@math.lsu.edu
mailto:zhili@bit.csc.lsu.edu
mailto:iyengar@bit.csc.lsu.edu

1700 P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711

Table 1
History of results on point set pattern matching algorithms

Year Researcher Technique Geometric properties Complexitya

1980 Ranade and Rosenfeld [1] Relaxation approach Translation diKerences O(n4)
1984 Ogawa [2] Fuzzy relaxation Translation, rotation, scaling dif-

ferences
O(n6)

1987 Huttenlocher and Ullman [3] Alignment Translation, rotation, scaling O(m3n2 log n)
1993 Vinod and Ghose [4] Asymmetric neural networks Translation, rotation, distortion

and noise but not scaling
1996 Irani and Raghavan [5] Randomized alignment Translation, rotation and scaling O(n2m log n)
1997 Chang et al. [6] 2-D Cluster approach Translation, rotation, scale

changes, local distortion, extra
and or missing points

O(n4)

1998 Boxer [7] A sequential algorithm Translations and rotation diKer-
ences in 3D

O(n2(�6(n)=n)1=2) log n)

1998 Chang et al. [8] Nearest neighbors search Translation, rotation, scaling, lo-
cal distortion and extra/missing
points

O(k2n2)

1999 van Wamelen et al Probabilistic, sorted nearest
neighbors

Translation, rotation, scaling, lo-
cal distortion and extra/missing
points

O(n(logm)3=2)

an is the number of points in the pattern to be matched.

night sky. This allows us to restrict the pairs of points in
the scene that needs to be “aligned”. The drawback of this
method is that when we align points that are close neigh-
bors the accuracy of the resulting transformation depends
heavily on how accurately aligned the points were. That is,
we have to be very careful of the errors in the location of
matching points. This makes the algorithm and its analysis
somewhat complicated.

2. Statement of the problem

Suppose two point patternsM and S in two dimensions are
given. That is M ={p1; p2; : : : ; pm} and S={q1; q2; : : : ; qn},
where the pi and qj are points in R2. We will think of M
as a model of some object and S as a scene in which the
model may occur. In particular, n is bigger than or equal to
m. We want to 5nd a similarity transformation Ts;�; tx ;ty , such
that T (M) “matches” some subset of S, where matching
will be made precise below. In the transformation Ts;�; tx ;ty ,
s is a scaling factor, � a rotation angle and tx and ty the
x and y translations, respectively. That is, for (x; y) ∈R2,
we have

T

(
x

y

)
=

(
tx

ty

)
+ s

(
cos � −sin �

sin � cos �

)(
x

y

)
:

To de5ne a match we assume two parameters, the match-
ing probability, �∈ [0; 1] and the matching threshold, t ∈R+

are given. Then we say Ts;�; tx ;ty (M) matches a subset of
S (or occurs in S) if there exists a subset M ′ ⊂ M with
at least �m elements such that for each p∈M ′ we have
|Ts;�; tx ;ty (p) − q|¡t for some q∈ S. We also assume that
the image of the model does not contain many scene points
that are not part of the model image. That is, we assume
that the image (under the matching transformation) of the
convex hull of the model contains at most m scene points
(of which at least �m match the model).

The use of a matching threshold will of course allow for
a slightly “incorrect” match, but more importantly it allows
for noise in the positions of the points, that is, a perturbation
in the coordinates of the points to be matched.

Note that, as stated, it is trivial to solve the above problem:
just transform all points in M to a disc of radius t around a
single point in S. In order to avoid this we will require our
match to not match any two model points to the same scene
point.

What is a reasonable value for t? Suppose the radius of
the set of points S is r (i.e., the point set S lies in a disk of
radius r). Then, assuming uniform distribution of points, the
average shortest distance to the nearest neighbor of a point
in S is r=(2

√
n), see Section 4.1, Eq. (4). It seems reasonable

to choose t to be some constant fraction of this distance. Let
� be this fraction, which will be called the matching factor.
For the rest of the paper, we will assume that t was picked
in this way, i.e.,

t = �
r

2
√
n
: (1)

P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711 1701

In our run time analysis we will assume that � stays constant
as n grows. Note that in general when we think of larger
point sets we think of them as also growing in size. That
is, we think of r as growing like

√
n. In this case we are

essentially keeping the error bound constant. On the other
hand, if we keep r constant then the more points we have
the closer together they lie (on average). In this case, if we
did not let t become smaller, matching would eventually
(for very large n) have no meaning because there would be
many points within t of any position in S.

In our run time analysis, we will assume that the points
in M and the non-matching points in S are uniformly dis-
tributed. Our algorithm will still work in most cases where
this is not true, but it will fail (as would the alignment
method in general) if the model has many regularly spaced
points, that is when it is highly self-similar. See Ref. [5] and
Section 5.3.

