
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 15(10). 925-941 (OCTOBER 1985)

Efficient
Balanced

Algorithms to Create and Maintain
and Threaded Binary Search Trees

S . SITHARAMA IYENGAR A N D HSI C H A N G

Department of C 'otripiiter Science, Losrisicirici State L.tii~*ersity, Htilori Roii.ge, L4 7080.1, I '..Su,l,

SUMMARY

The algorithm proposed by Chang and Iyengar' to perfectly balance binary search trees has been
modified to not only balance but also thread binary search trees. Threads are constructed in the
same sequence as normal pointers during the balancing process. No extra workspace is
necessary, and the running time is also linear for the modified algorithm. Such produced tree
structure has minimal average path length for fast information retrieval, and threads to facilitate
more flexible and efficient traversing schemes. Maintenance and manipulation of the data
structure are discussed and relevant algorithms given.

KEY WORDS Algorithm Binary search tree In-order traversal Iialanccd trcc 'I'hrcadcd tree

INTRODUCTION

I t is nice to be able to balance binary search trees once in a while in a dynamical
information environment, so that the performance of searching can be in control. Also,
it may be of interest if we use the (n + 1) null pointers out of the total 211 pointers of the
balanced tree in the formulation of a threaded binary tree by replacing the right null
pointer with a pointer to its immediate successor and the left null pointer with a pointer
to its immediate predecessor according to the traversal order. Usually we call these
replaced pointers threads.

The advantage of threads is to provide a more flexible and efficient way for traversal,
because we can easily determine the predecessor and the successor for any node in a
threaded tree and traverse either forward or backward from that arbitrary point without
incurring the overhead of using a stack mechanism as in the case of unthreaded trees.
With such a data representation, random access and sequential retrieval of information
are feasible and could coexist. Although we benefit from the threaded tree structure, we
have to make a little more effort, however, to insert a node or delete a node from a
threaded tree because threads must be maintained as well as normal pointers.

In an earlier paper, Chang and Iyengar presented an algorithm' to perfectly balance
binary search trees in linear time. This algorithm forms balanced left half and right half
trees in a parallel fashion, thus making the execution more efficient. Here, we shall first
describe a modified algorithm that not only balances but also threads binary search trees,
and then tackle the problems of maintaining such a data structure. Since the algorithm is
essentially based on the previous tree-balancing algorithm, and the portion dealing with
balancing is about the same, readers can obtain detailed knowledge on tree balancing
from related material.'-3, ' 9 '
0038-064418~ 100925- 17$0 1.70 liereired 19 iiugiist 1982
0 1985 by John Wiley & Sons, Ltd. Rezised 12 Decernher 1984

926 S. SITHARAMA IYENCAR A N D HSI CHANC

BALANCING AND THREADING BINARY SEARCH TREES
To differentiate threads from normal pointers, one way is to append a tag bit to the
pointer to specify whether the associated pointer is a normal pointer or a thread. The
other way is to store a thread with a negative sign.4' By adding tag bits, extra memory
space is required and more fields need to be monitored. T h e negative-sign method, on
the other hand, is simpler for maintenance and does not need additional storage, but it
requires sign conversion from negative to positive every time a thread is used to link to
another node. In this paper, we choose the tag-bit approach for its explicitness, whereas
on other occasions one might use the negative-sign method for its compactness.

With such a data structure, each node contains basic fields: KEY, left subtree pointer
LSON, right subtree pointer RSON, and tag bit fields LBlT and RBlT associated with
LSON and RSON, respectively. A tag bit is 'on', with value 1, when the associated pointer
is a normal pointer and 'off', with value 0, when the associated pointer is a thread. In
convention, a head node which serves as the predecessor of the first node and the
successor of the last node is used to impose a circular structure upon the tree structure.
In our algorithm, however, instead of keeping a head node, we set a pointer HEAD which
points to the root node of the binary search tree, and let the left thread of the first node,
which contains the smallest key value, and the right thread of the last node, which
contains the largest key value, take values 0 to mark the beginning and the end of an
in-order sequence.

