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Abstract 

This paper explores an image processing application of optimization techniques which entails 
interpreting noisy sensor data. The application is a generalization of image correlation; we attempt 
to find the optimal gruence which matches two overlapping gray scale images corrupted with noise. 
Both tabu search and genetic algorithms are used to find the parameters which match the two 
images. A genetic algorithm approach using an elitist reproduction scheme is found to provide 

significantly superior results. 
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1. Introduction 

Robotics is a field which is frequently cited when applications for machine learning 
algorithms are given. Booker et al. describe a fictitious machine responsible for tracking 

and capturing prey as one possible application for classifier systems [5]. Classifier 
systems have also been proposed for use in solving robot navigation problems by 
Zhou [ 181. In addition to genetic-algorithm-based methods, the literature contains many 

applications of connectionist learning methods, neural networks, to robotics [ 8,10,13]. 
This is natural since robotics attempts to make machines which are capable of dealing 

with their environment. If the environment cannot be fully defined beforehand, robotic 
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devices will need some kind of learning mechanism in order to adapt to unforeseen 
constraints. 

The task of constructing reliable robotic systems is complicated by the state of modern 
sensor technology. The currently available sensor devices have limited accuracy and 

return readings which are corrupted with noise [ 12,151. The presence of some kind of 
noise in sensor data is unavoidable, which severely complicates the task of interpreting 
sensor inputs. Decision making based on partially faulty and potentially contradictory 
data is one of the problems limiting the advance of robotics technology. 

Machine learning algorithms, in general, derive general concepts from specific in- 
stances of data received by the system. This causes many traditional learning algorithms 

to be intolerant of noisy data [ 61. This is not surprising. The task of inducing a concept 

is challenging even when data is consistent. On the other hand, machine learning pro- 
grams based on the genetic programming or connectionist paradigms seem to be able to 
tolerate noise in the input data. 

This paper explores a signal processing application of genetic algorithms which in- 
volves interpreting noisy sensor data. The problem is essentially a generalization of 
image correlation. The generalization is done in a way that has not been treated pre- 
viously, and is suited to many real-life applications. It is especially adapted for use in 
“active vision” applications where observations are a part of the dynamic processing. 

Applying genetic algorithms to a problem entails finding the proper presentation of the 
problem in terms of parameters and a fitness function [ 141. In this paper, two different 

genetic algorithms are used to correlate imperfect sensor data. Since the application is 
essentially an optimization problem, a heuristic search method is also implemented for 

comparison. All three algorithms treat data corrupted with noise which is approximately 

Gaussian. The quality of the solutions found, as well as the number of iterations needed, 
is studied as the variance of the noise introduced to the data is increased. 

The problem of finding a solution which is globally acceptable is also investigated. 
The genetic algorithm using an elitist reproduction scheme is found to produce the best 
results: both in terms of solution quality and noise tolerance. 

2. Problem statement 

Two sensors return two-dimensional gray scale data from the same environment. 
The sensors have identical geometric characteristics, return readings covering a circular 

region, and it is known that these readings overlap. Both sensors’ readings contain noise. 

What is not known, however, is the relative position of the two sensors. Sensor 2 is 
translated and rotated by an unknown amount with relation to sensor 1. 

If the size, or the contents, of the overlapping areas were known, it would be possible 
to perform a correlation using the contents of the overlap on the two images and find the 
point where they overlap directly. Since this information is unavailable, this approach is 

impossible. 
The best way to solve this problem depends on the nature of the terrain being observed. 

If unique landmarks can be identified in both images then it is possible to attach the 
two images at those points. Depending on the number of landmarks available minor 
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Fig. 1. View of terrain used for matching sensor readings. Position and orientation of sensors in gray 

adjustments may be needed to fit the readings exactly. It is assumed in this work that 

landmarks are not readily available in the sensor images. 
The model which has been used to represent the terrain here has several periodic 

components combined with non-periodic elements. The equation used is: 

terrain(x, y) = 100.0 + &(-40x + 45~ - 0.003xy + 0.02x2 - 0.01~~ 

-20~ sin( &x) + 35ycos( $y) 

-35 sin( ax - &y) + 12xcos( I&y) ) . 

