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ABSTRACT

In this paper we consider the following problem: A point
robot is placed in a terrain populated by unknown number of
polyhedral obstacles of varied sizes and locations in two/three
dimensions. The robot is equipped with a sensor capable of
detecting all the obstacle vertices and edges that are visible
from the present location of the robot. The robot is required
to autonomously navigate and build the complete terrain
model using the sensor information. We establish that the
necessary number of scanning operations needed for com-
plete terrain model acquisition by any algorithm that is based
on "scan from vertices® strategy is given by iN (0;)-n and

i=l
iN(O,—)—-Zn in two and three dimensional terrains respec-
i=l
tively, where 0={0,,0,,--,0,} is the set of the obstacles in
the terrain, and N (O, ) is the number of vertices of the obstacle
0;.
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1. INTRODUCTION

In recem years there has been an enormous amount of
research activity generated in the area of navigation and path
planning for mobile robots. Much of this work could be
thought of as an offshoot of the pioneering works of Lozano-
perez and Wesley (1], Reif {2], Schwartz and Sharir [3], and
O’Dunlaing and Yap [4]. In this work the robot is located in
a terrain whose model is precisely known. A path ha. to be
planned to navigate a robot from a specified point to a
specified destination point (if such path exists). A
comprehensive survey of these and related techniques for
robot path planning is available in Whitesides [S]. Another
important problem is the nagvigation in unexplored terrains.
Here the robot is equipped with a sensor with which the robot
scans the temain, and a navigation path is planned based on
these sensor readings. In general several sensor operations
are nceded for planning a navigational course. Lumelsky 2~d
Stepanov [6] present nice solutions to a restricted version of
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this problem. Iyengar et al [7] and Rao et al [8] present a
technique that utilizes the sensor readings to coastruct a
world map through incidental learning. Oommen et al [9]
presents a more formal treaiment for the case of convex
polygonal obstacles. In these approaches the terrain model
acquisition is purely incidental i.e., the construction of the
terrain model is only secondary and scanning is performed for
the purpose of navigation.

Another important problem in the navigation in unex-
plored terrains is the Terrain Acquisition Problem in which
the robot is required to autonomously navigate and build the
complete terrain model through the sensor readings. In this
paper we consider the following version of terrain acquisition
problem: A point-sized robot M is placed in a two/three
dimznsional obstacle terrain O. The terrain O is populated by
the set of obstackes {0,,0,,---,0,}, where 0; is a
polyhedron. We assume that O is finite, i, O can be
inscribed in a circle/sphere of finite radius in two/three
dimensions. Furthermore each O; is finite and had a finite
number of vertices. Initially the sizes and locations of the
obstacles are totally unknown to the robot. The robot M is
equipped with an ideal sensor system capable of detecting all
edges and vertices visible to the robat from its current posi-
tion. The robot is required to autonomously navigate in the
terrain and acquire the complere obstacle terrain model, i.e.
obtain the locations of all edges and vertices of each obstacle
of 0. The main motivation for this problem stems from the
fact that after terrain acquisition phase, the future navigation
of the robot can be camied out without sensor operations
using the techniques for navigation in known temains. In
many cases navigational path can be made optimal in terms of
the distance to be traversed by the robot.

A solution to this problem is given by Rao et al [10]
based on the incremental construction of the visibility graph
of the terrain. The same technique is extended to a finite-
sized robot in plane by Rao et al [11]. The algorithm of [10}
is guaranteed to acquire the complete terrain model in finite
time. The algorithm terminates when a scan operation is per-
formed from each vertex of every obstacle and consequently
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the number of scanning operation required is YN (0;), where

inl
N(O;) is the number of vertices of the obstacle O;. However,
this is oaly a sufficient condition on the number of scan
operations. In this paper we establish that for any temain
acquisition algorithm (based on scan from vertex strategy)
there exists a termain O such that the necessary number of
scan operaticns is given by iN(Oi)-u and iN (0;)>-2n
i=) i=)
respectively for two and three dimensional terrains. In other
words, no more than one (two) scan operations per obstacle
can be skipped in two (three) dimensional terrains. We also
show that a strategy that randomly skips one vertex (two ver-
tices) per obstacle will not acquire the complete terrain model
in two (three) dimensional terrains. We then list a number of
issues for future research.

