
Theoretical Computer Science 62 (1988) 251-266
North-Holland

251

AGE-CASE AN N
INVERTED

Nageswara S.V. RAO” and S.S. IYENGAR
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

R.L. KASHYAP
Department of Electrical Engineering, Atrdue University, West Lafayette, IN 47907, U.S.A.

Communicated by M. Nivat
Received February 1987
Revised September I987

Abstract. It is shown in the literature that the multiple attribute tree outperforms inverted files
in terms of worst-case complexities for partial-match queries. In this paper, we estimate the
expected values for the complexities of both complete match query and range query on multiple
attribute tree and inverted files. We use a uniform probabilistic model for the input data space.
We show that the multiple attribute tree is more efficient than the inverted file in terms of these
expected value measures.

1. Introduction

Traditionally, inverted files have been applied in many information retrieval
systems. Recent advances in multidimensional data structures and related algorithms
have resulted in efficient methods to store and retrieve information. But the inverted
files continue to dominate in the commercial information retrieval systems [ll].
This could be attributed, at least in parts, to the lack of direct rigorous studies about
the relative performance of the tree structures and inverted files.

The multiple attribute tree has been often shown to perform better than the
inverted files in many situations [4,6, lo]. Kashyap et ai. [6] show that MAT fares
better than inverted file in terms of total access time in physical database environ-
ments. Gopalakrishna and Veni Madhavan [4] compare the performance of MAT
and inverted file organizations using six real-life databases; they establish careful
tradeoffs in terms of storage and access times for directory and data, query com-
plexities, and database characteristics. Rao et al. [lo] have proven that the worst-case
complexity of a partial match query on MAT is exponentially better than that using
the inverted file. These results motivate the comparison of the MAT with inverted
file in terms of average-case performance. However, such an analysis is a very
difficult task. This is partly because of the difficulty involved in specifying the
average-case measures (of MAT structure and query). Furthermore, the mathematics

* Present affiliation: Department of Computer Science, Old Dominion University, Norfolk, VA
23529-0162, U.S.A.

0304-3975/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland)

252 N.S.V. Rao et al.

involved in a complete rigorous characterization could be too complicated to give
rise to very conclusive results.

In this paper, we assume a simple uniform probabilistic model for the input. We
then establish the superiority of MAT over inverted file in terms of expected
complexity values for complete match and range queries. We estimate the expected
cost of complete match and range queries on MAT and inverted file organizations.
Then, we prove that the MAT based method is more efficient in terms of these cost
estimates. In terms of the approach, our work is similar to that of Flajolet and Puech
[3]. They estimate the expected values for complexities of partial match queries in
data structures such as k-d trees, c,uad trees, multiple attribute trees, etc. Mere, we
focus on the range query and also on the relative performance of the MAT and
inverted files.

The organization of this paper is aa follows: We develop the basic concepts of
MAT in Section 2. The linearization is discussed in Section 3. A uniform probabilistic
model for the input data space is introduced in Section 4, and the corresponding
MAT parameters are evaluated in Section 5. The costs of range and complete match
queries on MAT are estimated in Sections 6 and 7 respectively. These cost estimates
for inverted file are obtained in Section 8. In Section 9, the MAT is shown to
outperform inverted file in terms of expected cost values for the complete match
and range queries.

2. Multiple Attribute Tree

In this section, we discuss the definition and structural properties of MAT. The
Multiple Attribute Tree was first proposed by Kashyap et al. 163. The MAT is
formally defined as follows [lo].

Definition. A k-dimensional MAT on k attributes A,, A*, . . . 9 Ak for a set of
k-dimensional points (records), called the input-set, is a tree of depth S with the
following properties:

(i) there is a root at level 0;
(ii) each child of the root is a (k - l)-dimensional MAT on the (k - 1) attributes

&,A 3,. . . , Ak for the subset of records that have the same A, value. This value
of A, is the value for the root of the corresponding sub-MAT, and

(iii) the child nodes of the root are in the ascending order of their values. This
set is called the Jilisl-set.

