SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 15(10), 925-941 (OCTOBER 1985)

Efficient Algorithms to Create and Maintain
Balanced and Threaded Binary Search Trees

S. SITHARAMA IYENGAR AND HSI CHANG
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

SUMMARY

The algorithm proposed by Chang and Iyengar’ to perfectly balance binary search trees has been
modified to not only balance but also thread binary search trees. Threads are constructed in the
same sequence as normal pointers during the balancing process. No extra workspace is
necessary, and the running time is also linear for the modified algorithm. Such produced tree
structure has minimal average path length for fast information retrieval, and threads to facilitate
more flexible and efficient traversing schemes. Maintenance and manipulation of the data
structure are discussed and relevant algorithms given.
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INTRODUCTION

It is nice to be able to balance binary search trees once in a while in a dynamical
information environment, so that the performance of searching can be in control. Also,
it may be of interest if we use the (#n + 1) null pointers out of the total 2»# pointers of the
balanced tree in the formulation of a threaded binary tree by replacing the right null
pointer with a pointer to its immediate successor and the left null pointer with a pointer
to its immediate predecessor according to the traversal order. Usually we call these
replaced pointers threads.

The advantage of threads is to provide a more flexible and efficient way for traversal,
because we can easily determine the predecessor and the successor for any node in a
threaded tree and traverse either forward or backward from that arbitrary point without
incurring the overhead of using a stack mechanism as in the case of unthreaded trees.
With such a data representation, random access and sequential retrieval of information
are feasible and could coexist. Although we benefit from the threaded tree structure, we
have to make a little more effort, however, to insert a node or delete a node from a
threaded tree because threads must be maintained as well as normal pointers.

In an earlier paper, Chang and Iyengar presented an algorithm' to perfectly balance
binary search trees in linear time. This algorithm forms balanced left half and right half
trees in a parallel fashion, thus making the execution more efficient. Here, we shall first
describe a modified algorithm that not only balances but also threads binary search trees,
and then tackle the problems of maintaining such a data structure. Since the algorithm is
essentially based on the previous tree-balancing algorithm, and the portion dealing with
balancing is about the same, readers can obtain detailed knowledge on tree balancing
from related material.'> 78
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BALANCING AND THREADING BINARY SEARCH TREES

To differentiate threads from normal pointers, one way is to append a tag bit to the
pointer to specify whether the associated pointer is a normal pointer or a thread. The
other way is to store a thread with a negative sign.* *> By adding tag bits, extra memory
space is required and more fields need to be monitored. The negative-sign method, on
the other hand, is simpler for maintenance and does not need additional storage, but it
requires sign conversion from negative to positive every time a thread is used to link to
another node. In this paper, we choose the tag-bit approach for its explicitness, whereas
on other occasions one might use the negative-sign method for its compactness.

With such a data structure, each node contains basic fields: KEY, left subtree pointer
LSON, right subtree pointer RSON, and tag bit fields LBIT and RBIT associated with
LSON and RSON, respectively. A tag bit is ‘on’, with value 1, when the associated pointer
is a normal pointer and ‘off’, with value 0, when the associated pointer is a thread. In
convention, a head node which serves as the predecessor of the first node and the
successor of the last node is used to impose a circular structure upon the tree structure.
In our algorithm, however, instead of keeping a head node, we set a pointer HEAD which
points to the root node of the binary search tree, and let the left thread of the first node,
which contains the smallest key value, and the right thread of the last node, which
contains the largest key value, take values 0 to mark the beginning and the end of an
in-order sequence.

