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The successful development of fifth-generation systems requires enormous computational capability and flexibility,
necessitating the ability to achieve operational responses in hard real-time through optimal resource utilisation and
introduction of adaptive control. This necessitates dynamically balancing the computational load among all the
processing nodes in the system. In this paper we propose a graph-theoretic, receiver-initiated, distributed protocol for
dynamic load balancing protocol in large-scale hypercube ensembles. Using attributed hypergraphs as the primary data
structure for constraint modelling and dynamic optimisation, we consider systems running precedence-constrained
heterogeneous tasks. Fault Tolerance is ensured by incorporating a dynamic integrity check for the decision nodes and
their subsequent re-election if needed. Simulation studies are used to analyse the algorithm performance and

correctness.
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1. INTRODUCTION

Real time optimisation of the overall performance of a
multiprocessing system requires that the tasks being
executed be uniformly distributed amongst the various
processing nodes, in a manner which maximises the
resource utilisation to enhance the total throughput of
the system. Load balancing then, is a ‘ distributed decision
process’® which, using a local view of the system
state, arbitrates on the assignment of the system’s
resources to the tasks requesting them. In general, given
a job load composed of modules with interlying
dependencies to be executed on a multiprocessor con-
figuration with prefixed interconnection network, it must
determine an assignment pattern, or, a mapping function
for shuffling tasks between the processors, such that total
execution time of the job is minimised by avoiding under-
utilised processors. The difficulty here lies in the conflict
of constraints over a configuration space which grows
exponentially with the number of tasks.

Determination of feasible assignment patterns for a
given system may be sratic, as discussed by Barhen,’
Chou and Kobhler,? Livny? and Tantawi and Towsley,”
or dynamic, Eager et al.,* Lin and Keller,® Stankovic and
Sidhu.'® If the mapping is static then the tasks and their
dependencies are known a priori, and they can be
mapped onto the network nodes before the computation
begins. Once assigned to a particular processor the tasks
are bound to it during their entire lifetime. On the other
hand, during dynamic load balancing the computation is
modulated by a dynamically created task-precedence
graph. The performance, in this case, depends upon the
process migration mechanism and the size of information
domain analysed for load dispersal. Hereafter we focus
on the dynamic load balancing problem.

Distributed systems may adopt either sender-initiated
or receiver-initiated strategies for dynamic load bal-
ancing. In systems using sender-initiated requests, the
heavily loaded nodes search for underloaded nodes to
which some of their excess tasks may be transferred. In
the latter, the situation is reversed and under-utilised

nodes search for congested nodes from which load may
be acquired to enhance the throughput by preventing
processor inactivity due to lack of task availability.
Analytical models and simulations have shown® that
sender-initiated strategies outperform receiver-initiated
strategies at light to moderate system loads while receiver-
initiated strategies are preferable at high system loads,
assuming process migration cost under the two strategies
to be comparable. Receiver initiated policies require the
transfer of partially completed tasks, thus incurring
substantial process migration costs. This is avoided in
sender-initiated strategies by ensuring that load balancing
is performed only when new tasks are spawned. This
advantage may however, be lost in systems executing
tasks of unequal lengths where preemptions and migra-
tion of executing tasks are frequently required to ensure
that all processors are equitably loaded.

The primary focus of this paper is to explore a new
strategy for dynamic load balancing in heavily-loaded
concurrent hypercubes. We describe a user-transparent,
distributed, graph-theoretic algorithm to dynamically
shuffle tasks among the various nodes. A receiver-
initiated strategy is adopted, wherein the underloaded
processors broadcast their loading status to the neigh-
bouring nodes, thereby enabling the saturated processors
to construct local domains within which they could
redistribute their excess load. These ‘balancing domains’
or ‘pebbles’ so constructed are represented using an
attributed hypergraph data structure. These domains are
not, however, immediately closed because at the time of
process migration tasks may be despatched to processes
embedded in other pebbles. So in order to actuate the
distribution, the pebbles are transmitted to their res-
pective cluster controllers which compute an optimal
mapping of migratable tasks onto the underloaded
processors. This is achieved through ‘ pebble crunching’,
which involves controlled recursive fragmentation and
recombination of pebbles. This modified schema is then
redistributed among the candidate nodes to actually
carry out the load redistribution. Fault monitoring and
recovery algorithms are provided to ensure that all
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decision nodes are operational and tasks are not lost or
migrated to faulty nodes. The algorithmic details are
described in the subsequent sections.

The organisation of the remaining paper is as follows.
Section 2 provides a mathematical characterisation for
the adaptive balancing threshold, optimising criteria and
an introduction to attributed-hypergraphs as the basic
unit of information interchange. Section 3 discusses the
partitioning of the ensemble nodes into clusters for
imposing a control hierarchy to facilitate the crunching
process. In Section 4 we present the details of the pebble
crunching algorithm and its component phases. Section 5
presents the results of our simulation. In Section 6 we
drop our reliability assumptions and provide mechanisms
for ensuring fault tolerance in the model, to cater to real-
life computational environments.

2. PRELIMINARIES
2.1 Environment characteristics

This load balancing schema is primarily targeted towards
large-scale, loosley coupled, computation ensembles with
n homogeneous processing elements interconnected
through a broadcast-based communication subnet. The
term ensemble is used for multiprocessor architectures
wherein each processor has a local memory, and
interprocessor communication is via message passing
instead of shared variables. The interconnection network
topology may be of the type of two-dimensional,
spanning bus hypercube, toroid, 2-ary N-cube, hypertree
or cube-connected cycles. A common characteristic
shared by all these interconnection networks is the high
degree of connectivity.

