
N90-29029

LEARNED NAVIGATION IN UNKNOWN TERRAINS:

A RETRACTION METHOD

Nageswara S.V. Rao

Dept. of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

N. Stoltzfus

Dept. of Mathematics

Louisiana State University

Baton Rouge, LA 70803

S.S. lyengar

Dept. of Computer Science

Louisiana State University

Baton Rouge, LA 70803

ABSTRACT

We consider the problem of learned navigation of a circular robot R, of radius 8 (_>0), through a

terrain whose model is not a priori known. We consider two-dimensional finite-sized terrains popu-

lated by an unknown (but, finite) number of simple polygonal obstacles. The number and locations of

the vertices of each obstacle are unknown to R. R is equipped with a sensor system that detects all

vertices and edges that are visible from its present location. In this context we deal with two prob-

lems. In the visit problem, the robot is required to visit a sequence of destination points, and in the

terrain model acquisition problem, the robot is required to acquire the complete model of the terrain.

We present an algorithmic framework for solving these two problems using a retraction of the free-

space onto the Voronoi diagram of the terrain. We then present algorithms to solve the visit problem

and the terrain model acquisition problem.

1. INTRODUCTION

We consider the problem of the collision-free navigation of a circular robot through an unknown

terrain, i.e., a terrain whose model is not a priori known. Several variants of this problem have been

investigated. An algorithm for a point robot to escape out of a maze using touch sensing ability is

given in [1]. In [6], algorithms for a point robot to move from a source point to a destination point

using touch sensing are presented. The algorithms that enable a point robot to navigate to a destina-

tion point, and at the same time "learn" about the parts of terrain that are encountered on the way to

the destination are presented in [2,7]. This process of learning is termed as incidental learning. Here

the robot uses a combination of touch sensing and distance probing. The same problem is also solved

in the case where the point robot is equipped with a sensor that obtains all the visible obstacle boun-

daries [8]. The above problems can be grouped under a generic name of the visit probh,m, wherein a

robot is required to visit a sequence of destination points through an unknown terrain. Another prob-

lem, called the terrain model acquisition problem, wherein a point robot is required to acquire the

complete model of the terrain is also studied [10]. The solutions of [7,8,10] are based on an incre-

mental construction of the visibility graph of the terrain. The above problems have to be dis-

tinguished from those that deal with the navigation in known terrains, i.e. the terrains whose models

are available. A comprehensive treatment of these problems can be found in [11].

These formulations of the navigational problem are motivated by a practical application involv-

ing the development of an autonomous rescue robot. This robot is intended for carrying out rescue

operations in nuclear power plants in the events of radiation leakages, and other incidents that prevent

human operation. A solution to the visit problem helps in developing a robot that can carry out a set

321

of operations in different locations in unfamiliar environments. Since the motion planning here is

essentially sensor-based, the navigation involves expensive sensor operations. Further more, the robot

could temporarily navigate into local detours because of the partial nature of the information returned

by the sensors. By incorporating the incidental learning feature, we reduce the expected number of

sensor operations, and the expected number of detours, as the robot visits newer locations. Instead, if

the complete terrain model is available, the robot can avoid the local detours, and also avoid the

expensive sensor operations. Thus a solution to the terrain model acquisition problem helps the robot

in acquiring the terrain model during the period in between the rescue operations. A dedicated rescue

robot typically idles in between two successive rescue operations, and the rescue operations could be

fairly infrequent. In such cases, the resources are better utilized if the robot is employed in the terrain

model acquisition process during this period. The proposed methodology in solving these navigational

problems provides a basic algorithmic framework that aids the design of a navigational system for the

abovementioned rescue robot. The same methodology can also aid the development of navigational

systems for other autonomous mobile machines in applications such as space navigation, underwater

explorations, maintenance of space laboratories etc. However, a practical implementation of the pro-

posed system calls for advances in more general theoretical aspects as well as several other issues

such as sensing and movement errors, etc., which are not discussed in the above works as well as in

this paper.