Figure l(b) shows the MAT for the set of records of Fig. l(a). We observe that
there is a root at level 0 which does not have a value. The level i of the MAY
corresponds to the attribute Ai. Thus !L;z attributes A,, . . . , Ak form the hierarchy
of the levels 1 through k of the tree. There are many data structures that are base:1
on this notion. The Doubly Chained Tree of Sussenguth [12], and Cardenas and
Sagamang [2], the ST-complex of Lien et al. [S], the MDBT of Ouskal and

Average-C.-se analysis of MAT and inverted jile 253

Al A2 A3 A4 Reconi
pointer

1 1 3 3
1 2 1 2
1 1 4 1

1 1 2 6

2 3 5 7
1 1 3 5
1 2 5 6
2 3 5 1

level

0

1

2

(a) Input data-set

Root #tthltC

(b) MAT data structunz fx the data-set of (a)

Fig. 1. Sample data and the corresponding MAT.

Scheuermann [9], k&tree of Gutting and Kriegal [5], and kB+-tree of Kriegal [S]
are some examples. These data structures differ from one another in the way the
filial-sets are represented.

3. Structural properties and lrnearization of

In the definition of MAT the attribute values are assumed to be chosen from a
totally ordered set. One of the most important properties of MAT is the size of a
filial-set. In general, this size may vary from 1 to the cardinality of the inpi;,-set.
We characterize the structural properties of MAT using the following notation:

Ak number of records or equivalently the number of terminal nodes in the MAT;
Ak total number of nodes in the MAT;
k: number of attributes or fields;
Sj: random variable representing the size of a filial-set at level j of

254 S.V. Rao et al.

The exact profile of the MAT depends on the set of input records. In general, Sj
a&h of the MAT and also along the levels of MAT, apart from

represented in a linearized form to facilitate the process
es 161. Let the set of all child nodes of a nonterminal node of

MAT be called the child-set. The process of linearization corresponds to representing
the MAT in an array form so that the node a sses can be implemented as array
operations. Such a representation is shown e more efficient than the pointer

in Section 6. There are two of linearizations-depth-first and
epth-first linearization th s of the MAT are numbered in a

er, and in breadth-first linearization the nodes are numbered in a
ner. Figure 2 illustrates these concepts. A breadth-firs! Zinearized

level Root Attribute

(a) Depth-first linearimtion

level

0

Root Attribute

/n

(b) Breadth-first liracsrkation

Fig. 2. The idea of linearization.

MAT is an array of
the following type:

Average-case analysis of MAT and inverted file 255

M records, each MAT node T is represented as a record of

directory-element = record
value: value type;
$rst-child : 1. .M;
last-child: l..M;

end;

where the fields are defined as follows:
o value: value of the node T;
0 jirst-child: the node number of the first node of the child-set of T;
OD last-child: the node number of the last node of the child-set of T.

Table 1 shows the breadth-first linearization of the MAT of Fig. l(b). The most
important aspect of linearization is the ability to carry out a binary search for any
value in a filial-set. The complexity of this process in O(log S) as opposed to the
complexity of O(S) in a pointer based implementation, where s is the size of, the
filial-set. This is particularly advantageous in answering a range query. However,
dynamic insertions and deletions, which can be very easily accommodated in a
pointer based MAT, cause severe modification in a linearized MAT. Thus, linearized
MAT is best suited for static environments.

Table 1. Breadth-first linearized MAT represented in array
fOrIll.

Node-number Value First-child Last-child

1 1 3 4
2 2 5 5
3 1 6 8
4 2 9 10
5 3 11 11
6 2 12 12
7 3 13 14
8 4 15 15
9 1 16 16

10 5 17 17
11 5 .18 19
12 6 4
13 3 1
14 5 6
15 1 2
16 2 2
17 6 7
18 1 8
19 7 5

256 N,S. K Rao et al.

ability distribution of data

The data are a set of records (called the input-set) and each record is specified
by k fields or attributes. Each attribute assumes values from a “discrete strict order”
set of cardinality d. Such a set can be mapped onto the interval [1, d] consisting of
only integer values. To simplify our discussion, we assume that the attribute values
are integers from [1, d] (without loss of generality). Hence, any record can be
viewed as a point in the k-dimensional input-space formed by [1, d] x l 9 . x [1, d].
The input-set is a set of N points of the input-space.

The MAT is constructed for the records of the input-set, and the exact profile of
the MAT depends on the number and the locations of these points in the input-space.
Let p be the probability with which any point of input-space appears in input-set.
In all there are dk points in the input-space. Hence, the probability that there are
i points in the input-set is given by

pi(1 _p)dk-i_ (1)

There are Cg” such sets. Now, we state a result which is repeatedly used in our
discussion.