We are therefore assuming that S contains a locally dis-
torted image of M under a similarity transformation with
extra and/or missing points. Our problem is to recover the
similarity transformation from the two sets of points. In this
paper, we present a new technique for solving a problem of
this nature.

3. The algorithm

The idea of the algorithm is that, with high probability,
one of the 5rst few random points in M will correspond

Fig. 1. The main loop.

to some point in S. So we take a random point in M and
then search for a point in S such that it matches the point in
M “locally”. By that we mean that there exists a similarity
transformation that maps the nearest neighbors ofM to those
of S. If we 5nd such a map, it is easy to check whether it
also gives a “global” match.

We now describe the algorithm more formally.

3.1. The main loop

The main loop is described in Fig. 1.

3.2. Finding points in S

The precomputation done in Step 1(b), see Fig. 1, allows
one to check, in O(1) time, whether there is a point in S
within a short distance t0 of any coordinate q0(x; y). By short
we mean t0 ¡r=

√
n. We simply 5nd the square (j; k) of the

look-up array in which the coordinate falls and then for each
of the points, q′, occurring in the 8 squares around (j; k)
and the square (j; k) check for a match, that is, whether
|q0 − q′|¡t0. See Fig. 2.

3.3. Comparing nearest neighbors

This algorithm will depend on two parameters, k2 and k3.
Guidelines for the asymptotically best values to choose can
be found in the computational complexity section (Section
4), and some particular examples of good choices in the

1702 P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711

T

Set M

Set S

square i,j
surrounding squares

Fig. 2. Finding points in S.

implementation section (Section 5). The idea for check-
ing whether the nearest neighbors of p∈M match those of
q∈ S, is to assume that two close neighbors that are as far
away as possible from p and q, respectively, correspond
under a similarity transformation. We compute such a sim-
ilarity transformation and then check whether a minimal
number of the nearest neighbors match under this transfor-
mation. More precisely, assume that {a1; a2; : : : ; ak} are the
k sorted nearest neighbors of the point p in M (with a1

the nearest neighbor, etc.) and {b1; b2; : : : ; bk} the k sorted
nearest neighbors of q in S. Then for each of the k2 points
ak−[k3=2]−k2+1 to ak−[k3=2] we compute the similarity trans-
form T sending p to q and ak−[k3=2]−i, in turn, to each of
the k3 b’s closest to bk−[k3=2]−i (that is bk−k3+1−i to bk−i).
For each of these k2k3 T ’s we check whether they give more
than �(k − 1) further nearest neighbor matches. For each T
that does, we check whether that T can be re5ned to give a
global match (see Fig. 3).

Fig. 3. Local matching algorithm.

Note that the bigger we pick k, the further apart p and
ak are and the more accurate T is. On the other hand, if
k is too big, the various errors may cause the ordering of
corresponding nearest neighbors to be diKerent in M and S.
That is why we check k2k3 pairs of close neighbors.

Let p=(px; py) and a=(ax; ay) be two distinct points in
M , and q = (qx; qy) and b = (bx; by) be two distinct points
in S. To 5nd the unique similarity transformation, T , such
that T (p) = q and T (a) = b, we compute s, �, tx and ty
as follows:

s =
|−→qb|
|−→pa| ;

� = angle from−→pa to
−→
qb;

tx = qx − pxs cos(�) + pys sin(�);

ty = qy − pxs sin(�) − pys cos(�): (2)

As a practical improvement we might relax the condition
“if there is a point, q′, in S within t of T (al)” to the point
q′ being within a larger multiple of t of T (al). In practice
we used |T (al) − q′|¡ 2t. The reason for this is that T is
computed from only two points and therefore even if all three
image points q, bk−i−j and q′ are within t of their correct
positions T (al) might be further than t from q′. As will be
seen in Eq. (6) of the run time analysis discussion (Section
4.2), the net eKect is that constants in the O-notation will
be altered, thereby producing only minor diKerences relative
to complexity. It should be noted, however, that there is
a substantial eKect relative to the averaging algorithm for
improving a local match to a global match, as described in
Section 3.4.2 below, because there we assume that we start
with a match that is within t. For purposes of the run time
analysis we will therefore use t and not 2t.

P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711 1703

Fig. 4. Local to global by least squares.

3.4. Finding a global match

In this section we describe two algorithms, least squares
and averaging, for improving a local match to a global
match. The 5rst algorithm is simpler, easier to implement
and probably faster, but is hard to analyze. We therefore
also give the second algorithm which is more involved but
easier to analyze.

3.4.1. Least squares
Suppose T is given and it matches the points {a1; a2; : : : ; al}

in M and the points {b1; b2; : : : ; bl} in S (such that ai
matches bi for each i). We start by re5ning the local match
by computing the best least-squares match between the
points that already match. That is, 5nd the T that minimizes∑l

i=1 |T (ai) − bi|2. See, for example, Ref. [6] for explicit
formulas. We then 5nd all points matching under the re-
5ned T and repeat the process. We abort if we stop 5nding
new matching points. We declare a global match if at some
point we 5nd more than �n matches (see Fig. 4).