The organization of the paper is follows: In section 2, we
briefly discuss the issues involved in the terrain acquisition
problem and also the algorithm of [10]). In section 3, we
present the bound on the necessary number of scan opera-
tions.

2. TERRAIN ACQUISITION METHODOLOGY

During the terrain acquisition the robot M is required to
plan and execute a navigational course; robot stops at certain
points, called the sensing points, on the path to carry out the
scan operations. The terrain model is reconstructed by
integrating the scanning information obtained from the indivi-
dual scan operations. In general, the navigational path could
only be planned in an incremental manner by utilizing the
scan information because the terrain is unexplored. The main
requirement on the terrain acquisition algerithm is that the
complete terrain mode! should be acquired in a finite amount
of time.

Here we deal with vertex-based terrain acquisition
methods where the sensing points are always vertices of the
obstacles, i.e., every scan operation is performed from an obs-
tacle vertex. The robot M moves from vertex to vertex dur-
ing the navigational course. The algorithm of [10] is based
on this strategy. There are two key issues that are important
for a terrain acquisition algorithm:

(a) Computing the next vertex to be visited,
(b) Detecting the completion of terrain acquisition (termina-
tion of the algorithm).

We now brieily discuss the terrain acquisition algenthm
of [10]. Let VER(O;) denote the set of vertices of O;. Let
V=C)VER {O;) be the set of all vertices of the obstacles. The

i=l
visibility graph of the terrain O, denoted by VG (0), is a
graph (V E), where an edge (v .vy)eE, v,v,eV exists if and
only if (v,,v,) is either an edge of an obstacle or v, is visible
from v, and vice versa. In Fig.1. an obstacle temain popu-
lated by three obstacles 0,.0, and O; is shown and its visi-

Fig. 1. Obstacle terrain

bility graph is shown in Fig.2. A vertex is said to be explored
if a scan operation is performed from v, and otherwise v is
said to be unexplored. Once v is explored then the adjacency
list of v in the visibility graph is known. The robot M is ini-
tially placed at a point in the obstacle terrain. Then M scans
and moves to a vertex. From this point the terrain acquisition
algorithm, called algorithm ACQUIRE, of [10] is invoked.
Let M start at vertex vge V. A scan is performed and the
adjacency list of vy is stored. Then M moves to an adjacent
unvisited vertex and recursively applies this method. When
an unexplored vertex is visited it is pushed onto a stack called
path-stack. Let M be located at a vertex v from which it per-
formed a scan operation. Then M moves to a nearest unex-
plored vertex adjacent to v if one exists. The M can move to
this chosen vertex in a straight line because it is seen frem v,
If ail the vertices adjacent to v are vic."ed then the path-stack
is used to obtain the next sensing point. The top of the path-
stack is recursively popped till 2 node +; with unvisited adja-
cent nodes is found. Shortest paths to ail the unvisited adja-

Fig. 2. The visibility graph for the terrain of Fig.1.
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wlff_spmt condutson ~a the sumber of scan operations.
tm the next secion we show that for any vertex-based
werran acyursstion algonthm there exists a terrain such that
the necessary number of scanning operations is given by

INWO,)-n.

3. NUMBER OF SCAN OPERATINONS

Consider a vertex-based tenan expioration algorithm
(and algorithm of [10] is one such). The algorithm performs
scans and detects newer vertices which will be explored in
subsequent scans. During terrain exploration by a vertex
based algorithm no more than one vertex per obstacle can be
left unexplored in twWo dimensional terrain constructed as

(a) Navigational path (shown in dark)

(®) Partially built visibility graph

Fig.4. Intermediate stage of exploration

explained below. For three dimensional terrains no more than
two vertices per obstacle can be left unexplored in our spe-
cially constructec terrain. The basic idea is illustrated in
Fig.5. We consider a single convex polygonal obstacle in
Fig.5(a). If M starts at a vertex it detects one new vertex with
one exploration (except when the first vertex is explored) of a
vertex as the robot moves along the circumference of the
obstacle. In other words at no point of time the terrain
acquisition could be declared complete if there are two unex-
plored vertices say v, and v,. This is because the robot does
not, in general, know what lies on the hinder (unexplicred)
side of the line joining v, and v,. There could a single vertex
or a number of edges on the other side of the line joining v,
and v, as in Fig.5 (b) and (c). For three dimensional *ermains,
ra mere th - two vetices per obstacle can be left unexplored.
This is because if three vertices(say v, v, and vy)are left
unexplored then the information on the hinder side of the
plane formed by the vertices v,,v, and v, is n<t known in gen-
eral. The hidden side of the obstacle can be either a simple
plane or composed of 2 a2 number of planes as shown in Fig.6
(a) and (V).
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Fig.5. Two dimensional case