The algorithm to balance and thread binary search trees is formally described in the
procedure BALTHR (see Figure 1) adopting a PLII-like language. BALTHR takes as input
a random binary search tree, establishes operational environment for subprocedures
TRAVBINO and GROW, and returns a completely balanced and threaded binary search
tree as a result.

procedure B A L ' l U (U M D , LSOU, PSOU. LBlT, RBIT) :

11 <-- 0 /* anithi l ine rtem counter */
/* traverse and bind t h e orry ina l t r e e */
call T E AV B U D [tls A D)

case

: u = o :

yrint('em&tl tree')

returu

; u = 1 :

HEAD <-- U Y K (1)

LSOV(hBAD) <-- ESOY (kiEAD) <-- 0

L B X T (HBAD) <-- EBIT (BEAD) <-- 0

BINARY SEARCH TREES

return

927

: l J = 2 :

UEAD <-- LLYK(1)

ison (UEADJ <-- o

LBIT(BB1D) <-- 0

PSOP (HEIDJ <-- L I Y K (2)

PBIT(UEADJ <-- 1

l S O Y [LUIK (2)) <-- HEAD

rson(lrnr(z) <-- o

U I T (LIPK 12) J <-- PBIT (11 lJK (2)) <-- 0

return

: otherrise :

iInr(0) <-- L I l K (M + l) <-- 0 /* mark boundaries */
n <-- L(Y+lJ/2J /* f i n d f o l d i n g f a c t o r I */
HEA3 <-- I r U K (I J /* locate dEAD throuyb */
i f n = Z * n

then do /* uhen H is eveu */
f4 <-- I I

I * o a l a n c e t h e lett halt tree */
CdAl GBoY (1, fl-2)

/* y u t t h e node bound to I as a l e f t

descendant of its s u c c e s s o r */
Lson (LINK (a) <-- HEAD

&SOY (L I H K (I J J <-- L I N K (I + l)

L B i T (I I Y K (a)) <-- f iBIT (LI1K (I) J <-- 0

LSOY (LxnK (a+ 1 J <-- LINK (a)

LBAT [I J Y K (U+ 1)) <-- 1

end

else /* uhen Y is odd +/

/* balance the lett halt tree */
CdAA GBOY(1, a-1)

/* Aatt s u o t r e e pointer as returned r i a AbSL */
LSOH(BEAL) C-- AYSL

928 S. SITHARAMA IYENGAR AND HSI CHANG

I b I T (H E A D) <-- 1

/* cAyh t s u b t r e e p o i n t e r is r e t u r n e d v i a AYSR +/

asonLtr~ru) <-- A N S E

E D I T (H E A D) <-- 1

r e t u r n

end

r e c u r s i v e p r o c e d u r e TEAVBIND (T) :

/ * TEAVBXYD y e r & o r . s rnorder t r r i v e r s a l and b i n d i n g

b e t u e e n ascenainy s e y u e n c e t a n d item #; l o c a l

v a r i a b l e T to i rks t o t h e node t o b e v i s i t e d */

/* r e t u r n uhan a n u l l 2 o r m t e r 1s e n c o u n t e r e d */
A% T = 0 t h e n r e t u r n

c r l i T B A V B L P D (L S O N (T)) /* go doun Lett b r a n c h */
Y <-- Y + I /* c o u n t t o t a l number oi nodes v i s i t e d */
L I Y K (Y) <-- f /* b i n d s e q u e n c e t I t o item # T

ot t h e I t h n o d e via LIYK */
c d l XRAVilIUD(ESOY(T)) /* y o doun r i g h t b r a n c h /

r e t u r n

end TEAVBLYD

r e c u r S 1 v e . r o c e d u r e GhOU (U G H , Loll) :

/* G&OU c O I A C U K Z t . i A ~ i LaldnCeS dnd t h r e a d s t h e l e t t h d l &

dna t n e ri.,&t half tree. EOOTL, EOOTfi, LOU, HIGH,

a n d Hlb rice A O C d V a K A a P l e S */

case

: LOU > d i b a : /* when n u l l n o d e s are e n c o u n t e r e d */
/* r e t u r n n u l l pointers */
A Y S L <-- ANSfi <-- 0

r e t u c u

: LOii = H I G H : / * when t e r n i o a l n o d e s a r e met */
/* locate t e r m i n a l n o d e s v i a LlMK and b u i l d

t h e a d s */
ABSL <- - L I N R (L 0 U)