3.4.2. Averaging
The idea is to make use of the fact that under any simi-

larity transform the average of n points gets mapped to the
average of their images. This means that if we know that
certain points correspond under a T0 we can 5nd a good
approximation to it by selecting two regions B1 and B2 in
M , computing the averages of points in B1 and B2 and the
averages of their respective images in S and then 5nding
the T sending the two averages to the image averages. Fur-
thermore, if we know that a given T is fairly accurate we
are guaranteed that if we match points with T , but with the
matching distance relaxed, we will 5nd all matching points.
This leads to the algorithm below.

First note that the area common to two disks of radius t
and with their centers a distance t apart is equal to 0:391

c

c

c

r

0

1

2

0

Fig. 5. The disks Br0 (c0), Br0=2(c1) and Br0=2(c2).

times the area of one of the disks. This implies that if, in a
certain region, we check n0 points to see if they match with
points in S under T and 0:391�n0 of them do, then T must
be within t of the correct similarity transform.

Suppose T is given matching some points. Compute the
center of mass of the matched points in S, say c0. Now 5nd
r0 such that everywhere in Br0 (c0) (the ball of radius r0
and center c0), T is within t of the correct transformation.
Such an r0 can be found by checking the percentage of
points that match in a region as explained in the previous
paragraph.

Now pick a point c1 in Br0 (c0) such that |c1 − c0| = r0=2
and let c2 be the point on the opposite side of c0 also at a
distance r0=2, see Fig. 5. For i = 1 or 2, let Li ⊂ M be all
points that match within 2t with points in S ∩ Br0=2(ci). Let
Ki ⊂ S be the points matching the points in Li, that is aj ∈ Li

1704 P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711

Fig. 6. Local to global by averaging.

and bj ∈Ki satisfy |T (aj) − bj|6 2t. Let li be the average
of the points in Li and ki be the average of the points in
Ki. Finally, compute the similarity transform that sends l1
to k1 and l2 to k2. It will be shown below that this new T
is a better match than the old T (in the sense that the new
T will match points in a ball of radius r0 for some ¿ 1).
So repeating this procedure O(logm) times we will get a
global match. See Fig. 6.

To 5nd r0 we could do the following. Divide the set M
up into squares of side length some multiple of t. Then for
each of these squares compute the percentage of points in it
that match under T with points in S. Now 5nd the biggest r0
such that Br0 (c0) contains only images of squares with more
than 40�% matched points. For this to work we will need
the squares to be big enough that computing the percentage
of matches is accurate but also small enough that there are
enough squares to make r0 accurate. We will therefore need
m to be big. This is a big practical concern, but for purposes
of asymptotic analysis no problem.

4. Computational complexity

4.1. Note on the expected distance to the kth nearest
neighbor

In Ref. [10] it is proved that if we place n points ran-
domly, with uniform distribution, in a disk of radius r then
the expected distance from a given point to its kth nearest
neighbor is given by

r√
"

#(k + 1=2)
#(k)

1√
n

(
1 − 3

8n
+ O

(
1
n2

))
: (3)

In particular the expected distance to the nearest neighbor is

r
2
√
n

+ O
(

1
n3=2

)
: (4)

Stirling’s formula implies that

lim
k→∞

#(k + 1=2)

#(k)
√
k

= 1: (5)

In particular

#(k + 1=2)
#(k)

= O(
√
k)

and a good approximation for the distance to the kth nearest
neighbor is therefore

r√
"

√
k
n
:

4.2. Expected running time

We assume m is smaller than or equal to n. We will study
the running time of the algorithm as n and m goes to in5nity
but � and � stays constant. In particular, as noted in the
introduction, we are assuming that r is growing like

√
n.

The precomputation for 5nding the nearest neighbors is
O(n log n + nk log k). See Refs. [11,16].

Constructing the look-up table is clearly O(n).
Suppose that the probability of 5nding a local match be-

tween the k nearest neighbors of a random point pi ∈M and
the k nearest neighbors of one of the points in S, is �0. Then
the probability that we will check through l points in M in
the main loop without getting a local match is (1 − �0)l. So
even for �0 = 0:6, we should get a local match in 99% of
cases after only 5 or less points in M (0:45 = 0:01024).

P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711 1705

In fact we can compute the average number of points we
will need to check in M until we 5nd a local match in S.
With probability �0 we will need 1 point. With probability
(1 − �0)�0 we will need 2 points. With probability (1 −
�0)i−1�0 we will need i points. So we will, on average,
need

�0

∞∑
i=1

(1 − �0)
i−1i = �0

1
�2

0
=

1
�0

points.
So we see that, assuming there is a match, we will exit

the until loop over M and S in Step 2 (Section 3.1) after,
on average, n=�0 executions of the body of the until loop.