The visit problem and the terrain model acquisition problem have been solved separately

[7,8,10]. In this paper, we present a unified framework for solving both the problems using a method

based on a retraction of free-space onto the Voronoi diagram of the terrain. In this framework, we

use the single approach of implementing a graph search algorithm on a graph, called the navigational

course. We deal with a circular robot as opposed to the point robot of earlier works. Moreover, this

method has an advantage of keeping the robot as far away from the obstacles as possible. This aspect

seems very important in practical implementations as the earlier methods, based on the visibility graph

methods, may require that the robot navigate along the obstacle boundaries. Additionally, the pro-

posed method results in a storage complexity of O (N) as opposed to O (N 2) of visibility graph based

methods [7,10]. Also, this method results in a path-planning complexity of O (NZ_/_gN), whereas the

visibility graph method has a complexity of O (N 3) for the same. In this paper, we present briefly

present our results and the details can be found in our report [9].

The organization of the paper is as follows: The basic framework of our solution is outlined in

Section 2. In Section 3, we present the definition and properties of the navigation course to be used

for navigational purposes. In Section 4, we first present solutions for the visit problem, and the ter-

rain model acquisition problem.

2. BASIC ALGORITHM

We first describe the problem scenario and then present the basic algorithm used in the solution

of the visit problem and the terrain model acquisition problem.

Terrain: We consider a finite-sized two-dimensional terrain populated by a finite set

O={O1,O2, • • • On} (n is finite) of simple disjoint polygons, called the obstacles. Each obstacle Oi

has a finite number of vertices. The terrain in completely unknown to R, i.e., the number of obsta-

cles, and also the number and locations of vertices of each obstacle are unknown to R. The free-
n

space is given by f2=(-30i c, where Oi c is the complement of Oi in the plane. The closure of the
i=l

free-space is denoted by f_. Let N denote the total number of vertices of all obstacles. Let VER(Oi)

denote the set of vertices of 0 i .

322

Robot:We considera circularbodyR of radius 8, (8_3). The location of the center of R is called

the position of R. We treat R as an open disc of radius 8 centered at the position of R. R houses a

computational device with storage capability. Also, R is capable of moving along a straight-line path

or a curved path of second degree (in each case the path is specified). R takes a finite amount of time

to move through a finite amount of distance. Further, R is equipped with an algorithm B that plans a

collision-free path (for R) through a known terrain. In particular, we can use a suitable algorithm

from [11] for this purpose.

Sensor System: Let x be a position of R. A point y _ fi is said to be visible to R if the straight line

joining x and y is entirely contained in I'_. R is equipped with a sensor that detects the maximal set

of points on the obstacle boundaries that are visible from its present location. Such an operation is

termed as the scan operation. We assume that the scan operation is precise and error-free.

Two Navigational Problems

Initially, R is located at a point d o without intersecting any obstacle polygons and at a finite dis-

tance from an obstacle. In the terrain model acquisition problem, R is required to acquire the model

of the terrain to a degree such that it can navigate to any reachable destination location by planning a

path using the known terrain algorithm B alone. If a destination position is not reachable then R

should report this fact without performing sensor operations. Note that after the terrain model is com-

pletely acquired, no sensor operations are needed for navigational purposes. Second, in the visit prob-

lem, R is required to visit the points dl,d2,...,d _ in the specified order if there exists a path

through these points. If no such path exists, then R must report this fact in a finite amount of time.

Navigation strategy

We now present the algorithm NAV which is the basic underlying strategy used by R to solve

the visit problem and the terrain model acquisition problem. Here, R performs a "graph exploration

type" of navigation using a combinatorial graph called the navigation course, _(0), of the terrain O.

_(O) is a 1-skeleton embedded in fl. The nodes (edges) of _(O) are called _-nodes (G-edges). Each

G-node specifies a collision-free position for R, i.e. a position for R such that it is entirely contained

in _. An edge that joins two x-nodes v I and v 2 specifies a collision-free path, of finite length, from

v I to v 2 for R. The _(O) is initially unknown and it is incrementally constructed using the data

obtained through the sensor operations. The algorithm NAV is given below:

Consider the execution of NAV by R. NAV in initiated with a _-vertex v----v0 and S2={Vo}. The

set S I contains all the _-vertices that are visited by R. The set S 2 contains all the _-vertices that not

visited by R, but each v_S 2 is adjacent to some _-vertex in $1. R keeps visiting new _-vertices until

the set S 2 becomes empty. When R visits v for the first time the adjacency list of v is computed. In

this way, the _(O) is incrementally constructed. The scan operation of line 1 and the computational

operations in lines 2-7 and 11-12 can be directly executed by R. The path planning of line 8 involves

finding a graph path from v to v*. R actually moves along the edges of the computed path in line 9.