A Y S E <-- LIYK (L O Y + B)

BINARY SEARCH TREES 929

LSOY (A Y S L) <-- L I N K (L 0 U - 1)

LSOY (MNSE) <-- L I Y K (L 0 Y t I - 1)

L B l T (AYSL) <-- L B I ' I (AUSE) <-- 0

L A l r (AISL) <-- L I U K (L 0 Y t 1)

HSOMLPUSE) <-- L I Y K (L G Y t H t 1)

RBU!(At iSL) <-- E B I T (A N S P) <-- 0

r e t u n

: LO# < U G t i : /* uhen more to be y a r t i t A o n e d */
/+ f ~ u d median o t a set */
d l D <-- L(L0U + r l I G t l) / 2 J

/* LLUU s u b t r e e roots t h r o u g h t BID:

i O J T L p o i n t s t o t h e root uode i n

t h e l e f t halt tree;

do318 is the c o u n t e r s a r t of R00'IL

iu t h e r i g h t h a l f tree */
hOO'1L <-- L I N K (I 1 D)

E O G T R <-- L l Y K (H X D + I)

/* Lalance t h e l e f t s u b t r e e */
call ;aou(~ou, N I D - 1)

A& AblSL = 0

t h e n do /*caanye n u l l p o i n t e r s to threads* /

LSON (ROOTL) <-- LINK (HID- 1)

LSOU(R0Ul"l') <-- LIUK (I l D + N - 1)

L B I T (h 0 0 T L) <-- L B I T (E O 0 T E) <-- 0

end

else do /* set lett s u o t r e e dornters */
L S O N (E 0 0 T L) <-- ANSL

LSON(RO0TE) <-- ANSE

L B I T (E O 0 T L) <-- L B I T (E O 0 T R) <-- 1

end

/* ualdnce t h e r i g h t s u b t r e e */
C d l ~ b 6 0 U (I I D t I , HICB)

It MblSL = 0

930 S. SITHARAMA IYENCAR AND HSI CHANC

t h e u d o /*chringe U U ~ L k o i n t e r s to threads* /

RSdU (BOOTL) <-- LXBK (I 1 D t 1)

BSOU(&OOTE) <-- L I Y K (H I D t H t 1)

E B X T (E 0 o T L) <-- B B I T (E O 0 T E) <-- 0

end

e l se do /* set right s u n t r e e p o i n t e r s */
asom (n o o n) <-- AYSL

ason (ROOTR) <-- AUSE

B B I T (B G 0 T L) C-- E B l T (B O 0 T Y) <-- 1

end

/* r e t u r n root node p o i n t e r s */
AYSL C-- POOTL

AYSY <-- BOOTR

r e t u c n

end

errd 6BOE

end BALTBY

Figure I

Procedure TRAVBIND is to traverse the original tree in-orderly and bind sequence
numbers to the item numbers of the visited nodes. After traversal, we know the
ascending sequence of all the nodes, i.e. the ith node in ascending order is the node
whose item number is bound to i; hence, the ith node can be located by a direct
reference to i. Likewise, the predecessor of the ith node can be determined by linking
through (i - 1) and its successor through (i + 1).

Procedure GROW balances and threads the tree through partitioning the set of the
sequence numbers obtained from TRAVBIND. Two parameters LOW and HIGH are
involved in GROW; LOW is the lower bound and HIGH is the upper bound for each
subset to be partitioned. The subtree root is the node bound to the median MID of a
subset. The actual process includes raising MID from the subset as a subtree root and
then equally splitting the remaining subset into another two subsets each to form a
subtree with the number of elements in each subset differing by at most one. Roots of
the two such derived subtrees then in turn become the LSON and RSON of the previous
root MID. In this way, partitioning continues recursively until the subset is empty (LOW
> HIGH) or contains only one element (LOW = HIGH); the former case indicates that a
null pointer is reached, and the latter indicates that a terminal node is met. Threads are
built for terminal nodes and nodes with single descendants; at the same time pointers are

BINARY SEARCH TREES 93 1

built during the restructuring process. T h e completed tree structure is mapped out by
substituting sequence numbers with the bound item numbers.