The algorithm to balance and thread binary search trees is formally described in the
procedure BALTHR (see Figure 1) adopting a PL/I-like language. BALTHR takes as input
a random binary search tree, establishes operational environment for subprocedures
TRAVBIND and GROW, and returns a completely balanced and threaded binary search
tree as a result.

procedure BALTHR (HBAD, LSON, RSON, LBIT, RBIY):

N <-- 0 /¢ iaitialize 1tea counter %/
/* traverse and bind the oriyinal tree */
call TRAVBIND(HEAD)

case

priat(‘em,t; tree')

returas

s H=13
HEAD <-- LINK({1)
LSON (LBAD) <-- RSON (HEAD) <-- 0
LBIT (HEAD) <-- BRBIT(HEAD) <-- 0
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return

s N= 2
HEAD <=~ LINK(1)
LSON (HEAD) <~- 0
LBIT (HEAD) <-- 0
RSON (HEAD) <-- LINK(2)
RBIT (HEAD) <-- 1
LSOM (LINK {2)) <=- HEAD
HSON (LINK(2)) <-- 0O
LBIT(LINK(2)) <—— RBIT (LINK(2)) <-- 0

retuca

s otherwase :
LINK (0) <-- LINK({N¢1) <~- 0 /% mark bouandaries #/

B <-- L(N+)) 29 /% find folding factor 4 &/

HEAD <=~ LINK(M) /* locate HEAD through 4 s/
if N =2 %18
then do /* when N is eveu %/
4 C=-- N o1
/* balance the left half tree */
cail GROW (1, M-2)
/% put the pnode bound to M as a left
descendant of its successor %/
LSON (LINK (M)) <=~ HEAD
HSOM (LINK(M)) <-- LINK(M+1)
LBIT(LINK(M)) <-- KBIT{LIMNK(M)) <~- O
LSON (LINK (8+1)) <-- LINK(M)
LBiT (LINK (N+1)) <-- 1}
end
else /% when N is odd */
/% balance the left halt tree */
caidi GROW(1, Hn-1)
/% lett suptree pointer is returned via ANSL s/

LSON (HEAL) <-- ANSL
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LEIT (HEAD) <-- 1
/% cljht subtree poiaster is returned via ANSR »*/
BSOUN (HEAU) <-- ANSHR
BBIT (HEAD) <-- 1
retura
end
recursive procedure TRAVBIND (T) :
/% TBAYBIND pertorms inorder traversal and bindiany
betweea ascenaing seyuence #$ and item #; local

variabie T pvants to the node to te visited %/

/% return when a oull poiater is encountered */
it T = 0 then return
Cali TRAVBIND (LSON(T)) /* yo down lett branch =/
¥ <-- ¥ ¢ 1 /% count total number of nodes visited &/
LINK(¥) <~- I /#% bind seyuence # N to itema # T
of the Nth node via LINK */
Call TRAVBIND (BSON(T)) /* go down right branch ¢ /
return
end TRAVBIND
recursive procedure GKOW(HIGH, LOW):
/% GROW voucurreatly baiances and threads the left halt
and tane riyat half tree. HOOTL, ROOTK, LOW, HIGH,

and M1) are iocal varliables */

case
2 LOW > digh ¢ /* whed null nodes are encountered */
/% Leturn null pointers */
ANSL <-- ANSEK <-- 0

retura

: LOW = HIGH : /% when terminal nodes are aet ¢/
/% iocate termindal nodes via L1NK and build
taLeads */
ANSL <—- LINK(LOVW)

ANSR <-- LINK(LOW+H)
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LSON (4NSL)
LSON (aBSR)
LBIT (ANSL)
L3N (ANSL)
BSON (4 NSR)
BBLT (aNSL)

retura

< ddGH : /* when more to be partitiouned s/

==

==

LINK(LOW-1)
LINK(LOW+N-1)
LBIT (ANSR) <-- 0
LINK(LQH+1)
LINK(LCW+X+1)

BBIT (ANSK) <-- 0

/% tiud median of a set %/

841D <-- L (LORW + ilIGH) /24

/% ilud subtree roots tarouyht MID:

&0UTL points to the root wuode in

the left halt tree;

d0)1R is the counterpart of ROUTL

A4 the riyght halt tree %/

&OOUL <-- LINK(MID)

BOOTR <-- L1INK(MID+M)

/¥ Lalance the left subtree */

call SROW(LOW,

it ANSL =

then do /*chaange

0

MID-1)

LSON(ROOTL) <-- LINK(MID-1)

LSON(ROQUTR) <-- LINK(M1D+N-1)