This equation was found through trial and error, and the result is vaguely reminiscent 
of mountainous terrain. This terrain model is shown in Fig. 1. It consists of a 512 x 512 
gray scale array. 

This model has been chosen since it presents two characteristics which are necessary 
for the problem to be solvable, but not trivially solvable. Since it has non-periodic 

elements, there will be a unique best match for the two sensors. The periodic elements 
in the model mean that this match is not obvious: an algorithm which searches for the 
best match will have to be capable of dealing with local minima in the search space. 
The effects of the local minima is aggravated by the noisy character of the sensor data. 
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Fig. 2. Sensor I reading with an error variance of 33 

Fig. 3. Sensor 2 reading with a noise variance of I 

A noisy sensor reading is shown in Fig. 2. which gives an example of readings from 

the terrain returned by sensor 1. Fig. 2 has a variance of 33. Since the gray scale used 
has only 256 levels, a variance of 33 obscures a large amount of information in the 
sensor readings. This reading is from the center of the terrain. It has not been rotated, 
its center is at point (256,256) using the upper left-hand corner as the origin. 

Fig. 3 gives a corresponding example of sensor 2 readings used in this project. It 
has a noise variance of I. Note that the relation between the readings is not intuitively 
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obvious, and that several possible correlations exist. There is, however, one registration 
which is the best mapping of the sensor 2 data onto sensor 1. This reading is centered 
at the lower right-hand edge of the sensor 1 reading, which is point (347,347). It has 

been rotated by 2.74889 radians (157.5 degrees). 
Thus, the problem to be solved is: given noisy gray scale data readings from sensor 

1 and sensor 2, find the optimal set of parameters (x-displacement, y-displacement, and 
angle of rotation) which defines the center of the sensor 2 image relative to the center 

of the sensor 1 image. These parameters are optimal in that they give the best mapping 

of sensor 2’s readings to the readings from sensor 1. 

3. Algorithms 

Three different approaches were used to solve the problem. All of them can be 
presented as methods for finding a global optimization in the presence of local min- 

ima. 

3.1. Fitness function 

The algorithms used need to compare the quality of different sets of parameters. 
All the approaches used in this research were implemented using the same fitness 

function. 
The noise which is introduced is approximately Gaussian. Gaussian noise, also known 

as white noise, follows a normal distribution and has an expected value of zero. The 
noise introduced here follows a normal distribution as much as possible, but the gray 

scale used has a range limited to 256 discrete values. A pixel with a gray scale of 255 
cannot have a larger value due to noise since the resulting value will go beyond the gray 

scale, but noise can reduce the value of that pixel. A similar effect exists for pixels with 
a gray scale value of 0. In spite of this, the assumption was made that, over the entire 
intersection, there will be no appreciable bias to the noise. 

The fitness function is derived by first computing the intersection between sensor 1 
and sensor 2 using the parameter set to be evaluated. The gray levels of every pixel 

from sensor 1 in the intersection are compared with the gray level of the corresponding 

sensor 2 pixel. If readi (x, y) is the value returned by sensor 1 at point (x, y) and 

read:! (x’, y’) is the reading returned by sensor 2 at point (x’, y’), point (x’, y’) is found 
by reversing the translation and rotation defined by the parameters being tested. It is 

possible to present the difference of readi (x, y) and read2( x’, y’) as: 

readi(x,y) -read~(x’,y’) 

= (ul(x,y> +noisel(x,y)) - (u2(x’,y’) +noise2(x’,y’)), 

where u1 (x, y) and u2( x’, y’) are the actual gray scale values and noise, (x, y) and 
noisez(x, y) are the noise in the sensor 1 and sensor 2 readings respectively. 

This expression can be rewritten as: 
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readt(x,y) - readz(x’,y’) 

=(ui(x,y) -u~(x’,Y’)) + (noiset(x,y) -noise*(x’,y’)). 

If we square this value and sum it over the entire intersection this becomes: 

c (readi(x,y) ~ readl(x’,p’))’ 

= 
c ((~‘i(x,y) -- I’~(.x’.#)) + (noisci(x,y) - noise*(x’,y’)))‘. 