Lel8~itUl4.1. ~~=, CFip’(l -pjR-’ = pRJor a positive integer R and a fraction p (s 1).

Proof. See Appendix. Cl

Now, the expected value for the cardinality of the input-set is

$ Cfkei(l _p)dk-i =pdk
; -- 1

by Lemma 4.1.
Another important aspect of multidimensional data is the notion of hyperplanes.

A single attribute value Ai = ai defines a k-dimensional hyperplane consisting of all
the records with Qi as the value for Ai. Note that the dimensionality of the space
formed by this hyperplane is k - 1. Similarly, a (k -j)-dimensional hyperplane can
be defined by the sequence of attribute values Al = al, A2 = a2,. . . 9 Aj = Uj. Let us
denote this hyperplane by (a,, a2, . . . p aj).

In the next sections, we estimate the expected values for range and complete
match queries on MAT and inverted files.

ante parameters of

The complete profile of the MAT for a given input-set of records is defined by
the sizes of various filial-sets. In general, the size of any filial-set is random, and
can vary from 1 to d. Thus a complete characterizatkn of the exact sizes of filial-sets

Average-case analysis qf MAT and inverted Lfile 257

in
in

is very involved. However, we restrict our discussion to the expected value of a
filial-set of any level.

Consider a node at level 1 with a value aI. The probability that such a node exists
MAT is equal to the probability that any point on the hyperplane (a,) appears
input-set. This probability is given by

q1 = 1 -probability that no point of (a,) appears in input-set

= 1 -(I -p)d”-‘. (2)

The attribute may assume an integer value a, from the interval [l, d] with a
probability of ql. Titus, the probability that there are exactly i nodes in the filial-set
at level 1 is (q#(1 - q$? There are Cp possible filial-sets of size i. The expected
value for the size of filial-set at level 1 is given by

E[s,] = ; Cfiq;(l- qJ-?
i = 1

Using Lemma 4.1 we have

=q,d

and using equation (2)

= d[l - (1 -JI)~~-‘]. (3)

Now, consider a node at level j, j = 1,2,. . . , k Any such node is defined by the
attribute values given by Al = al, A2 = u2, . . . , Aj = Uj* The probability qi of occur-
rence of any such node is equal to the probability that any node on the hyperplane

(6, Q2, a$ appears in the input-set. Hence,

s = 1 - probability that no point of (Q~, a2, . . . , q) appears in input-set

= 1 -(I -p)dl’-.

Using the same arguments as in the case of level 1, we obtain the expected value
for the size of filial-set of level j as

(4)

The expected values for the filial-set sizes developed in this section are used in
the next sections to evaluate the complexities t>f complete match and range queries.

A range query on a k-dimensional data is given by QR = n:=, qi, where qi = [!i, hi]

specifies the range of values for the attribute i. Geometrically speaking a ran
query specifies a rectilinearly oriented hyperrectangle. We term this hyperrectangle

258 N.S.V. Rao et al.

as a query-rectangle. The points enclosed by this rectangle belong to [II, h,] x l l l x
[lk, hk]. hswering 8 range query calls for the retrieval of the points enclosed by
the query-rectangle. The records or points that satisfy a given range query depend
on

(i) the dimensions of the query-rectangle,
(ii) its location inside the input-space,
(iii) the profile and distribution of the input-set.

Since a range query specifies a portion of input space, the points inside the
query-rectangle inherit their properties from the input-space. As we assumed uniform
probabilistic model for the input-space, the probabilistic nature of the query-
rectangle is uniform across the input-space. Thus, as a consequence of this result,
the probabilistic nature of the query depends only on the dimension of the query-
rectangle and is independent of the location of the query-rectangle in the input-space.
In our analysis, we consider a “uniform” range query that specifies an interval of
size a (G d) for all attributes.

The answers to a range query are produced by descending down the MAT level
by level starting from the root. At any level j, all the nodes that satisfy the “partial”
query (7:=, qi are retrieved- These nodes are called the qualijied nodes of level j. In
the next level (j-l- l), the child nodes of the qualified nodes at level j are checked
for inclusion in the interval [I j+l, hi+,]. The details are presented in algorithm
RANGE-SEARCH.