What if there is no match? Assume that we have two
point sets and we know that they either match with 5xed
parameters n, � and � or that they do not match. Such a
situation might for instance occur if we have a 5ngerprint
and a large database of 5ngerprints to match against. In
such a situation we can 5nd a good value for �0 by running
the algorithm many times on data for which a match does
exist and computing the average number of points in M that
is checked before a correct local match is found. By the
argument above we know that this value is 1=�0. Now, for
any two point sets we can decide whether they match or
not, as follows. Suppose we want the answer to be correct
with probability x (say 0:99). Then 5nd l such that 1 −
(1 − �0)l ¿ x. Check the 5rst l points in M for a local
match. If this gives a global match then, of course, we know
(with probability 1) that a match does exist. If, on the other
hand, we do not 5nd a match during the 5rst l points, the
probability of this happening (assuming there is a match) is
very small, (1 − �0)l ¡ 1 − x. So if we do not 5nd a match
within l points, we can say, with probability 1−(1−�0)l ¿ x
that in fact none exists.

Note that the probability �0 is very close to, but less
than, the � of the problem statement. This is because even
if p does have a match in S, our algorithm for 5nding lo-
cal matches is not guaranteed to 5nd it. The probability of
missing a correct local match will depend on our choice
of k, k2, and k3. In some cases it might even speed up the
overall algorithm by making choices for these parameters
that make it more likely that we will miss a correct local
match.

Note that checking whether a given similarity transforma-
tion T gives a global match takes time �(m). This means
that we need to make sure that we do not 5nd too many
incorrect local matches. So let us see how big we need to
choose k in order to 5nd only O(1) incorrect local matches
while checking all the points in S against a particular point
in M .

First note that the probability of 5nding a point within a
distance t of a particular random position in S is

n
"t2

"r2
= n

"�2r2

4"nr2
=

�2

4
: (6)

Suppose we pick a close neighbor of each of p∈M and
q∈ S and compute a similarity transformation, T , matching
them. We then check whether there is a point in S within
t of each of the k images T (ai), where the ai are the k
nearest neighbors of p. If we 5nd �k matches or more, we
declare a success. What is the probability of an incorrect T
passing this test? If we assume that each of the k tests are
independent and using the probability found in the previous
paragraph, we see that the probability of 5nding at least �k
matches in k tests is

�k∑
i=0

(
k

i

)(
�2

4

)i (
1 − �2

4

)k−i

:

It is well known (see Refs. [12,13]) that this tail of the
binomial distribution is bounded by

e−2(�−�2=4)2k :

Therefore, we will choose k to be bigger than

lnm
2(� − �2=4)2

:

This ensures that we will get only O(n=m) incorrect local
matches in every n runs.

We need to choose k2 and k3 large enough such that we
do not miss a local match if there is one. The problem is that
because of the noise in the data the images of p’s nearest
neighbors in S might occur in a diKerent order. Also the
missing/extra points forces us to look at extra neighbors.
By the same argument as for the number of points in M
we will need to consider, we see that after checking k2 of
the nearest neighbors of p we will have found a point that
does occur in S with probability 1 − (1 − �)k2 . We want
this probability to be, say, 95%. This probability need not
depend on the size of n because we only need this test to
succeed once. We therefore choose k2 approximately equal
to log 0:05=log(1−�), in particular k2 is O(1). On the other
hand, the nearest neighbors changing their order is a more
serious problem. By Eq. (3), the expected distance to the
kth nearest neighbor of q∈ S is about

rk =
r√
"

#(k + 1=2)
#(k)

1√
n
:

A ring with outer radius rk + t and inner radius rk − t has
area 4"rk t, and so we can expect there to be

n
4"rk t
"r2

=
2�√
"

#(k + 1)
#(k)

points in that ring. This means that the images of two con-
secutive nearest neighbors of p could be O(

√
k) apart in

the sorted nearest neighbor list of q. We therefore choose k3

approximately equal to 2�
√
k=

√
" (see Eq. (5)).

Given T it takes time O(k) to count the number of local
matches. Thus we see that the local matching algorithm in
Section 3.3 takes time O(kk2k3) = O(k3=2).

1706 P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711

By the argument in Section 4.3 below the total time for
5nding a global match from a local one is O(m logm).

Recall that we execute the inner loop in the algorithm
of Section 3.3 a total of nk2k3 = O(n(logm)1=2) times, and
that the probability that any one of them will succeed is
O(1=m) (by our choice of k). We therefore expect to have to
check O(n=m(logm)1=2) local matches to see if they become
global matches. Each such test takes time O(m logm). So
this part of the algorithm takes time O(n(logm)3=2). The
tests for local matches takes time O(n(logm)3=2) and the
precomputations are O(n log n log log n). If m is larger than
any root of n, that is m¿n$ for any $¡ 1, then (logm)3=2

will dominate log n log log n and so we see that our algorithm
has expected running time

O(n(logm)3=2):

4.3. Local to global

In this subsection we want to analyze the averaging algo-
rithm. In particular we want to show that in the algorithm of
Section 3.4.2 we compute O(logm) T ’s before we have a
global match. To do this we will show that, given a T with
a certain r0, the new T will have an expected r0 equal to
times the old one for some constant ¿ 1.