S 1 forms a connected (graph) component with the edge set being the set of all edges that are

traversed by R. Further SlUS2 forms a connected (graph) component with the edge set being the

union of the set of all edges traversed by R and the set of all edges computed by R. Thus there

exists a path along the edges (of the component) from any vertex of S 1 to any vertex of S 2. In each

step, R, located at v, selects a v E S 2, and then it moves to v . In this aspect, NAV is similar to a

standard graph exploration algorithm except for one difference. In a graph algorithm the cost associ-

ated with accessing the node v* (after it is chosen) is a single memory access. In NAV, when R

accesses v there are two associated costs: (a) the computational cost of planning a path from v to v

(b) the cost of moving R along the computed path.

323

algorithm NA V (v);

begin

1. perform a scan operation from v ;

2. mark v as visited and delete it from $2 and append to $1;

3. compute the adjacency list of v ;

4. append to S 2 all neighbors of v that are not visited;

5. if (S 2 is not empty)
6. then

7. select v* _$2;

8. plan a path from v to v ;

9. move to v ;

10. NAV(v*);
11. else

12. return to start vertex v0;
endif

end;

In order to yield correct solutions to the visit problem and the terrain model acquisition problem,

the navigational course _(O) has to satisfy a set of properties. These properties for the proposed

_(O) are discussed in detail in the next section. Suppose that _(O) satisfies the property of local-

constructibility, i.e., the adjacency list of a _-vertex v can be computed from the information obtained

by a scan operation performed from v. Further, suppose that _(O) satisfies finiteness property, i.e.,

_(O) has finite number of vertices. Also let _(O) satisfy graph connectivity property, i.e., any two _-

vertices are connected by a path of _-edges. Then we have the following observation.

Observation 1: If _(0) satisfies the properties of finiteness, connectivity and local-constructibility,

then, R, executing the algorithm NAV, visits all vertices of _(0) in a finite amount of time. E]

3. THE NAVIGATIONAL COURSE

We first present a structure that yields a navigational course to be used by a point robot.
then extend our discussion to a circular robot.

We

3.1. Point Robot

For x_f_, we define Near(x) as the set of points that belong to the boundaries of obstacles Oi,

i=1,2, • • • ,n and are closest to x. The Voronoi diagram, Vor(O), of the terrain populated by O is
the set of points:

{x_ fllNear (x) contains more than one point }

In this case, Vor(O) is a union of O(N) straight lines and parabolic arcs (see [4,5] for more details).

Each of this line or parabolic arc is referred to as V-edge. The points at which the edges meet are

called V-vertices. Furthermore, Vor (0) can be specified as a combinatorial graph in which each edge

is labeled with two end V-vertices, and an equation defining it as a curve in the plane. Each V-vertex
is labeled with its coordinates.

Consider the convex hull C(O) of union of vertices of all obstacles (i.e. convex hull of
n

k_)VER(Oi)). Let E(O) denote the polygonal region obtained by pushing the edges of C(O) out-
i=l

324

Iol
..... -_ rxCO)

Figure 1. The Vorl(O) for the terrain O={O1,O2,O3}.

wards by a distance of s and taking the interior of 'grown' region. Let us define

Vorl(O)=(Vor(_2)f'vE(O))uDE(O), where DE(O) is the boundary of E(O). We note that Vorl(O)

precisely contains the Voronoi diagram of O that lies inside E (O) and the boundary of E (O). The

edges (vertices) of Vors(O) are called Vl-edges (Vl-vertices). See Fig. 1 for an example. The set of

vertices of Vor 1(O) is the union of V-vertices, vertices of the envelop E (O) and intersection points of

edges of DE(O) with V-edges. Similarly the set of edges of Vorl(O) is the union of edges of

Vor(O) that are contained in E(O) and the edges of DE(O). It is easy to see Vorl(O) as a planar

graph formed by VFvertices and Vredges. The set of all Vl-vertices that are adjacent to a Vl-vertex

v constitute the set of neighbors of v. The following four basic properties of VOrl(O) are shown in

[9]:

(i)Combinatorial properties: The number of Vl-vertices is at most 4N-n-2, and the number of V l-

edges is at most 6N-3n-3.

(ii)Connectivity: Vorx(O) is topologically connected, and consequently Vorl(O) is graph connected

when viewed as a combinatorial graph i.e., there exist a path along Vredges between any two Vr

vertices.