Algorithm WNGE-SEARCH(Zeve2, qset);
begin

(1)
(2)

(3)
(4
(5)

(6)
(7)

tempest f @;
for each n E qset do
begin

each child node n, of n do
if value of n, lies in the range [&.,, hl,,l]
then add n, to tempest;

end;
if (level # k)
then RANGE-SEARCH(level + 1, tempest);

end;

The algorithm RANGE-SEARCH is initialized with level = 1 and qset = {root}.
At any level tempest collects the qualified nodes of that level. Using the breadth-first
linearized MAT, the process of retrieving qualified-nodes of any level is carried out
as follows: Let n be a node qualified at level j. Let s be the size of the child-set of
n at level (j + 1). On the child-set of n, two binary searches are carried out for the
range limits b+l and hj+l . All the nodes that lie within these limits are retrieved as
qualified nodes. In the final level the information about the records that satisfy the
given query is retrieved.

geese am&sir of MAT and inwrtedjile 259

In the remainder of section, first we establish that the linearized MAT fares
better than the MAT lemented witia points. Later we estimate the expected
number of nodes accesses incurred in answering a range query on a linearized MAT.

In answering a rang ery, the number of filial-sets searched at level j+ 1 is
equal to the number of es qualified at Ievel j. Consider a node n qualified at
level j Let the ordered d-set of n at level (j + 1) be {ttt , vz, . tl,}. Each child
no& vi Hc checked for i usion in the interval [r i+l, &+,I. The nodes that lie in this
interval are consecutive the child-set as a result of the ordering imposed on any
filial-set. Let r (g s) be number of qualified nodes. In MAT, the processing of
a child-set of a qualifie de is carried out as follows: The nodes (v, , v2 ? . . . , vs j
are searched seque starting with vl. The search ends when a node with its
value greater than encountered. Complexity of such a sequential search is
O(s). In a linearized the complexity of processing a child-set is O(log(s) + r).
The first term correspo o the searching for the range limits, and the second term
corresponds to the the qualified records. Comparing ?hese two approaches
it is easy to see that in a general case the linearized MAT fares better.

The complexity of a nge search on the MAT is estimated in terms of the nodes
accessed in answering a range query. There are two types of costs involved in
answering a range query on a MAT:

(a) The number of es accessed in searching for range limits
filial-sets. This factor d ds on the structure of the MAT, i.e., the exact sizes of
the filial-sets which are

(b) The number of n ie within the specified range limits in any filial-set.
‘I& factor depends on of the query, i.e. the exact range of limits specified
by the query.

Let 5$ be the expecte value for tha total number of nodes accessed during the
search operation for the limits at level j. Let Nj ue the expected value for the total
number of nodes qualified at level j. The expected value for the size of filial-set at
level j is d[l - (1 -p)d1’] as per equation (4). Hence, we have

4 = N,-I(2 lOg(d[1 - (1 -P)~‘-‘])).

Consider the range specified for the attribute Al. As stated earlier in the section,
the range query specifies a range of a values for each attribute. The probability that
a node at level I with a value L E [It, h,] appears in MAT is equal to the probability
that a point on the hyperplane Al = b appears in the input-set. This probalility is
equal to q1 given by (3). Using the same arguments as in Section 5, the exljected
value for the number of nodes that fall into the Fpecified range is given by -N, =
a[1 -(l -p)dk-‘].

Now, consider a filial-set at level j. By using the same argument as above, we
obtain the expected value for the number of nodes that lie within the specified range
limits to be a[1 - (1 - p)dk’]. We define the qualify-fraction of a range query wit21
respect to a filial-set to be the ratio of the expected number of nodes that satisfy
the query to the expected number of nodes of the filial-set. The qualify-fraction for

260 N.S. K Rao et al.

a filial-set at level j is

f
= a[i -(i -pjdk+] a

d[l_(l-p)d*-‘]=;r’

Note that the qualify-fraction is the same for all levels of MAT. The expected

number of nodes qualified at level j is given by

Nj=(a[l-(l-p)d’-‘])Nj-,=(fd[l-(l-p)d*-’])Il;_,. (%6)

We have

N,=a[l-(l-p)dL-l]=fd[l-(l-p)dt-‘]

and solving equation (6)

Ni =fj& fI [l -(I _Py’k-i], (7)
i=l

Nk=fkdw fi [l-(l-p)dk-i]=fkdkpk~l[l-(l-p)dk-’]~ @,9)
i=l i=l

The product n:= 1 [1 - (1 - p) dk-i] is very important for our discussion and the
following lemma gives some of its useful properties.