Recall our assumptions: we assume that there exists a T0

(the transformation we are looking for) such that for �m of
the points a in M there is a point of S within t of T0(a)
and that these points are uniformly distributed in the disk
of radius t around T0(a). The other (1 − �)m points of M
are missing in S and S also has some extra points. We will
assume that in the region where M maps under T in S there
are approximately (1 − �)m extra points and that these are
uniformly distributed in this region.

First, let us compute the expected value of |T (ci)−T0(ci)|
for the T given by applying one iteration of the averaging
algorithm.

As explained in Section 3.4.2 the choice of r0 means that
for all a∈M we have |T (a)−T0(a)|¡t, this means that if
a corresponds to b∈ S then |T (a) − b|6 |T (a) − T0(a)| +
|T0(a) − b|¡ 2t and so the sets K1 and K2 will contain all
points that match under T0. Unfortunately, they will also
contain incorrect matches from the missing and extra points.

Let d = n=("r2) be the density of points in S. Then the
expected number of points in Br0=2(ci) is N0 = "(r0=2)2d.

For each of the image points under T there is a probability
of

"(2t)2

"(r0=2)2

that a given uniformly distributed point in Br0=2(ci) will be
within 2t of the particular image. The probability that a
given image point is within 2t of some point in Br0=2(ci) is
therefore

1 −
(

1 − "(2t)2

"(r0=2)2

)N0

¡"(2t)2d = �2:

And so we can expect there to be a total of N2 = �2N0

incorrect matches.
To count the number of correct matches we will assume

that if e.g. a∈M corresponds to b∈ S under T0 but there is
some incorrect b′ ∈ S such that |T (a) − b′|¡ 2t then it is
always closer to T (a) than b is, so that we do not get the
correct points matching up. The number of correct matches
is then given by N1 = �(1 − �2)N0.

If Li={a1; a2; : : : ; ami}, Ki={b1; b2; : : : ; bmi} and li and ki
are the corresponding averages we want to 5nd the expected
value of

|ki − T0(li)| =

∣∣∣∣∣
(

mi∑
j=1

(bj − T0(aj))

)/
mi

∣∣∣∣∣ :
For each of the N1 j’s corresponding to correct matches
the bj − T0(aj) are uniformly distributed in a disk of ra-
dius t around 0. For the N2 j’s corresponding to incorrect
matches the bj’s are uniformly distributed in a disk of radius
2t around T (aj). So, as a worst case, we will assume that
every incorrect match introduces a systematic error of size
t to the average. For instance, this will be the case if for all
a∈M T (a) − T0(a) is a constant of size t. The sum of all
the bj − T0(aj) therefore has an expected value of N2e for
some e∈R2 with |e| = t. The average over all points then
has an expected value of N2=mie. To 5nd the expected value
of the absolute value of this quantity we need to consider
also its variance. After all, if |E(ki − T0(li))| is small but
the standard deviation of ki −T0(li) is large, E(|ki −T0(li)|)
will be much larger than |E(ki−T0(li))|. Fortunately, by the
Central Limit Theorem, the average of mi random variables
each with variance)2 has variance)2=mi. So by taking n
large enough, k will be large and we will be computing an
average over enough points to make the variance as small as
we want compared to the expected value even in the 5rst it-
eration of the algorithm. We can therefore take the expected
value of |ki − T0(li)| to be smaller than or equal to N2=mit.
Let * = N2=mi and note that mi = N1 + N2 and so, by the
formulas above,

* =
N2

mi
=

�2

�(1 − �2) + �2
:

So if � is large compared to �2 then the new transformation
T (sending li to ki) will be close to T0 at c1 and c2. The
lemma below quanti5es how close this needs to be for the
new T to be within t of T0 in a disk around c0 of radius strictly
bigger than r0. For a similar (but much harder) analysis of
the errors introduced in computing an a:ne transform from
points with errors see Refs. [14,15].