Note that when the parameters arc correct the gray scale values ~‘1 (x.~) and L’z(x’,~‘) 
will be identical, and this expression becomes: 

x(readr(x.y) -rcad~(.r’,!,‘))~=C(noise,(i,v) -noise2(x’.y’))‘. 

Since all noise follows the same distribution with the same variance the expected value 
of this is identical for all intersections of the same area and, as such, the minimum 

value for the function over all intersections of a given area. Variation in this value 
thus consists of two parts: the difference in the gray scale values of the noise-free 

image, and a random factor which is distributed according to a Chi-square distribution 
of unknown variance. The number of degrees of freedom for the Chi-square distribution 
is the number of pixels in the intersection. 

It is possible to have small intersections which match coincidentally. In order to favor 
intersections of larger area we divide by the number of pixels in the intersection squared. 
The fitness function thus becomes: 

c (read! (x,y) - reads(x’,y’) )L/(number of pixels in the intersection)‘. 

The expected value of a Chi-square function is the number of degrees of freedom, and 
the number of degrees of freedom in this case is equal to the number of pixels in the 
intersection. In the case of a perfect fit (ic., 1’1 (x, y) = LI~( x’, y’) ) the expected value 
of this function is therefore within a constant factor of: 

1 /(number of pixels in the intersection) 

This function is the summation of the error per pixel squared over the intersection of 
the sensor 1 and sensor 2 readings. As shown above, the unique global minimum of this 

function is found when using the parameters which define the largest intersection where 
the gray scale values of sensor 1 are the same as the gray scale values of the translated 
and rotated sensor 2 reading. 

In practice, this fitness function adequately reflects the quality of the answers repre- 
sented by a given set of parameters, as is shown by the simulation. Note that all three 
algorithms used in this paper depend on this fitness function being an accurate measure 
of the quality of a potential answer. 

Other fitness functions could exist which adequately represent the quality of potential 
answers. Since these functions measure the same effects as the fitness function derived in 

this section, the values returned by these hypothetical functions must be approximately 
equal to the values given by the fitness function used here. Two accurate metrics 01 



R.R. Brooks et al./Artificial Inielligence 84 (1996) 339-354 345 

the same phenomenon must give similar readings. For this reason, replacing the fitness 
function with another equally valid function would not severely affect the results of 
the experiments presented in this paper. The fitness function derived in this section is 

suited to measuring the gruence of noisy images since it has a global minimum where 

the non-stochastic portion of the data provides the optimal answer, and the stochastic 

portion of the data is represented by a consistent known statistical distribution over the 
entire answer space. 

3.2. Tabu search 

The first method which is used is called “tabu search”. This search is often used as an 

alternative to simulated annealing. It is similar to simulated annealing in that it provides 
a method for adapting existing search heuristics to problem spaces which contain local 
minima. 

Tabu search involves modifying an existing heuristic search by keeping a list of the 

nodes in the search space which were visited most recently by the search algorithm. 

These points then become “tabu” for the algorithm, where “tabu” means that these points 

are not revisited as long as they are on the list. This simple modification will allow a 
search algorithm to eventually climb out of shallow local minima in the search space. It 
requires less computation than simulated annealing, while providing roughly equivalent 

results. Several questions are being studied as to how to optimize tabu searches, such as 
the optimal length for the tabu list [ 31, and methods for implementing parallel searches 
[ 171. Our implementation uses a tabu list that is considered infinite. 

The implementation of the tabu search used here relies on a “greedy” heuristic and 
starts with all parameters set to zero, i.e., there is neither translation nor relative rotation 
between the two readings. The search can move one pixel in each x-direction, one pixel 
in each y-direction, or by rotating plus or minus one degree. The algorithm evaluates 

how well the two sensor readings would match, using the fitness function, for each of 

these six possibilities. Naturally, the search chooses to visit the next node in the direction 
with the minimum value for the fitness function. When one of these parameter sets is 
visited it is placed on the tabu list. 

Values on the tabu list are disqualified for consideration in the future. Should the 
search arrive at a neighboring point later, the fitness function value given to parameter 

sets on the tabu list is set to a very large value. 

As each parameter set is visited by the search, the value attributed to it by the fitness 
function is compared to the parameter set already visited with the smallest value for the 

fitness function up to this point. If the value is smaller the parameter set now becomes 
the best fit found. 