Lemma 6.1

0) [l-(1 -PI
dk-(‘+‘)I < cl _ (1 _p)dk-i]m

(2) fJ [l_(l_p)dk-i]$y [l_(l_p)dk-i]*

i=l i= 1

(3) [l-(l-p)dr-i]> ir [l-(l-p)dk-i].
i=l

(4) qa[l-(l-p)d’-‘j forj=l,a,...,k, whereq=[l-(l-p)dk].

(5) pa ir [l -(l-p)dk-i].
i= 1

roof. See Appendix. Cl

Using part (5) of Lemma 6.1 in equation (8) we have,

Nk Spf kdk. (10)

Again,

q = Nj-12 log(d[l-(1 -P)~‘-‘]), & = Nk_12 log(pd). (11,12)

Using these equations we develop the expected value for the complexity of the
range query in the following theorem.

given 6y
. The of node accesses in answering a range query is

NIMAT(QR) =
Olk(fqd)k-l[fqd +log(qd)l) if (fqd) 3 1,
Wk log(qd)) if (fqd)< 1.

Average-case analysis of MAT and inverted jile 261

roof. The expected value for the number of nodes that are accessed in answering
a range query QR is given by

NW,)= i (sj+Ni). (13)
j=l

Using (4) .of Lemma 6.1, and equations (7) and (ll), we have

G jfI (f”4’d’+f’-‘$-Id’-‘2 log(qd))

s i (fi-lqi-ldj-l[fdq + 2 log(qd)])
j=l

s [fqd +2 log(qd)] i (fj-lqi-ldj-l).
j=l

Now, we have

i (fqdy‘-’ s
j=l (

;(fqd)k-’ ;; ;rd; 2 ;’
- .

Thus if (fqd) c 1, we have

KlAT(QR) = W logW))*

If (fqd) 2 1, then the complexity of range query is given by

KM(&) s Cfqd +2 log(9d)l(f9d)k-1k

= O(~(fqd~k-‘[fqd + log(qd

09

(16)
Hence, the theorem. Cl ’

For the condition (fqd) a 1 we have

Theorem 6.3. For (fqd) 2 1,

1

W(f9d)9

&dQd =
w b%m

the following two cases.

iff” ~~gw)
9d ’

iff < log(9d)
- qd l

Proof. The proof directly follows from Theorem 6.2. Cl

7. Analysis of complete match query on

The comp!zte match query is a special case of the range query in which the range
for each attribute specifies a single value. Stated equivalently, the query-rectangle
specifies a single point in the input space. As a consequence, Nj = 1 in equation
(13), and there is a single filial-set to be searched at any
for the complexity of complete match query is given in

262 A.S.V. Rao et al!

mmgem 7.1. The expected value for the number of nodes accessed in answering a

complete match query, Qc, is given by

&&Qc) = o(log(pdk))=

proof. The expected value for the number of nodes accessed in answering a complete
match query Qc is

NMAT(Qc)= 5 4 = ; 210g(d[l-(l-p)d*-‘])
j=l j=1

=Zlag(d’ fi [1-(1-p)“-‘])
j=l

G 2 log(pdk) by using Lemma 6.1(5)

= O(log(pd k)).

Hence, the theorem. Cl

In the next section, we deal with the expected values for the complexities of
complete match and range queries on inverted file based organizations.

In this section, we compute the expected value for the complexities of complete
match and range queries for the data described in Section 4. The inverted file
organization consists of k inverted lists; one inverted list for each attribute Ai. The
inverted list for Ai contains a header whose entries correspond to the values of the
attribute Ai. Each entry corresponding to a value Ai = ai points to the list of all
record numbers which have ai as the value of Ai. This list is sorted with respect to
the record number. See [l] for more details on inverted files.

There are k inverted files. The expected size hi for the header is computed as
follows: The probability that a value ai appears in the header of Ai is equal to the
probability that any point on the hyperplane (ai) occurs in the input-set. Thus, using
the same arguments as in Section 5, we obtain

hi = d[l -(l -p)dk-‘]. (17)

Consider a value ai in the header. The expected number of records that have this
value as the value for Ai is equal to the expected number of points in the input-set
that belong to the hyperplane Ai = ai.
each has a probability p of occurring
the list of records for any value ai in
Section 4)

There are d k-1 points on this hyperplane and
in the input-set. Thus the expe~ied length of
the header of Ai (b; using the arguments of

pd k-‘_ (W

Average-case analysis of MAT and inverted Jire 263

Theorem 8.1. The expected number of operations (either a comparison or Q memory
access) carried out in answering a complete match query QC using inverted$te structure
is given by

NNV(QC)=WP~~-'~.