Lemma 1. Suppose that T and T0 are two linear trans-
formations such that |T (a1) − T0(a1)|6 + and |T (a2) −
T0(a2)|6 + for two points a1 and a2 and some +∈R+. Let
a0 = (a1 + a2)=2. Then for any a

|T (a) − T0(a)|¡
√

1 +
(|a − a0|

|a1 − a0|
)2

+:

P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711 1707

Proof. If we think of the 2-D point sets as subsets of the
complex numbers, then T : C → C can be written as

T (x) = t + sx

for some t; s∈C. Let v = a1 − a0. For any a∈C write a =
a0 + d0v for some d0 ∈C. For any similarity transform T
we then have

T (a) = T (a0 + d0v)

= t + sa0 +
1
2
d0(2sv)

=
1
2
(T (a0 + v) + T (a0 − v))

+
1
2
d0(T (a0 + v) − T (a0 − v))

=
1 + d0

2
T (a0 + v) +

1 − d0

2
T (a0 − v):

So if we know that |T (a1) − T0(a1)|6 + and |T (a2) −
T0(a2)|6 + we get, for a = a0 + d0v,

|T (a) − T0(a)| =
∣∣∣∣1 + d0

2
(T (a1) − T0(a1))

+
1 − d0

2
(T (a2) − T0(a2))

∣∣∣∣
6
(∣∣∣∣1 + d0

2

∣∣∣∣+
∣∣∣∣1 − d0

2

∣∣∣∣
)
+:

If we 5x |d0| it is easy to show that the largest value |(1 +
d0)=2|+ |(1−d0)=2| takes, occurs when d0 =±i|d0| (where
i =

√−1). This implies

|T (a) − T0(a)|6
√

1 + |d0|2+:

Fig. 7. Two diKerent 5ngerprints from the same 5nger with the feature points circled.

Let us apply the lemma with ai = T−1
0 (ci), i = 1; 2. Set

 = 1
2

√
1=*2 − 1. Then if a is such that |T0(a) − c0|6 r0

we have |a − a0|6 2 |a1 − a0| and so the lemma gives

|T (a) − T0(a)|6
√

1 + 4 2*t = t:

Finally, note that if � and � are such that �2=(�(1 − �2) +
�2)¡ 1=

√
5 then ¿ 1. For instance if �=0:9 then we need

�¡ 0:649, or if � = 0:6 we need �¡ 0:571.

5. Implementation

The algorithm described above was implemented in the
C programming language on a 64-bit processor Sun E450
running at 440 MHz and with su9cient RAM to avoid disk
swapping. We did a case study on an actual 5ngerprint and
tested the program on many randomly generated data sets.
We use the least squares method for 5nding a global match
from a correct local match. As already mentioned the least
squares method should work better on smaller n, and is prob-
ably better than averaging in general (but harder to analyze).
After all, our averaging method does not even use all the
matching points that are available.

5.1. Case study

To test our algorithm on a real world situation, we ap-
plied it to a 5ngerprint recognition problem. We took two
5ngerprint images from the same person and with the fea-
ture points already extracted (see Fig. 7). This gives two
point sets, each with 40 points, that we tried to match using
our implementation. The program easily found a match in-
volving 32 points. If we relax the matching distance up to 4
more points can be matched. In Fig. 8 we give a representa-
tion of the match found. The “x” marks represent the points

1708 P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711

2 4 6 8 10 12

2

4

6

8

10

12

Fig. 8. The match our implementation found between the two sets
of 5ngerprint feature points.

in the set S. The dots represent the images of the points
in the M set (under the similarity transformation found by
the program). Each point that was matched is circled with a
circle of radius t, where t is the matching distance that was
given to the program.

5.2. Random point sets

We also tested the program on a large number of randomly
generated point sets. Some of the results are reported in
Table 2.

Table 2
For each set of arguments, the best parameters and the average results over 100 trials

Arguments Parameters Average time in seconds for

m � - � k k2 k3 k0 n = 2 m n = 4 m n = 8 m

50 0.95 0.175 0.428 5 1 2 3 0.02 0.053 0.089
100 0.95 0.175 0.428 6 1 2 4 0.051 0.099 0.23
200 0.95 0.175 0.428 6 1 2 4 0.13 0.257 0.518
400 0.95 0.175 0.428 7 1 2 5 0.347 0.704 1.401
800 0.95 0.175 0.428 8 1 2 5 0.759 1.596 3.802
50 0.6 0.25 0.61 9 4 4 4 0.504 1.065 2.852

100 0.6 0.25 0.61 10 2 4 5 1.208 2.102 4.479
200 0.6 0.25 0.61 10 2 3 5 2.854 6.612 11.853
400 0.6 0.25 0.61 11 3 4 6 8.257 17.007 34.475
50 0.9 0.4 0.84 8 2 2 5 0.138 0.322 0.613

100 0.9 0.4 0.84 8 1 4 6 0.282 0.607 1.614
200 0.9 0.4 0.84 9 1 3 7 0.797 1.495 3.61
400 0.9 0.4 0.84 9 1 5 7 3.001 5.862 11.491

Here m is the number of model points, n the number of scene points, � is the matching probability and - is the noise factor. �, k, k2, k3
and k0 are the best parameters found for each set of arguments.

For these experiments, in order to make them more realis-
tic, we used normally distributed noise instead of uniformly
distributed noise.

We always took the scene to be n points in the square
[0; 1] × [0; 1]. As a circle of radius

√
1=" has the same area

as this square, we took r (as in Eq. (1)) to be
√

1=". So in
the discussion below if we refer to � it means, by Eq. (1),
that t=0:2821�=

√
n. We use a similar notation for the size of

the noise. We will denote the amount of noise used by -. A
given value of - corresponds to normal noise with standard
deviation of 0:2821-=

√
n.