Furthermore, this process is curtailed by folding via a factor Af which is the median of
a set with odd total number of sequence numbers. The symmetrical property that the ith
and (i + M)th nodes are counterparts of the left half and right half trees permits us to
GROW only half of the set to form a fully balanced and threaded tree. An example is
given in Figure 2 to show the process of converting a random tree into a balanced and
threaded tree. Now, if the total number of nodes ,Y is even, the tree cannot be divided
into equal halves after the root node is singled out. T h e folding factor is obtained by
,Y/2, and after the root is found by linking through hf, we then increase ill by 1 for the
folding computation. The excess node with the item number associated with the new A1
is placed as the leftmost node in the right half tree. Figure 3 shows the configuration of a
balanced and threaded tree structure with an even total number of nodes.

MAINTAINING THREADED SEARCH TREES

The problems of maintaining a threaded binary search tree include inserting new items
into an existing tree and deleting existing items from a tree. T h e consequences are the
dynamical growing or shrinking of the tree structure and the allocation of new nodes
from storage and return of freed nodes to storage.

Listed in Figure 4 is the procedure INSERT with an invoking statement. T h e insertion
process always begins at the root node pointed to by HEAD and descends down the
branches by comparisons of the key value, denoted by NEWKEY, of the node to be
inserted with key values of the visited nodes following the in-order sequence. Assuming
that no duplicated key is found, the final step of the process will fall to the left or right
side, which must have a thread, of a node; and that is the place where the new node fits
into the tree structure.

Subroutines ATTACH-LEFT and ATTACHBIGHT set pointers and tag bits for the new
node and update pointers and tag bits for its direct ancestor. Procedure GETNODE is
presumed to provide a pointer NEW to every newly allocated node. Figure 5 shows the
placement of a new node.

Removal of an element from a tree is not generally as simple as insertion, since the
obsolete node could be the root of a tree or any subtree, and taking threads into account
further complicates the issue. It is straightforward only if the node to be deleted is a
terminal node, for we could simply cut it loose and change only one pointer. The
difficulty lies in removing a node with one direct descendant or two, in which cases we
have to figure out ways to circumvent or replace the unwanted nodes.

Details of the deletion algorithm are given in the procedure DELETE (Figure 6) which
also starts from HEAD searching for a node containing the key that matches the OLDKEY,
the key to be deleted. If OLDKEY is found, subroutine DETACH will be invoked to
remove the node.

When left and right tag bits are equal, it means that the node is either a terminal node
or one with two direct descendants. A terminal node is deleted by replacing the LSON
(RSON) of its right (left) ancestor with the LSON (RSON) of the unwanted node and
update the associated bit to indicate that the changed pointer is a thread. A root node
with two direct descendants cannot be removed directly, so we decide to replace the
relevant information of the unwanted node, excluding pointers and tag bits, with that of
its successor S. After replacement, the successor becomes redundant and should also be

932

O r d r r

I tam

Key

S. SITHARAMA IYENGAR AND HSI CHANG

1
1 2 3 4 S 6 7

2 #6 87 #5 #4 # 1 # 3

A 0 C D E F G

A random bin a ry srorch t r r r (H E A D = 1
H E A D

l
t

c
0 .-
c

c L

.-
0
a

X
c
-I
.-

((1)
I
I
I
I
I
I
I
I
I
l r - 6 I

I

6 7)

I I
I I

I
I I

I 1
I I 01 I I I

- 7 - - - - - - - t - - - 1 I I

I I 6 HE;, I @ I 0
I
I

I I
I I

I I $ 5

n
m

m
n
2

c

n
0

c

Y

BINARY SEARCH TREES 93 3

Tree s i z e : N = 8
F o l d i n g f a c t o r : M = L (8 + 1) / 2 J + l = 5

7 8)

934 S. SITHARAMA IYENCAR AND HSI CHANG

2rocedure A T 1 ALh-n lbhT (T, NLkK EY)

c a l l A L L G L I L ~ . IN,&)

hSON (UZU) <-- a b t ~ L (T)