(iii)Terrain-visibility: Every point in the closure of free-space _ is visible from some Vl-vertex, i.e.,

for x_, there exist a Vt-vertex v such that the line joining x and v is entirely contained in _.

(iv) Local-constructibility: All the neighbors of a V rvertex v can be correctly computed from the ter-

rain boundary information obtained by performing a scan operation at v.

3.2. Circular Robot

For x _ f_, let Clearance (x) denote the distance of x from a member of Near (x) (in terms of the

Euclidean distance). Consider VOrl(O) such that the distance s used in obtaining E(O) is at least 8.

Let us consider a subset of Vorn(O) given by {xeVorl(O) I Clearance(x)>8} which is the set of

points of Vor 1(0) with clearance greater than _. This set consists of a set of connected components.

Initially, let R be located at doe f_. Let Vor ° 1(O) be the connected component that contains Im(d0),

i.e., Irn(do)e Vor* 1(0). Vor* 1(O) contains either all or none of the edges of E(O). Further an edge

of Vor* 1(0) could be a truncated version of an edge of Vor (0), in which case we attach a vertex at

the truncated end. These vertices are called truncated vertices. The edge formed as a result is called

the truncated edge. We now summarize the properties of Vor* 1(0).

325

Properties 2: Vor* 1(0) satisfies the properties of finiteness, connectedness, terrain-visibility and

local-constructibility.

4. NAVIGATION ALGORITHMS

We first discuss the navigational course and the navigation strategy used by R. Then we present

the algorithm ACQUIRE that solves the terrain model acquisition problem. We then present the algo-

rithm I_2VAV that navigates R from di to dz+1 if a path exists from d i to di+ I. Then we obtain the

algorithm GNAV that solves the visit problem. GNAV uses LNAV as a component and also incor-
porates the feature of incidental learning.

[

Ot

/
Vorl(O)

Figure 2. The terrain O=-{Oi,O2,O3} and Vorl(O).

4.1. Preliminaries

For a point robot, _(O) is obtained by deleting from Vorl(O) all the Vl-edges that terminate on

a concave comer. Such edges are formed by two obstacle edges that meet at a concave comer. For a

circular robot _(O) is obtained by deleting from Vor* l(O) all the truncated edges. In Fig. 2, we

show the terrain 0ffi{01,0 2,0 3}, and the corresponding Vorl(O). In Fig. 3, we show _(O) for a cir-

cular robot. Note that every V-edge that terminates at a concave comer generates a truncated edge.

We assume that the process of deletion of an edge retains the vertex that connects the edge to the rest

of Vorl(O) or Vor* 1(O). Now, view _(O) as 1-skeleton embedded in the plane. It is clear from the

definition that any point on _(O) - in particular a _-vertex - specifies a collision-free position for R.

Consequently, a _-edge specifies a collision-free path for R. It is direct to see that _(O) satisfies the

properties of finiteness and tocal-constructibility. The connectivity of _(O) can be shown by observ-
ing that each edge that is removed from Vorl(O) and Vor* 1(O) is pendant and can not disconnect

resultant set. Let C denote the number of concave comers of the terrain O. Note that we delete (at

least) C V-edges and V-vertices from Vorl(O) (Vor*l(O)) for a point (circular) robot. Then we

have the following properties.

Properties 3: _(O) for a point or a circular robot satisfies the properties of finiteness, connectivity,

terrain-visibility and local-constructibility. Further more

326

(i) #_-vertices ._4N-n-C-2

(ii) #_-edges _6N-3n-C-6. []

f

Figure 3. _,(O) for a circular robot for O of Fig. 2.

Now consider the execution of the algorithm NAV. For ease of presentation, we discuss a

depth-first implementation of NAV which specifies a particular way to select v* the _-vertex to be

visited next (line 7). R is presently located at the E-vertex v. If v has neighbors that are not visited

then R chooses one of the unvisited neighbors as v . If all neighbors of v. are visited then R

chooses the vertex of S 2 that is reachable by a minimal distance path. This path is obtained by invok-

ing one-to-all shortest path algorithm of [2] on the presently available _(O) and picking the vertex

that is reachable from v by a path of minimal length. Note that _(O) is a planar graph. Cost of this

computation is O (N l,_ogN).

4.2. Terrain Model Acquisition

The algorithm ACQUIRE is a direct implementation of the algorithm NAV. Once the terrain

model is available one can use the algorithm B to plan a path to reach any destination point. This

algorithm has a time complexity of O(NlogN) [11]. Thus we have the following theorem.