Recall that for normal 2-D noise with standard deviation
) the proportion of points that will lie within z) of the mean
is given by

1 − e−z2=2:

For instance, in order to 5nd 95% of points one needs to go
to 2.448 times the standard deviation.

The scenes were generated as follows. First we picked
a random square of side length

√
m=n in the [0; 1] × [0; 1]

square. This is where the model will be. We chose m uni-
formly distributed points in the “model square” and a fur-
ther n − m uniformly distributed points outside the model
square (but in [0; 1]× [0; 1]). These n points, after a random
re-ordering make up the scene.

The model was then generated by selecting �m points
from the model square, adding normal noise to these points,
adding another (1 − �)m points (uniformly distributed in
the model square) and then applying a random similarity
transform to these m points.

We tested our implementation with various combinations
of values for m; � and -. For each such choice we used
scenes of size 2m; 4m and 8m. For these combinations we
tried to 5nd those values of -; k; k2; k3 and k0 (the meaning

P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711 1709

Fig. 9. Examples of matches found for diKerent values of � and �. The crosses are the scene points, the dots are the model points. Matching
points are circled with a circle of radius equal to the matching distance.

of k0 will be explained shortly) that gave a 100% success rate
(out of 100 trials) and minimized the average time to 5nd
the match. Note that our analysis of the algorithm implies
that these values do not depend on the scene size, only on
m, � and -. So the values for � and the k’s reported in
Table 2 are close to optimal for the given m, � and -. In
the algorithm as described above, we declare a local match
if �(k − 1) of the nearest neighbors match under a certain
similarity transformation (see Section 3.3). When k is small
we might want to modify this slightly, and so, for these tests,
we declared a local match if k0 or more nearest neighbors
matched. In this way the running times can sometimes be
improved over just choosing k0 = [�(k − 1)].

For each 100 runs we report the average CPU time needed
by the matching part of the algorithm (the precomputation
time excluded, this turns out to be small compared to the
matching time anyway).

As can be seen from the table (and a little computation)
the best values for k, k2 and k3 are close to those predicted
by the theoretical arguments in Section 4, i.e.,

k ≈ lnm
2(� − �2=4)2

;

k2 ≈ log 0:05
log(1 − �)

;

k3 ≈ 2�
√
k√

"
:

In the table we present some of the extremes that our algo-
rithm can handle. The 5rst 5ve entries is the ideal situation
where - is small, meaning that the positions of the points
are relatively accurate and � is high: in this case 95% of
points were constructed to match. It should be noted though,
that because we are using normal noise the proportion of
points that actually match within t will always be less that
� for any choice of t. For the choice of � = 0:428 = 2:45-
we will have only approximately 95% of points that were
constructed to match actually match within t. So in the end
only about 90% of points will match.

The next 4 entries represent cases where only 60% of
points are constructed to match and the error bound is rel-
atively big. Even in these cases the algorithm succeeds in
5nding matches. This value, � = 0:6, is about as low as the
algorithm will tolerate. For lower values of � the success
rate of the algorithm starts dropping below 100%.

1710 P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711

The last four entries represent the case where the error
bound is now very big: the best � is 84% of the average dis-
tance to the nearest neighbor. Again the algorithm succeeds
in 5nding the match (note that � is relatively large though).

The behavior of the algorithm for intermediate values for
� and � can be extrapolated from the table.

See Fig. 9 for examples of what each of the three types of
matches for 50 model points and a 100 scene points reported
in Table 2, look like.

5.3. Non uniformly distributed data sets

As mentioned before, our algorithm would not perform
well if the point sets are highly self-similar (e.g. a grid).
If there was a lot of self-similarity we would get many in-
correct local matches and this would signi5cantly slow the
algorithm down. In Ref. [5] the authors de5ne a measure of
self-similarity and it might be possible to use this to analyze
our algorithm without having to assume that the points are
uniformly distributed in M and S.

6. Conclusion

The design and analysis of data structures and algorithms
is an important area of point pattern matching algorithms.
More importantly, analyzing point set pattern matching is
an integral component of pattern recognition problems.

The intent of this paper is the design and analysis of a
probabilistic similarity transformation matching algorithm.

If m is the number of points in the model and n is the num-
ber of points in the scene, we give a O(n(logm)3=2) expected
time algorithm for the point pattern matching problem and
show that it is faster than any existing algorithms in the lit-
erature. We then describe some experimental results on both
5ngerprints and randomly generated data for the validation
of our theoretical analysis. These results show signi5cant
improvements in running time. We prove our running time
bound rigorously, but we also give a practical version of
the algorithm and show that it performs well on real data
sets.