LBIT(LOOTL)

end

else do /* set lett subtree gointers &/

LSON(ROOTL) <-- ANSL

LSON {ROOTR) <-- ANSH

LBIT (ROOTL) <-- LBIT(ROOTR) <--

end

/% Lalance the right subtree &/

caly LGHOW(MID+ 1, HIGH)

it aNSL =

0

null pointers to threadss/

<-- LBIT(ROOTR) <-- 0

1

929
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theu do /*change nuli pointers to threadss/
RS&I(ROOTL) <=-= LINK (N1D#1)
RSCN(KOOTR) <-- LINK(MIDeN+1)
RBIT (ROUTL) <-- RBIT(ROOTR) <-- 0
end

else do /% set right subtree pointers */
BSON(ROOTL) <-- ANSL
RSON (ROOTR) <-- ANSE
RBIT (RGOTL) <-- BBIT(ROOTE) <-~ 1|

eand

/% return root node pointers */
ANSL <-- ROOTL

ANSk <-- ROOTR

retura
ead
end GROE
end BALTH&

Figure |

Procedure TRAVBIND is to traverse the original tree in-orderly and bind sequence
numbers to the item numbers of the visited nodes. After traversal, we know the
ascending sequence of all the nodes, 1.e. the 7th node in ascending order is the node
whose item number is bound to 7; hence, the ith node can be located by a direct
reference to 7. Likewise, the predecessor of the 7th node can be determined by linking
through (z — 1) and its successor through (i + 1).

Procedure GROW balances and threads the tree through partitioning the set of the
sequence numbers obtained from TRAVBIND. Two parameters LOW and HIGH are
involved in GROW; LOW is the lower bound and HIGH is the upper bound for each
subset to be partitioned. The subtree root is the node bound to the median MID of a
subset. The actual process includes raising MID from the subset as a subtree root and
then equally splitting the remaining subset into another two subsets each to form a
subtree with the number of elements in each subset differing by at most one. Roots of
the two such derived subtrees then in turn become the LSON and RSON of the previous
root MID. In this way, partitioning continues recursively until the subset is empty (LOW
> HIGH) or contains only one element (LOW = HIGH); the former case indicates that a
null pointer is reached, and the latter indicates that a terminal node is met. Threads are
built for terminal nodes and nodes with single descendants; at the same time pointers are
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built during the restructuring process. The completed tree structure i1s mapped out by
substituting sequence numbers with the bound item numbers.

Furthermore, this process is curtailed by folding via a factor A/ which is the median of
a set with odd total number of sequence numbers. The symmetrical property that the /ith
and (+ + M)th nodes are counterparts of the left half and right half trees permits us to
GROW only half of the set to form a fully balanced and threaded tree. An example is
given in Figure 2 to show the process of converting a random tree into a balanced and
threaded tree. Now, if the total number of nodes .V is even, the tree cannot be divided
into equal halves after the root node is singled out. The folding factor M is obtained by
N/2, and after the root is found by linking through M, we then increase M by 1 for the
folding computation. The excess node with the item number associated with the new M
is placed as the leftmost node in the right half tree. Figure 3 shows the configuration of a
balanced and threaded tree structure with an even total number of nodes.

MAINTAINING THREADED SEARCH TREES

The problems of maintaining a threaded binary search tree include inserting new items
into an existing tree and deleting existing items from a tree. The consequences are the
dynamical growing or shrinking of the tree structure and the allocation of new nodes
from storage and return of freed nodes to storage.

Listed in Figure 4 is the procedure INSERT with an invoking statement. The insertion
process always begins at the root node pointed to by HEAD and descends down the
branches by comparisons of the key value, denoted by NEWKEY, of the node to be
inserted with key values of the visited nodes following the in-order sequence. Assuming
that no duplicated key is found, the final step of the process will fall to the left or right
side, which must have a thread, of a node; and that is the place where the new node fits
into the tree structure.

Subroutines ATTACH_LEFT and ATTACH_RIGHT set pointers and tag bits for the new
node and update pointers and tag bits for its direct ancestor. Procedure GETNODE 1s
presumed to provide a pointer NEW to every newly allocated node. Figure 5 shows the
placement of a new node.