Each iteration of the algorithm is run on a new instance of the noisy sensor 1 and 2 

readings. 
It is impossible to find a clear stopping criterion for this algorithm since the only 

way to be sure that the global minimum for the fitness function has been found is 
through an exhaustive search of the search space. This study was done by comparing 
the results from a given number of iterations of the tabu search with the results obtained 
by performing the same number of iterations with the genetic algorithms. 
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3.3. Genetic algorithms 

Genetic algorithms are a computational paradigm which has been implemented suc- 

cessfully as a solution to many optimization problems. In this paradigm, possible answers 
to the problem are stored as strings. A large set of these strings then forms a gene pool. 

The quality of these possible answers can be evaluated using a fitness function. The 
relative quality of the answers provided by the strings is used to create a new generation 
of strings, where the contents of strings providing answers of high quality are more 

likely to continue into the next generation. A general discussion of genetic algorithms 
can be found in [ 161. 

A large number of strategies exist for determining the contents of a new generation. 

This project used two different strategies to contrast their effectiveness. 

The strings used to characterize the problem here consisted of the same parameters 
used for the tabu search: the offset in the .x-direction, the offset in the v-direction, and 

the angle of rotation. Resolution in the X- and y-directions is one pixel. Angles vary 
with a resolution of one degree. The fitness function used has also been described above. 

The gene pools consisted of 150 sets of parameters which were initialized with random 
values at the start of the program. 

The two different genetic algorithms which were used differed only in their reproduc- 

tion strategies. 

Classic 

The first strategy has been described by Holland [ I 11. Each string in the gene pool 
is evaluated by the fitness function. Based on the quality of the answer represented by 

the string it is assigned a probability of being chosen for the pool of strings used to 

produce the next generation. Those with better answers being more likely to be chosen. 
In our implementation the values of the fitness functions for all members of the gene 

pool were summed. The value of the fitness function for each member of the pool was 

then divided by the sum giving the probability of that string being used for mating. 
A mating pool is then constructed by choosing strings at random from the gene pool 
following the probability distribution derived. 

The new generation is then formed by mixing the elements of two strings in the mating 
pool chosen at random. This is generally called crossover. In both genetic algorithms 
used in this study a crossover probability of one was used. 

Since our strings consisted of three elements, the result of this mixing always consisted 

of two elements from one parent and one from the other. Which element was switched 
was chosen at random and all three were equally likely. 

A certain amount of mutation exists in the system, where one element at random is 

replaced by a random value. In our implementation mutation occurs once with every 
700th string processed. 

Elite 

The second strategy applied has been described in a recent paper by Bean [ 41. This 
strategy is described as elitist since 20% of the strings with the best fitness function 
values are copied directly into the next generation. 
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Fig. 4. Path taken by 325 iterations of a tabu search algorithm in searching for match with variance of 1. 

In addition to this, in our implementation, 3% of the strings for the next generation 

are the result of random mutations. In this implementation the random mutations were 
strings where all three elements were chosen at random. 

The rest of the new generation is formed by performing crossover between random 
strings in the current generation. The choice is done entirely at random, no weighting 

based on the quality of the string is performed. 
Bean reports that this strategy has been found to be stable experimentally. Its imple- 

mentation is straightforward. 

4. Results 

All three algorithms were applied to the same sensor readings. Each iteration of 
the algorithm was performed against a new sensor reading. All sensor 1 and 2 readings 

covered the same region, but new noise values were introduced each time. This resembles 
the situation which would be found in a dynamic environment. Using sensor readings 

which covered regions that change over time should make the problem easier to solve 

since local minima in the search space would tend to be transient. 
The results which follow were obtained by using increasing values for the variance of 

the Gaussian noise. Comparison between the various methods was based on the value 
of the fitness function for the best reading found. 

4.1. Tabu search 

Fig. 4 shows the path taken by the tabu search algorithm when searching for an 
optimal match between the two sensor readings with a noise variance of 1. The search 
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Iterations (x 25) 

m Elite GA - Taboo search m Classic GA 

Fig. 5. Fitness function results. 

b oo---~ i 

Iteration:, (X 25, 

I Elite GA m Taboo Search m Classic GA 

Fig. 6. Fitness function results. 

started at the middle of the sensor I reading. Note that the correct answer would have 
been at the bottom right-hand edge of the sensor 2 reading. It is interesting to note that 

even in the presence of noise with a variance of 90 which is strong enough to obscure 
most of the information contained in the picture. the search took approximately the same 
path as with very little noise. 