Our experimental results show that our algorithm is ap-
plicable to a wide variety of problems. The algorithm per-
forms well even if the allowed error is bigger that 80% of
the average shortest distance to the nearest neighbor or the
number of missing/extra points is high: even with only 60%
of points matching the algorithm will succeed. Although we
have concentrated on uniformly distributed point sets, there
is good reason to believe that the algorithm will also work
on data sets with outliers or clustering (but not on highly
self-similar point sets).

References

[1] S. Ranade, A. Rosenfeld, Point pattern matching by relaxation,
Pattern Recognition 12 (1980) 269–275.

[2] H. Ogawa, Labeled point pattern matching by fuzzy relaxation,
Pattern Recognition 17 (5) (1984) 569–573.

[3] D.P. Huttenlocher, S. Ullman, Recognizing solid objects by
alignment with an image, Internat. J. Comput. Vision 5 (2)
(1990) 195–212.

[4] V.V. Vinod, S. Ghose, Point matching using asymmetric
neural networks, Pattern Recognition 26 (8) (1993)
1207–1214.

[5] S. Irani, P. Raghavan, Combinatorial and experimental results
for randomized point matching algorithms, Proceedings of the
12th Annual ACM Symposium on Computational Geometry,
Philadelphia, PA, May 1996, pp. 68–77.

[6] S.-H. Chang, F.-H. Cheng, W.-H. Hsu, G.-Z. Wu, Fast
algorithm for point pattern matching: invariant to translations,
rotations and scale changes, Pattern Recognition 30 (2) (1997)
311–320.

[7] L. Boxer, Faster point set pattern matching in 3-D, Pattern
Recognition Lett. 19 (1998) 1235–1240.

[8] S.-H. Chang, F.-H. Cheng, W.-H. Hsu, An O(n2) algorithm
for 2-D point pattern matching, Pattern Recognition Lett.,
unpublished manuscript.

[9] H. Alt, L.J. Guibas, Discrete geometric shapes: matching,
interpolation, and approximation, in: J.-R. Sack, J. Urrutia
(Eds.), Handbook of Computational Geometry, Elsevier
Science Publishers B.V., North-Holland, Amsterdam, 1999,
pp. 121–153.

[10] A.G. Percus, O.C. Martin, Scaling universalities of kth-nearest
neighbor distances on closed manifolds, Adv. Appl. Math. 21
(3) (1998) 424–436.

[11] M.T. Dickerson, D. Eppstein, Algorithms for proximity
problems in higher dimensions, Comput. Geom. 5 (1996)
277–291.

[12] N.L. Johnson, S. Kotz, Distributions in Statistics: Discrete
Distributions, Houghton MiTin Co., Boston, MA, 1969.

[13] M. Okamoto, Some inequalities relating to the partial sum
of binomial probabilities, Ann. Inst. Statist. Math. Tokyo 10
(1958) 29–35.

[14] W.E.L. Grimson, D.P. Huttenlocher, D.W Jacobs, A study
of a9ne matching with bounded sensor error, Internat. J.
Comput. Vision 13 (1) (1994) 7–32.

[15] P. Indyk, R. Motwani, S. Venkatasubramanian, Geometric
matching under noise: combinatorial bounds and algorithms,
Proceedings of the Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, Baltimore, Maryland, USA, 1999,
pp. 457–465.

[16] M.T. Dickerson, R.L. Drysdale, J.-R. Sack, Simple algorithms
for enumerating inter-point distances and 5nding k nearest
neighbors, Internat. J. Comput. Geom. Appl. 2 (3) (1992)
221–239.

About the Author—PAUL B. VAN WAMELEN received his Ph.D. degree in Mathematics from the University of California at San Diego
in 1994. He then joined the faculty of the Department of Mathematics at Louisiana State University where he is currently an Associate
Professor. He has had 2 year long visits to southern hemisphere universities, the University of South Africa in Pretoria (1997) and the
University of Sydney in Australia (2002/03).

P.B. Van Wamelen et al. / Pattern Recognition 37 (2004) 1699–1711 1711

About the Author—ZI LI was a graduate student in the Department of Computer Science at Louisiana State University and graduated with
a masters degree in System Science. He is currently working for Oracle in San Francisco.

About the Author—SITHARAMA S. IYENGAR is a Chairman and Distinguished Research Master Award winning Roy Paul Daniels
Professor of the Computer Science Department at Louisiana State University. He has published extensively in the areas of high performance
algorithms, data structures and sensor networks. He is a Fellow of ACM, AAAS and IEEE computer societies.

	A fast expected time algorithm for the 2-D point pattern matching problem
	Introduction
	Statement of the problem
	The algorithm
	The main loop
	Finding points in S
	Comparing nearest neighbors
	Finding a global match
	Least squares
	Averaging

	Computational complexity
	Note on the expected distance to the kth nearest neighbor
	Expected running time
	Local to global

	Implementation
	Case study
	Random point sets
	Non uniformly distributed data sets

	Conclusion
	References