Proof. Let Qc = n,“=,(Aj = bj) be the given complete match query. The ans
produced by searching for the specified attribute value Aj = bj in the header of the
inverted list for Al. The corresponding list of records is retrieved. The intersect; T
of all such lists for all attributes is computed. Since all lists are ordered, the lists
can be merged to obtain the intersection. The expected value for the cost of searching
in all k headers is k log(d[1 - (1 --p)dP-‘]). Now there are k sorted lists each having
an expected length of pdkW1. Hence, the expected cost of finding the intersection is
O(kpd k-‘). The expected complexity of complete match query is given by

Hence, the theorem. 0

Theorem 8.2. The expected number of operations (either comparisons or memory
accesses) carried out in answering a range query QR is given by

N,,v(QR) = 0(kfq2dk).

Proof. Let QR = ni= 1 G be the given range query, where % specifies the range [b, hi]
for the attribute Aj. The answer to the range query is produced by searching the
header of Aj for the limits 4 and hi, and retrieving lists corresponding to the values
lying in the range. The cost of searching for the range limits for all attributes is
O(k log(d[l -(l -p)dk-‘])). For each attribute Ai, the expected number of values
that qualify the range constraint is fd[l - (1 -p)dkB*] s qfd (using Lemma 6.1(4)).
In all, there are kqfd sorted lists each of expected size pd k--2 s qd k-2 (since p s q
by Lemma 6.1(4)). The expected cost of finding the intersection of these lists is
O(kfq2dk). Thus the expected cost of the range query is given by

~,NvK?R) = O(k logWC1 - (1 -p)dk-‘l) + kfq2dk)

= O(kfq*d k).

Hence, the theorem. IJ

In the next section, we carry out a comparative study of MAT and inverted file,
and establish that the former is superior.

9. Comparison of

There has been many eRotis to evaluate the relative performances of T and

inverted files; the former bei g proven efficient in many situations. ashyap et al.

264 N.S. K Rao et d.

[6] and Gopalakrishna and Veni Madhaven 143 have carried out a comparative
study of inverted files and MAT. Rao et al. [lo] prove that MAT outperforms
inverted files in terms of worst-case complexity of a partial match query. The MAT
and inverted files have the same complexity of preprocessing [lo]. In this section,
we establish the superiority of MAT over inverted files in terms of expected value
complexities for complete match and range queries.

Theorem 9.L The performance of MAI is better than invertedfile in terms of expected
value for the complexity of a complete match query for large input-sets.

Proof. We prove this theorem by proving that the NM& &)/ &v(&) approaches
zero as the expected value for the input-set increases. Consider

For input-sets of large expected sizes, pd“ is large. Consequently, pdk-’ is also
large. Thus, both terms in the above equation (20) tend to zero as we consider
input-sets with larger expected sizes. Speaking in terms of exponential complexities,
the log terms in the numerator increase at a slower rate than the terms in the
denominator. Hence, the theorem. El

eorem 9.2. The wmber of operations n&e-d ir; MAT is a fraction of the number
of operations needed in inverted fife in terms of the expected value for the complexity
of a range qu0-y.

roof. We prove this claim by explicitly computing the fraction of the number of
operations needed in MAT to the number of operations needed in inverted file.

Case (a): Consider the case f 2 (log(qd))/ qd. We have, from Theorems 6.3 and 8.2,

Case (b) : Consider the case f 6 (log(qd))/ qd. We have, from Theorem 8.2,

Thus we

NdQR) = o(kfq2dk) = 0

have

NM .AQd F (Q) =O(fk-'qk-2).
INV R

In both cases, the ratio of the expected number of operations needed in a MAT’ to
the number of operation- needed in inverted file is given by f k-rqk-2. Clearly, this
is a fraction. Since both f and q are fractions, the product f k-1qk-2 is very small.
Another important factor is the dimensionality of the input-space. As k increases,

Average-case analysis of MAT and irr verted file 265

the fraction .f?;* -’ decreases rapidly. Thus the performance of the MAT data
structure is increasingly efficient as tte dimensionality of the input-space increases.
Hence, the theorem. Cl

Thus, we have established the superiorit)- of MAT over inverted file in terms of
the expected value for the complexities of complete match and range queries.