Removal of an element from a tree is not generally as simple as insertion, since the
obsolete node could be the root of a tree or any subtree, and taking threads into account
further complicates the issue. It 1s straightforward only if the node to be deleted 1s a
terminal node, for we could simply cut it loose and change only one pointer. The
difficulty lies in removing a node with one direct descendant or two, in which cases we
have to figure out ways to circumvent or replace the unwanted nodes.

Details of the deletion algorithm are given in the procedure DELETE (Figure 6) which
also starts from HEAD searching for a node containing the key that matches the OLDKEY,
the key to be deleted. If OLDKEY 1is found, subroutine DETACH will be invoked to
remove the node.

When left and right tag bits are equal, it means that the node is either a terminal node
or one with two direct descendants. A terminal node is deleted by replacing the LSON
(RSON) of its right (left) ancestor with the LSON (RSON) of the unwanted node and
update the associated bit to indicate that the changed pointer is a thread. A root node
with two direct descendants cannot be removed directly, so we decide to replace the
relevant information of the unwanted node, excluding pointers and tag bits, with that of
its successor S. After replacement, the successor becomes redundant and should also be
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A random binary search tree (HEAD =1)
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Tree size: #=8
Folding factor: M = L(B+1)/2 1+1=5
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Figure 3. A balanced and threaded tree structure with even total manber of nodes

catl IN3ZKT (uEabd, HowKEY)

iecursive peoceaure LN3LDEL (T, NEWKLY)
Sase
2T =0 ¢ /% eu,t; tice ¥/
Caii hLLUCALE (NEW)
L <-= Niw
KoY (Ncw) <-- NEWKEY
LSUs (WEK) <=- LSUW& (NEW) <=-- 0
LDLIS \NEW, <-=— RBIT(NE#») <-- 0

iletuin

: NEWKRT < KLI(Z) :

it wLoil1; =0

thei Casa ATTACH_LCFT (T, NEWKIY)

eise caii INSERT (LSCN(T),

returu

: NEWKED » KEY (i} 2

8)

933



934 S. SITHARAMA IYENGAR AND HSI CHANG

1i aBil(i) = 0
theu cais ATTACH_KIGHT (T, NIWKEY)
else cail INSERT (K3ON(T), NEWKZY)

Letuca

¢ NEWKEY = KaX(T) ¢
pPLILT ("WuicCated Kkejt)
retytn
end
end LINSunrl
pLocedure ASlaCi_Lafs (T, NEWAZY)
call ALLUCATE (NZw)
LSOW (NEW; <-- Luul (1)
RSON (NEW, <=- T
LBIT(NLw; <-- RkouiT{(NEW) <-- 0
LBIT(T; <-- 1
T <-- NEw
retura

end ATTACA_LEFT

procedure ATTACH_kIGhT (T, NEWKEY)
call ALLOCAIE (Nua)
KSON (NE#) <~= aSUK({T)
LSON (NEW) <-- T
Lel1 (NEW) <-- HEBIT(NEW) <-- ¢
RBII(T) <-- 1
T <-- NZ¥W
retura

end ATTACH_Riuind

Figure 4
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Insert node NEW to one side of its ancestor A.
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Figwre 5. Insertion of a new node when (a) KEYINEW) < KEY(A) ; (b) KEY(NEW) > KEY(A)

Call DELETE (HEAD, OLuKEY)

recursive procedutre JELETE(T, CLDKEY)

case

LJLint (‘eapt; tree')

Leturan

: OLDKEY < KEY(T) :
1f LoaT(i; =0
then prrut(*key not found')
else caii DELETE (LSUN(T), OLDKEY)

Leturn

: OLDKEY > KEY(I) :

1f BoiI(T) = 0
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taeu priut(*key not found')
else call DELETE (RSON(T), OLDKEY)

retucn

cail DETACH (T)
returu
end

end DELETE

recursive proceuure UVETACH (OLD)
case
: LSUN (ULD, = KSON{LLD) :
Call DEALLUCATE (ULD)
ULD <== 0 /* en,ty tree ¥/

retuca

¢ LBIT (VLD = wK3IT(OLD) :
1t LBIT (WLv) = 0
taen do /% direct removal */
Cais DEALLOCATE (GLD)
/% LSON (0) pre-detined %/
1t LSON(hGSON(OLD)) = OLD
then do
LBIT(BSCN(OLD)) <-- 0
OLD <-- LSCHN(OLD)
end
else ao
RBIT (LSON (OLD}) <-- 0
ULD <-=- E30N(OLD)
end
enu
else do /% reglacement */
S «=- SUCC (ULD)