The charts in Figs. 5 and 6, which show the value of the best parameter set found 

by the search: confirm this observation. The algorithm tended to move towards locally 
optimal values and performed in a stable manner. 

Unfortunately the answer found was not close to the globally optimal values for the 
parameters. 

1.2. Classic reproduction schenze .ftir genetic algorithms 

Fig. 7 shows the values 01‘ the gene pool after one generation of the genetic algo- 
rithm using the classic reproduction scheme. Fig. 8 shows the same scenario after 100 
generations. Note that the parameter set at the lower right-hand corner which is closest 
to the correct answer is no longer present. 

The gene pool values found after a number of generations with variance values of 50 
and 90, show that even in the presence of noise the values contained in the gene pool 
tend to converge. Unfortunately the convergence is not towards the globally optimal 
values. 
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Fig. 7. Gene pool values after one generation of the genetic algorithm using classis reproduction. 

Fig. 8. Results of classic reproduction GA after 100 generations with a variance of 1. 

Figs. 5 and 6 show the relationship of the fitness function value of the best parameter 
set to the number of generations used by the algorithm. Oddly enough, the value tends 
to increase instead of decrease as would be expected. The algorithm tended to remove 
the parameter sets with extreme values for the fitness function. This converged towards 
values which were stable but far from the global optimum. 
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Fig. 9. Gene pool after IS0 generations of the genetic algorithm with elite reproduction and variance I 

Fig. 10. After IO0 generations with variance SO. the gene pool found by elite reproduction scheme. 

4.3. Genetic algorithm with elite reproduction scheme 

Fig. 9 shows the gene pool found by the elite reproduction scheme after 150 genera- 
tions. Notice that Figs. 9 and 10 both contain values very close to the globally optimal 
value. The genetic algorithm with the elite reproduction scheme tended to converge 
towards the globally optimal value even in the presence of moderate noise. 
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Variance n-displacement y-displacement Rotation 

1 89 91 2.74744 

10 92 92 0 

20 91 91 2.74744 

30 89 89 2.74744 

50 86 -18 2.79768 

70 -48 6 6.02138 

90 0 5 I .23297 

The results after 75 generations with the variance of the error set to 90 show that 
the amount of information in the image has been severely compromised, and that no 

parameter sets are found near the globally optimal answer. 

The graphs in Figs. 5 and 6 verify that this algorithm tended to converge rapidly 
towards very good solutions to the problem. In fact, the shapes of the graphs are 

surprisingly similar considering the differences in the images they are treating. 
In spite of the fact that the algorithm converged towards good solutions even in 

the presence of overwhelming amounts of noise, there was a limit to its ability to 

find the globally optimal solution. Note that the globally optimal parameter values are: 
x-displacement = 91, y-displacement = 91, rotation = 2.74889 radians. 

The values found by the algorithm are shown in Table 1. These values show that the 
algorithm does not always find the globally optimal values, but it tends to do a good job 
even in the presence of moderate amounts of noise. However, once the noise reaches a 
point where it obscures too much of the information present in the image it no longer 

locates the optimal values. 
It is also worth noting that the quality of the answers found is not strictly a function of 

the noise variance. This is a consequence of the stochastic nature of genetic algorithms. 
Since the original gene pool and mutations are chosen at random, the quality of the 
answers found by the algorithm is also partially random in nature. Genetic algorithms 

are based on comparing the results of a number of random choices. The answers found by 

the elitist reproduction scheme show this strategy can be effective in finding reasonable 
answers to combinatorial optimization problems. On the other hand, the results found 
are non-deterministic in nature and the quality of the algorithm’s results depend partially 
on the random nature of this method. 

5. Conclusion 

The problem posed was to find ways of automatically calibrating two noisy sensors 
using optimization methods. This has been shown to be possible as long as the noise is 
held within certain limits. 

