
Information Processing Letters 35 (1990) 55- 56
North-Holland

CORRIGENDA

CORRECTIONS TO A DISTRIBUTED DEPTH-FIRST SEARCH ALGORITHM

Information Processing Letters Vol. 32, No. 4 (1 September 1989) pp. 183-186

Devendra KUMAR

Department of Computer Engineering and Science, Case Western Reserve University, Cleveland, OH 44106, USA

Sitharama S. IYENGAR and Mohan B. SHARMA

Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

Communicated by David Gries
Received 26 February 1990

Keywords: Distributed systems, distributed algorithms, communication graph, depth-first search

15 June 1990

An earlier paper [l] presents an efficient dis-
tributed depth-first search algorithm, with a time
complexity 2 1 V 1 and a message complexity 2 1 V I.
The algorithm is derived from the traditional
sequential depth-first search algorithm. We point
out a few errors in the above paper [l] and the
corresponding corrections. These errors are mostly
minor coding errors; the overall algorithm indi-
cated in the discussion part of the paper remains
correct. A forma1 proof of correctness of the cor-
rected algorithm is in preparation [2].

(1) In Table 1, page 184, in the last row the
time complexity should be 2) V 1, rather than

3lVl.
(2) The code of the algorithm starting at the

bottom on page 184 has several minor coding level
errors. To understand the errors, note that the
semantics of a Receive(’ M) command at process
i is somewhat ambiguous. If the corresponding
message was sent from a process k via a com-
mand “Send(j, M) to i”, then on the reception of
the message, what would be the value of variable
f? Below we consider two possible interpretations
and show that under each interpretation, the code
is incorrect.

(a) Suppose the value of f is j. Then in the
code of process i, the value of f would be i (since

the Send commands in the code are of the form
Send(j, M) to j). Thus the value of the variable f
would NOT be the id of i’s parent.

(b) Suppose the value of f is k, i.e., the id of
the sender of the message (this interpretation seems
to be suggested by the point (4) on page 183).
Then we have the following problems:

(i) In the foreach statement, process i is look-
ing at the neighbors of its parent f (rather than its
own neighbors). This is obviously wrong.

(ii) For any node u, the element M.u is being
set to true by every child of node u. (This is not a
correctness issue but is obviously undesirable-it
affects the simple relationship between this al-
gorithm and the well known sequential algorithm
where a node is marked only once. Also, it affects
efficiency.)

(iii) If a node u has no children, then no pro-
cess would be setting M.u to true. Thus, depend-
ing upon the semantics of the foreach statement,
the parent of node u may get into an infinite loop,
or two different nodes may have the node u as a
child (since the element M.u always remains false).

Below we state the corrected code for any pro-
cess i. We use a Receive command of the form
“Receive(M) from any process k” to mean that a
message is received, the value of local variable M

0020-0190/90/$3.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 55

Volume 35, Number 1 INFORMATION PROCESSING LETTERS 15 June1990

is assigned to the value sent in the corresponding
Send(M) statement, and the variable k is assigned
the id of the sender process of the message.

{variable declarations to be given as in [l]}

Receive(M) from any process f;
{ f is assigned the id of the sender}

s:= { };
M.i := true;
foreach (j: j a neighbor of i A ,M. j:

s:=sU{j};
Send(M) to j;
Receive(M) from any process k;
{we are guaranteed that, for the given instance
of DFS computation, we will have k = j})

Send(M) to f

(3) The paragraph after the above-mentioned
code in the paper describes how the algorithm
starts. This description requires minor corrections.
The root process has to execute a slightly different
code (for example, it should not execute the first
Receive or the last Send statement in the code).
Also, root’s f variable should contain a value such
as 0 to indicate that it has no father; note that in
the second approach suggested for starting the
DFS computation, the root node would have its f
variable pointing to another node in the graph,
which is obviously not desirable.

To take care of the above issues, we suggest
several approaches below.

(a) Suppose the DFS computation is started by
a process i on receiving a START signal from the
outside world (where i is to become the root of
the DFS tree). Then i will not execute the first

Receive command in the above code; instead it
will execute M := false; f := 0 and then the rest of
the above code following the first Receive state-
ment in the code. Also, instead of executing the
last command in the code, i.e., the statement
“Send(M) to f “, it will send a message to the
outside world indicating termination of the DFS
computation, or start some other computation,
etc.

(b) Alternatively, a process i would decide to
start the DFS computation starting at some root
node, and would send a START message to the
root and then execute the above code shown. On
receiving the START message, the root process
will behave as mentioned in item (a) above.

(c) Alternatively, similar to the second ap-
proach discussed in the paper, the above code can
be modified so that each Send message also car-
ries the id of the father-of the receiver node, in
addition to M. This value in the message would be
assigned to the variable f at the receiver process.
Then, the process i that starts the DFS computa-
tion would send (0, M) to the root. Further de-
tails in this approach are straightforward and are
skipped here.

References

VI

PI

M.B. Sharma, S.S. Iyengar and N.K. Mandyam, An effi-
cient distributed depth-first-search algorithm, Inform. Pro-
cess. L&r. 32 (1989) 183-186.
S.S. Iyengar, D. Kumar and M.B. Sharma, Correctness
proof of a distributed depth-first search algorithm, In pre-
paration.