LSON(YEL) <-- T

i Z l l (N E U) <-- & U i T (N E Y) <-- 0

B R I l (T) <-- 1

'I <-- hZU

returlr

end A T I A C B - E i u n L

Figure 4

BINARY SEARCH TREES 935

I n s e r t n o d e NEW t o one s i d e o f i t s a n c e s t o r A

Cdll DPLETE (UbiD, 01.u KEY)

recursive procvuure 3 E L E T E (T , CLDKEY)

case

: T - 0 :

d r i n t (1 eiapt, tree')

re t uzn

then p i u t ('key n o t tourrd')

else C d l i DELETE (LSbh (2) , OLUKEY)

r e t u r n

936 S . SITHARAMA IYENGAR A N D HSI CHANG

trelr , ~ r ~ r t [' k e y n o t tound ')

else call D E L E T E (R S O N (T) , OLDKEY)

return

: OLDKEY = K E Y L i !) :

call D E T A L h (T)

K e t U K II

end

end UdLETE

I e C U K S A v r y I o C e U u ~ t f LETACH (O L D)

case

: L S U N j U L D) = TiSUN(LL3) :

C d l l J L B L L U L A T E (OLD)

u L D <-- 0 / * trm,ty t cee * /
re t u r 11

: L B ~ T (U L ~ J = h J I T (0 L D) :

i t L n l T (ULO) = o

Llre l l do / * d L L e C t K e B O V d l */
C ~ L L DEALLOCATE (OLD)

/* &SON(()) p r e - d e t i a a d +/

A L LSON(hSON(OL3)) = OLD

t h e n do

L b I X (R S C N (0 L D)) <-- 0

OLD <-- L S C l r (0 L D)

e n d

e l se ao

E B I T (LSON (OLD)) <-- 0

OLJ <- - r<siru (O L D)

end

t!AU

else do /* r e r l d c e u e n t */
5 <-- S U C C (U L D)

KLi (OLD) <-- K E Y (S)

BINARY SEARCH TREES 937

CdiL D E U T B (iSt L (OLii) , K 2 X (S))

tua

retrlru

: L L T (0 i D j # u u X T (0 L D) : / * circumventiou */
C d A A u E A L L l r C B T E (3LS)

P <-- 2 h i D ((r L D)

s <-- SUCC(rrLD)

i f L b l T (G L i r) = 0

taeu do

U l l r <-- hSO!d (OLD)

LSUY (S) <-- ?

eUU

eise do

(ru <-- LSON(uL3)

E S O b (P) <-- S

62AU

rrturlr

end

end SYTACH

krocrdure ~ i i r ; ~ (T)

l L L J i T (1) = 0 t h e u returu (LSGN (T))

T' <-- L s u r i 5)

u a i L e (h b i l (T @) = 1) uo

r @ <-- d d t i ~1')

c1 od

return ['Ia]

e n d PIIEu

proceadre S U L C (1)

A L F i B I T (1 j = u trren raturn(HSCN(T))

T o <-- nS0ti (T)

938 S. SITHARAMA IYENGAR AND HSI CHANG

irnrle j L d A i (T a ~ = 1) do

P a <-- i S O N (‘I ’)

b2Ud

L eturlr 1 z a 1

end SUCC

Figure 6

deleted. Because the successor of a node with two direct descendants cannot be another
one with two direct descendants, we expect to complete the deletion in the next step, and
no degeneracy would ever occur. In the last case, to delete a node with one direct
descendant, we circumvent the unwanted node by letting its ancestor A point to its
descendant D and its successor S (predecessor P) takes its left (right) thread.

Two auxiliary functions are needed; one, SUCC, to find a successor and the other,
PRED, to find. a predecessor. T h e freed space of deleted nodes is re-collected bv
returning the pointers to a presumed procedure DEALLOCATE. T h e three cases of
deleting a node are illustrated in Figure 7.