Theorem 1: The algorithm ACQUIRE solves the terrain model acquisition problem in a finite amount

of time such that

(i) The number of scan operations performed is at most 4N-n-C-2.

(ii) The total distance traversed by R while executing ACQUIRE is at most twice the total length

of the depth-first tree of _(0) rooted at v o.

After the execution of ACQUIRE, R can navigate to any reachable destination with a time complexity

of O (NlogN) and with no sensor operations. I:]

In our implementation we use the adjacency list representation of _(O). We store the coordi-

nates of each L-vertex in the adjacency lists. We maintain a table called MAP-TABLE as an AVL

tree. The cost of this operation is 0 (logN) using the table.

Theorem 2: The complexities of various tasks carried out by ACQUIRE are as follows:

(i) the storage complexity is 0 (N),

327

(ii) cost of construction of _(O) is 0 (N210gN)

(iii) total cost of path planning is 0 (N2"_gN),

(iv) cost of construction of MAP-TABLE is 0 (NlogN), and total cost of accesses to MAP-TABLE is
O (NlogN).[]

4.3. Visit Problem

We now discuss the algorithm LNAV that navigates R from its present location at d i to a desti-

nation point di+ l if such path exists. If there is no path from d i to di+l, then R will declare the same

in a finite amount of time. The algorithm LNAV is obtained by modifying NAV. Initially a scan is

performed from d i and if di+ 1 is found reachable, then R moves to di+1. If di+1 is not found reach-

able then R computes a _-vertex v 0 and moves to v 0. From Vo, the algorithm NAV is invoked. Let

R be located at v. After a scan is performed from v, R checks if di+ l is reachable. If di+ 1 is reach-

able, then R moves to di+1 and terminates NAV. If not, R continues to execute NAV until comple-
tion. If di+1 is not found after S 2 becomes empty then di is declared as not reachable.

Theorem 3: Algorithm I.,NAV navigates R from di to di+ l in a finite amount of time if the latter is

reachable. If di+ l is not reachable then R declares so in a finite amount of time. In executing the
algorithm LNAV by R,

(i) the number of scan operations is at most 4N-n-C-2,

(ii) the total distance traversed is at most equal to twice the length of the depth first tree of _(0)
rooted at v o. []

The computational complexity of executing the algorithm LNAV follows along the lines of previ-

ous section. Thus, in executing the algorithm LNAV, (i) the storage required is O(N), (ii) cost of

construction of _(O) is O (N21ogN), (iii) complexity of path planning is O (N2_gN) (iv) the cost of

construction of MAP-TABLE is O(NlogN), and the total cost of accesses to MAP-TABLE is
O(NlogN).

I
di÷I 0,_

(a) R escaping out of a concavity (b) R moving out of a maze

Figure 4. Execution of LNAV by R

In Fig. 4 we show a point robot moving out of a concavity, and moving out of a maze. In Fig.

5 we show a point robot moving out of a maze with backtracking. We can solve the visit problem by

a repeated invocation of LNAV. LNAV completely relies on the sensor information for navigation.

328

Since the sensor obtains only a partial information about the terrain, as a result R might navigate into

local concavities as in Fig. 5. If R is required to navigate in the regions that it navigated in previous

traversals, then it can use the previous information to plan its present course of navigation. Note that

the partial model of the terrain depends on the paths traversed by R in earlier traversals. We now

obtain the algorithm GNAV as follows: We store the adjacency lists computed by R over the traver-

sals in a global _(O). Further the set $2 is also stored over the traversals. Consider the navigation

from di to di+ I. Then GNAV computes a g-vertex that is reachable from di and moves to this vertex.

Then R computes a _-vertex d* that is closest to di+l according to some criterion such as distance.

Then R moves along a path on _(O) to d*. From d*, R uses LNAV to navigate to di+ 1. It is direct

to see that GNAV correctly solves the visit problem. Moreover, R checks the set $2 after every scan

operation. After S 2 becomes empty, R switches-off its sensor and navigates the further traversals

using the algorithm B alone. At this stage R has acquired the terrain model that is sufficient to navi-

gate to any reachable point. Thus after this stage R does not perform scan operations for the purpose

of navigation, and also R would avoid local concavities. Using the arguments of previous section it is

clear that such stage will be reached after at most 4N+M-n--C-1 scan operations. Thus we have the

following theorem.