KZi (OLD) <-- KEY(S)
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cai. DELETE (RSCTM(OLD), KEY(S))
euna

returu

P LBAT(0LD) # wolIT(OLD) : /* circuaventiou %/
Caid DEALLUCATE (ULD)
P <-- 2RLD(ULD)
S == SUCC(vlLD)
1f LBIT(GLD) = 0
taen do
ULb <-- AS50N (GLD)
LSUN (S5) <-- P
eud
eise do
Uiy <=- LSON(uLD)
BSON(P) <~- 5§
¢nu
return
end

end DETACH

procedure Puwo (1)
1f LBiT(I) = 0 theu returu (LSON (T))
TY <= LoUN (7
valie (kbil(1*) = 1) ao
T' <== aoub(1')
ead
returun (1)

end PREv

procedaure SULC(Iy
i1t EBIT(1) = v taen return(KSCN(T))

T' <~-= aS0N(T)

937
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wnile (Lg8ii(T*, = 1) do
T* <-- LSON(1')
eud

retaru(lYy

end 3SUCC

Figure 6

deleted. Because the successor of a node with two direct descendants cannot be another
one with two direct descendants, we expect to complete the deletion in the next step, and
no degeneracy would ever occur. In the last case, to delete a node with one direct
descendant, we circumvent the unwanted node by letting its ancestor A point to its
descendant D and its successor S (predecessor P) takes its left (right) thread.

Two auxiliary functions are needed; one, SUCC, to find a successor and the other,
PRED, to find a predecessor. The freed space of deleted nodes is re-collected by
returning the pointers to a presumed procedure DEALLOCATE. The three cases of
deleting a node are illustrated in Figure 7.

A balanced tree becomes unbalanced due to node insertions and deletions. To restore
perfect balance we can again use the procedure BALTHR with slight modification on the
TRAVBIND routine as follows:

procedure TRAVBIND:
T <— - HEAD
/* find the first node */
while (LSON(T) # 0) do
T <—— LSON(T)

end
loop /* traversal and binding */
N<—-~N+1
LINKIN) <= =T
T <= -~ SUCC(T)
if T = 0 then return
forever

end TRAVBIND

From the algorithms given in this section we also see how a threaded tree structure
could be manipulated for searching, traversal, and locating predecessors or successors.

CONCLUSION

Threaded binary search trees provide a flexible and efficient data organization that is
particularly useful in real-time applications in which searching and sorting are both
needed. This is because fast retrieval in logarithmic expected time as well as sequential
access in either ascending or descending order are applhcable. Although record insertions
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The node to be deleted is denoted by OLD;

A,D, P and S represent

its ancestor, descendent, predecessor, and successor; respectively.

|
Q

Figure 7. Deletion of a node by (a) direct remorval; (b) replacement; (¢) circumvention
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- ws)
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Figure 7.—cont’d

and deletions may disturb the perfect balance of the search tree, for random updating
actions in a limited period of time we expect little impact on the performance of the
entire system.

Many algorithms have been developed for maintaining the balance of binary trees
during record insertion and deletion. But these algorithms usually tend to be compli-
cated and involve too much balancing overhead. The rules should be somewhat relaxed,
e.g. to separate record insertion and deletion procedures from the balancing procedure.
The balancing algorithm presented in this paper is one suitable for optimizing a search
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tree whenever the tree becomes too unbalanced. In addition, although not many
algorithms deal with maintaining and optimizing threaded trees, the algorithms
presented here seemingly well provide a system to do all these.

Finally, as a reflection on the modification of TRAVBIND in the preceding section, one
may find that it is feasible to generate a balanced and threaded binary search tree on any
set of data provided that the ordering information is available. Hence, the procedure
GROW 1s not necessarily restricted to restructure search trees only. For recent results on
parallel version of these algorithms — see Reference 6.
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