A balanced tree becomes unbalanced due to node insertions and deletions. ‘To restore
perfect balance we can again use the procedure BALTHR with slight modification on the
TRAVBIND routine as follows:

procedure TRAVB IND:
T <- - HEAD
/* find the first node */
while (LSON(T) # 0) do

T <- - LSON (T)
end

loop /* traversal and binding */
N < - - N + 1
LINK(N) <- - T
T <- - SUCC (T)
if T = 0 then return

forever
end TRAVBIND

From the algorithms given in this section we also see how a threaded tree structure
could be manipulated for searching, traversal, and locating predecessors or successors.

CON C I> US I 0 N

Threaded binary search trees provide a flexible and efficient data organization that is
particularly useful in real-time applications in which searching and sorting are both
needed. This is because fast retrieval in logarithmic expected time as well as sequential
access in either ascending or descending order are applicable. Although record insertions

BINARY SEARCH TREES 939

T h e node to b e d e l e t e d I S d e n o t e d by O L D ; A , D , P a n d S r e p r e s e n t

i t s a n c e s t o r , d e s c e n d e n t , p r e d e c e s s o r , and s u c c e s s o r ; r e s p e c t i v e l y .

1 R
I

X

(5) r e p r e s e n t s t h e c o n t e n t s o f S

_ _ _ _ _ _ _ _ _ _ _ _ _ (b) _ _ _ _ _ - _ _ _ _ _ _ _

1

940 S. SITHARAMA IYENGAR AND HSI CHANG

I .)I>

I I

I r r >

1 1

I I s>

and deletions may disturb the perfect balance of the search tree, for random updating
actions in a limited period of time we expect little impact on the performance of the
entire system.

Many algorithms have been developed for maintaining the balance of binary trees
during record insertion and deletion. But these algorithms usually tend to be compli-
cated and involve too much balancing overhead. The rules should be somewhat relaxed,
e.g. to separate record insertion and deletion procedures from the balancing procedure.
The balancing algorithm presented in this paper is one suitable for optimizing a search

BINARY SEARCH TREES 94 1

tree whenever the tree becomes too unbalanced. In addition, although not many
algorithms deal with maintaining and optimizing threaded trees, the algorithms
presented here seemingly well provide a system to do all these.

Finally, as a reflection on the modification of TRAVBIND in the preceding section, one
may find that it is feasible to generate a balanced and threaded binary search tree on any
set of data provided that the ordering information is available. Hence, the procedure
GROW is not necessarily restricted to restructure search trees only. For recent results on
parallel version of these algorithms - see Reference 6.

REFERENCES

I . El . Chang and S . S. Iyengar, ‘Efficient algorithms to globally balance a binary search tree’,

2. N . M’irth, .4Igorj/h111 + Doto Structi4r.c. = h~igr-tetris. Prentice-llall, Englewwod Cliffs, Iv. J ., 1976, pp.

3. D. E. Knuth, The :LI I!/ (brrtpii/er- l‘tu,~t-tiirtiiiiit,~, 1 bl. 3, .Sor?irt,c mid .Scwt-cAir t~~, Addison-Wesley,

4. E. Horowitz and S. Sahni, l ~ ’ i i i i ~ l u i i t ~ i i / ~ i l s o / l k c t (i .S / r~ ic / i i i~s , Computer Sci. Press, Potomac, Md.,

5. J . P. Tremblay and P. G. Sorenson, :bi / ~ i t ~ ~ o c l i i c ~ / ~ ~ i ~ i /IJ L ~ / N S t r - i i c t i i w zcitli :lpplic~ce/iorts, McGraw-

6. A . hloitra and S. S . Iyengar, ‘A maximally parallel algorithm to balance binary search trees’, to appear

7. A. C. Day, ‘Balancing a binary tree’, The (’oniptitel-~iJut7i(el, 19, 360-361 (1976).
8. W. A. Martin and D. N. Ness, ‘Optimal binary trees grown with a sorting algorithm’, ~ b r r r r r i i i r i i e ~ c i t i i i s (I /

(brr i rr t~ ir t iccc t i r i .f /he .4(‘A/, 27, (7) 695-702 (1984).

189-242.

Reading, Mass., 1968, p. 722.

1976, pp. 442-456.

Hill, 1976, pp. 326-329.

in /El?/; Tr-tirts. (i i t i i p i i / c ~ t x (1985).

the 15, 88-93 (1972).