Theorem 4: The terrain model will be completely built by R in at most 4N+M-n--C-1 scans, then

the execution of each traversal involves no scan operations with a time complexity of 0 (N logN) []

di÷t

v

i

di÷!

(a) R backtracks once (b) R backtracks twice

Figure 5. Execution of LNAV by R.

Since the process by which R acquires the terrain is incidental, i.e., depends on the previous

traversals it executed, it is possible to make probabilistic statements about the performance of GNAV.

Let _(O)=(V,E). Let Pv (>0) be the probability that R visits a G-vertex during any traversal. Proba-

bility that a scan is performed from v in ith traversal is (1-pv)i-lpv. Then the probability that the

terrain model will be complete during the mission of M traversals if I'I [1-(1-pv) M] which is non-
v_V

zero. Moreover this probability approaches to 1 as M approaches infinity. Thus in a limiting case R

obtains the complete terrain model with a probability of one.

329

$. CONCLUSIONS

We presented an algorithmic framework based on a retraction of free-space to solve two naviga-

tional problems for a circular robot moving in an unknown terrain. We consider the visit problem in

which the robot is required to visit a sequence of destination points. We present an algorithm that

enables the robot to visit the destination points using an ideal sensor, and also build the terrain model

in the regions it navigates. Further the robot can detect the completion of the terrain model, and at

this stage it switches to a known terrains navigation algorithm. After this stage, the future navigation

is carried out without using the sensor. We also consider the terrain model acquisition problem

wherein the robot is required to autonomously explore the terrain and build a model of the terrain

such that the future navigation to any reachable destination can be carried out using the algorithms of

known terrains alone.

References

[I] Abelson, H., and A. diSessa, (1980), "Turtle Geometry", MIT Press, 1980, pp. 179-199.

[2] G.N. Frederickson, Shortest path problems in planar graphs, Proc. 24th Ann. Syrup. on Found.

of Comput. Sci., 1983, pp. 242-247.

[3] lyengar, S.S., C.C. Jorgensen, S.V.N. Rao and C.R. Weisbin, (1986), Robot navigation algo-

rithms using learned spatial graphs, Robotica, vol. 4, January 1986, pp. 93-100.

[4] Kirkpatrick, D.G., (1979), Efficient computation of continuous skeletons, Proc. 20th Ann. Syrup.

on Found. of Comput. Sci., 1979, pp. 18-27.

[5] Lee, D.T. and S. Drysdale, (1981), Generalization of Voronoi diagrams in the plane, SIAM J.

Comput., vol.10, no.l, 1981, pp. 73-87.

[6] Lumelsky, V.J. and A.A. Stepanov, (1987) Path-planning strategies for a point mobile automaton

moving amidst unknown obstacles of arbitrary shape, Algorithmica, vol.2, 1987, pp. 403-430.

[7] Oommen, J.B., S.S. lyengar, N.S.V. Rao and R.L. Kashyap, (1987) Robot navigation in unk-

nown terrains using visibility graphs. Part I:The disjoint convex obstacle case, IEEE J. Robotics

and Automation, vol. RA-12, 1987, pp. 672-681.

[8] Rao, N.S.V., S.S. lyengar and G. deSaussure, (1988a), The visit problem: Visibility graph-based

solution, Proc. 1988 IEEE Int. Conf. Robotics and Automation, pp. 1650-1655.

[9] Rao, N.S.V., N. Stoltafus and S.S. lyengar, (1988b), A 'retraction' method for learned naviga-

tion in unknown terrains for a circular robot, Tech. Rep. #88-018, Dept. of Computer Science,

Old Dominion University, 1988.

[10] Rao, N.S.V., S.S. lyengar, J.B. Ck3mmen and R.L. Kashyap, (1988c), Terrain acquisition by a

point robot amidst polyhedral obstacles, IEEE J. Robotics and Automation, vol. 4, No. 4, 1988,

pp. 450-455.

[11] Yap, C.K. (1987), Algorithmic motion planning, in "Advances in Robotics: Vol. 1: Algorithmic

and Geometric Aspects of Robotics", Ed. J.T. Schwartz and C.K. Yap, Lawrence Erlbaum Asso-

ciated Pub., Hillsdale, New Jersey, pp. 95-144.

330

NEURAL NETWORKS

331