10. conclusioas

In literature the MAT is proposed as a viable and efficient alternative to the
inverted file for storing and retrieving multidimensional data. In this paper, we
computed the expected values for the complexities of complete match and range
queries on the MAT and the inverted file. We theoretically proved that the MAT is
more efkient than the inverted file in teirms of these performance measures. Here,
we considered a uniform probabilistic model for the input space. In general, the
points could be arbitrarily clustered in some regions of the input space. The studies
of such cases would further clarify the relative performance of the MAT and the
inverted file.

Appendix. Proofs for Lemma 4.1 and Lemma 6.1.

Proof of Lemma 4.1. Consider

iCf= R! R!

i!(R-i)!=(i-l)!(R-l-(i-l))!
= RC;;‘.

Now, we have

f Cfip’(l -p)R-i
i=l

=pR ; cf_;‘pi-‘(l _p)(R-‘)-(i-l),pR(p_l -P)~-’ =pR.

i= 1

Hence, the lemma. Cl

Proof of Lemma 6.1. Since p is a fraction, we have p Q 1, and (1 - p) 6 1 l

(1): The claim directly follows from the following inequality

(1 _P)d”-i s t1 _p)dk-‘i+‘)a

(2): This property follows from the fact that the roduct ni:: I1 -(I -P)~‘-‘I is
obtained by multiplying n;= f [I - (‘II- p) ‘k-i] by the fraction 1 - (I - p)

dk-G+l)
.

266 N.S. K Rata eo al.

(3): This property follows from the fact that the product term ni= 1 [1 - (1 - p) d k-i]
is obtained by multiplying [1 - (I- p)dkSi] by a fraction.

(4): This property follows from part (I).
(5): This property is obtained by substitu:ing j = k in (3).
Hence, the lemma. El

References

Cl1

[21

c31

c41

PI

[61

[73

PI

PI

WI

‘I’-]

Cl21
1131

A.F. Cardinas, Analysis and performance of inverted data base structures, Comm. ACM 18 (1975)
253-263.
A.F. Cardinas and J.P. Sagamang, Modeling and analysis of database organization-The doubly
chained tree structure, Inform. Systems 1 (1975) 57-67.
P. Flajolet and C. Puech, Tree structures for partial match retrieval, in: Proc. 2&h Ann. Symp. on
Foundations of Computer Science (1983) 282-288.
V. Gopalakrishna and C.E. Veni Madhavan, Performance evaluation of attribute-based tree organiz-
ation, ACM Trans. Database Systems 6 (1980) 69-87.
H. Guting and H.P. Kriegal, Dynamic k-dimensional multh,ay search under time-varying access
frequencies, in: hoc. 5th Gl Conf on Theoretical Computer Science (1981) 135-145.
R.L. Kashyap, S.K.C. Subas and S.B. Yao, Analysis of multiple attribute tree database organization,
IEEE Trans. Sofrware Engng SE-2 (1977) 451-467.
H.P. Kriegal, Variants of multidimensional B-trees as dynamic index structure for associative
retrieval in database systems, in: Proc. 7th ConJ on Graph Theoretic Concepts in Computer Science,
Linz, Austria (1981) 109-128.
Y-E. Lien, C.E. Taylor and J.R. Driscoll, Binary search tree comp!ex-towards the implementation,
in: Proc. 1st Con! on Very Large Data Bases (1975) 540-542.
M. Ouskal and P. Scheuermann, Multidimensional B-trees: analysis and dynamic behavior, BIT
21 (1981) 401-418.
S.V.N. Rao, S. Sitharama Iyengar and C.E. Veni Madhavan, A comparative study of multiple
attribute tree and inverted file structures for large bibliographic files, Inform. Process. and Manage-
ment 12 (1985) 433-442.
G. Salton and M. McGill, introduction to Modern Information Retrieval (McGraw-Hill, New York,
1983).
E.H. Sussenguth, The use of tree structures for processing files, Comm. ACM 6 (1963) 272-279.
C.E. Veni Madhavan, Secondary attribute retrieval using tree data structures, Theojet. Comput. Sci.
33 (1984) 107-l 16.