Several attempts have been made to solve this type of problem, this is the first 
attempt which matches noisy gray scale images. Several algorithms exist for roughly 
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equivalent problems, the other algorithms are more specific in that they assume that the 
image consists of a small number of distinct features which can be matched [ 1,7], that 

specific shapes are to be matched 191, or that the relative displacement is small [2]. 
This paper assumes none of those restrictions, the tests were run using gray scale images 

with many possible approximate matches and a large displacement. The approach can 

be used on any arbitrary gray scale image. 
It is necessary to register the readings from sensor 2 with the readings from sensor 

I. This can be done by finding three parameters: the offset of the two sensors in the 
x-direction, the offset in the v-direction, and the angle of rotation between them. 

Three methods have been attempted: tabu search, genetic algorithms using a classical 
reproduction scheme, and genetic algorithms using an elitist reproduction scheme. Of the 

three, the genetic algorithm using the elitist reproduction scheme has tended to produce 
the best results. It often found even close to globally optimal results. 

All three approaches are able to deal with data containing reasonable amounts of 

noise. The genetic algorithm using the elitist reproduction scheme was able to continue 

to find answers with two out of three parameters very close to the optimum even when 

the noise variance was set to 50. With possible values ranging only from 0 to 255 
noise at that level severely distorts the actual image. It is therefore safe to say that the 

genetic algorithm paradigm when implemented with an elitist reproduction scheme is 
very tolerant to noise. 

Tabu search is more sensitive to local minima than the genetic algorithms, since 
its searching mechanism only considers points in the search space which are in its 
immediate vicinity. It quickly converges to the local minima. It may take a prohibitively 

long time, however, for the search to climb its way out of the local minima. Genetic 

algorithms have the advantage that they can simultaneously process many different 

possible answers and are not constrained to looking for local minima. 
The elitist reproduction scheme preserves the members of the gene pool which have 

the best performance. This contrasts with the classical scheme where the quality of the 
best answers may degrade as the algorithm progresses. The elitist scheme keeps the 
best answers from preceding generations forcing the quality of the best answer to be 
monotone increasing, as shown in Figs. 5 and 6. This is why the elitist scheme is most 
suited to this application where a single best answer is sought. Fig. 10 shows an elitist 
gene pool with a few near optimal answers and several far from optimal answers. 

The classical reproduction scheme produces a new generation by mixing genes be- 
tween members of the current gene pool. Higher quality members of the gene pool 
are more likely to be chosen for reproduction. Genetic algorithms that use the classical 

scheme produce a new generation of higher average quality than the previous generation. 
The average quality of answers using the elitist reproduction scheme described in this 
paper may decrease from one generation to the next. Figs. 1 1 and 12 illustrate this point 
by comparing the average error of gene pools derived by this application. As the process 
continues, the classical gene pool will contain a diverse number of answers, and the 

average quality of answers in the gene pool tends to increase. Fig. 8 illustrates a gene 
pool containing a number of good possible answers which are unfortunately far from 
the optimal answer. When using the classical scheme a near optimal answer is unlikely 
to be carried over unchanged into the next generation. For this reason, the quality of 
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Number of iterations (x 25) 

m Classical Scheme m Elitist Schenr: 

Fig. 1 I. Average answer quality. 

Number of iterations (x 25) 

I Classical scheme m Elitist scheme 

Fig. 12. Average answer quality. 

the best answer found by the classical scheme may decrease from one generation to 
the next, as shown in Figs. 5 and 6. For these reasons the elitist reproduction scheme 
provides better results than the classical reproduction scheme for this application. 

Tests have been made using terrain models other than the equation used for Fig. 1. 

The results presented in this paper are typical for all terrain models tested. The terrain 
models tested were all qualitatively similar in that they contained both periodic and 
non-periodic elements. Removing the periodic components of the terrain modifies the 
original problem, changing the nature of the problem space being searched. Gruences 
for a terrain model with little or no periodicity are much easier to find and deterministic 

search algorithms could then be used to solve the problem posed in a straightforward 

manner. 
The problem posed has many possible applications. It is also worth repeating that 

the problem would be easier to solve in a dynamic environment. If the image varies as 
well as the noise, local minima would tend to be transient, in which case, this approach 
would be especially relevant to active vision research. 
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