Theorem 1:

For a vertex-based terrain acquisition algorithm and
given positive integer n there exists a terrain
{01,032, - - .0, } of n polyhedral obstacles such that the
necessary number of scan operations is

iN (0;)-n for two dimensional terrain

i=l

N (0;)-2n for thres dimensional terrain

is}

Proof: We use induction on the number of obstacles in
the terrain. Consider n=1. In two dimensional terrains
coasider a convex polygon as in Fig 5(a). Note that from
a vertex vy, we can only see two vertices that are adja-
cent to v. Apart from the first scan, no more than one
unexplored vertex can be scen in any scan operation.
From the discussion above M has to carry out scanning
til no more than one vertex is unexplored. Thus
N(O})-1 1s the necessary number of scan operations for
two dimensional terrains. By similar arguments we can
show that the necessary number of scan operation is

v » k

Fig.6. Three dimensional case

N(0))-2. Hence the claim is true for a=l.

Assume that the claim is true for a=k. There exist a ter-
rain of k obstacles with the necessary number of scan
operations given in the theorem. Now construct a termin
of k+1 obstacles as follows: In two dimensions add a big
polygon O, ,, outside the circle inscribing the terrain that
satisfies the induction hypothesis as shown in Fig.7. The
k+1th polygon has a long edge joining v; and v, that
obscures the remaining edges of the polygon from the
scan operations carried out in the temmin of k obstacle.
Thus the scan operations needed during the exploration
of the k+1th obstacle is N(0,,;)~1. Hence total number
of necessary scan operations for two dimensional ter-
rains is given by 3N (0;)—(k+1). For three dimensional
i=l

terrains the obstacle 0,,; is such that a plane formed by
three vertices v,, v, and v obscures the rest of the obsta-
cle from a scan in the terrain of k obstacles as in Fig 8.
The 0,,, lies outside the sphere the encloses the termain
of k obstacles. Using the arguments similar to two
dimensional case we can show that the necessary number
of scan operations t0 acquire O,,; is N(Oy,)-2. Thus
the theorem follows by mathematical induction. O

In the above theorem we have seen that no more than

one (two) vertices per obstacle can be left unexplored in two
(three) dimensional terrain. The natural question is to ask if
we can always skip onc (two) vertices per obstacle for two
(three) dimengional terrains. The answer is a0 as the vertices

286




]
Circle cont...uing k obstacles
Fig.7. Two dimensional case - Addition of O, )

sphere containing k obstacles

Fig.8. Three dimensional case - Addition of Oy .y

Fig. 9. Configuration - two dimensional case
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Fig. 10. Configuration - three dimensional case

are to be randomly skipped. This is illustrated in Fig. 9 and
Fig. 10. In two dimensions the if the robot skips the vertices
v, v5 and v, then the obstacle O, will not be detected. Fig.10
shows a three dimensional example. The configurations such
as shown in Fig.9 and 10 can be formed with any (finite)
number of obstacles which could be other than triangles or
tetrahedrons. Fig.11 shows one such example. It is open at
this point to design a vertex-based terrain acquisition algo-
rithm (or show algorithm does not exists) that skips one (two)
vertices for each obstacle and guaranteed to acquire the com-
plete obstacle terrain model.

Fig. 11. A general configuration

4. CONCLUSIONS

In this paper we have shown that for any vertex-based
terrain acquisition algorithm there exists a temain such that
the necessary number of scan operations is given by
f:N(O;)—l and iN(O,—)-Z respectively for two and three
i=l i=1
dimensional obstacle terrains. In other words, we do not
expect to design a vertex-based terrain acquisition algorithm
that has complexity lower than the above stated sums (in



 tiom algorithm with the number of sensor operations gives by
$N(0)) [10]. & would be interesting to sec if there exists 8
in

number of sensor operations givea in this paper.
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