In addition, the following characterise the architectural
properties of the proposed model. The processing nodes
in the ensemble are homogeneous, in that, a job submitted
at any node may be processed at any other node in the
network. However, the node behaviour is heterogeneous
as tasks may be spawned, destroyed or arrive from the
external hosts, at arbitrary rates, at the different nodes.
Placement of new external tasks on the processing nodes
is either done by the user or by a host processor whose
primary function in most systems is to serve as an
input/output device. Consequently, response time is
different for each node depending upon the com-
putational requirements of the tasks, local availability of
resources and the precedence-constraints among the
tasks. Also, the communication links between the
processing nodes are assumed to be reliable and error-
free and the network communication protocol is com-
pletely separated from the inter-task communication
policy.

There is no intermediate buffering of data and control
messages. The messages are received by a node from a
remote node in the order in which they are transmitted.
This is a difficult assumption to satisfy in loosely coupled
homogeneous ensembles since a significant number of
messages will reach out of order due to channel
contention and process priorities. However if the

operating system implements virtual time, as is the case
for most recent versions, then this assumption is easily
met. In addition, an executing process can be interrupted
by any control messages directed to the node on which it
is executing. The nodes are assumed to have the ability to
distinguish between different types of messages when
operating in the asynchronous mode.

2.2 Problem descriptors

Load balancing calls for an optimal task distribution in
a configuration space with conflicting demands.' In
order to avoid processor thrashing or excessive ac-
cumulation of load on any processing node and to
achieve maximal utilisation of system resources the tasks
need to be spread out evenly over all the nodes. On the
other hand the goal of minimising interprocessor
communication to prevent channel saturation requires
that tasks be clustered on a few, adjacent nodes. This
necessitates a two-tiered solution to the problem along
with a classification of constraints into two broad
categories, processor-workload  characteristics and
process-interaction characteristics. The former serves as a
thresholding parameter to initiate load balancing while
the latter are a function of processor utilisation, queue
length, memory requirements, task mix, resource require-
ments, etc. The processor_interaction characteristics are
used to decide on how to actually distribute the load
and pertain to the process management overhead and the
degree of reduced network usage as a consequence of
process-migration, breakage and re-establishment of
inter-process communication links, precedence con-
straints etc.

2.2.1 Processor-workload characteristics

The load of each processing node P, is determined by the
number of tasks currently being served, blocked, i.e.
hanging at synchronisation points or queued at that site.
For the ith processing node we define a threshold load, to
be the loading condition for a processor, such that
further addition of tasks to it leads to no further gain in
processor utilisation. Based on the instantaneous task
load we quantitatively define the loading states for a
processing node to be excessive, optimal or light. An
excessively loaded node can get rid of some of its present
load while a lightly loaded node could absorb more load.
If the system is neither excessively loaded nor under-
utilised then the loading is optimal. As stated earlier the
system tends to improve throughput by avoiding idle or
lightly loaded processors. We also define the notion of
Balancing Region, BR,, for a processor i which includes
all prospective candidates for receiving tasks. So task
migration is essentially a comparison between the degree
to which the load distribution of the balancing region is
unbalanced and the loading threshold. To quantitatively
measure the degree of ‘balancedness’ of a system, we use
Livny’s® Unbalance Factor that is defined over a
balancing region, which is given below

0 (AL(A, H > ])A(min;’e BRy 1) (ni_j(t)) =0)

AL(A, 1)
minjs BR(t) (n;g j(’))

UBF(, 1) =

(AL(A. 1) > DA(min,, ,, (1, (1)) > 0)

0 otherwise
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where AL(i, 1) = MaX,. up ) (M, (1) —m, (1)) is the rela-
tive load-difference of i at time t. BR,(t) refers to the
balancing region for a processor i at time ¢, which here
refers to the hypercube dimension D, and m; () denote
the number of tasks at processor j. So then, given the
load vector specifying the instantaneous load at each
node determine an assignment such that unbalance in the
system and total communication costs, measured as the
sum of total data transfers between the nodes are
minimised.

2.2.2 Processor-interaction characteristics

The availability of a neighbouring under-utilized node
alone does not merit load sharing, especially if the
process migration overhead and interprocess communi-
cation link-breakage and re-establishment were to lead
to a greater turnaround time for the migrated task than
if it were to be locally processed. So a quantification
for the message passing overhead due to precedence
constraints or synchronisation requirements and the
parameters affecting process-migration is needed to
ascertain the effectiveness of balancing alternatives.
Computations intended to run on the hypercube
ensembles are decomposed into task sets which can be
concurrently executed. This problem decomposition
often induces precedence constraints among the tasks
which the distributed nature of the computational system
translates into message passing requirements. These
message passing requirements due to the precedence
constraints are determinable at load-time, when the tasks
are downloaded onto the different nodes by the host
processor, or, during the process creation time if they are
dynamically spawned. This is a valid, but restrictive
condition, as the existing compilers for the hypercube
family of machines, prefix each task with a list specifying
the messages it sends to the other nodes along with their
addresses, list of node addresses from which it is to
receive messages and the length of messages exchanged.
Thus the task coupling function due to precedence
constraints is specified a priori and can be used as a
decision metric. A significantly harder case involves load
balancing in application environments that are event-
driven, i.e., message passing decisions are made at run-
time depending upon the state of the system and possibly
external conditions. Let II(d,,) denote the length of
kth message exchanged between the processes executing
on nodes i and j. If D denotes the channel capacity, the
total message passing overhead for a process executing
on node i that needs to be incurred before it is completed

is given by, e X
Muass,- =X [Hﬂ‘(g‘l"oﬁ"' Zij FI1(9; (51'))}

J*i k

where Z; clock cycles is the fixed protocol and routing
overhead and is in general a function of the node on
which a task is executing. In addition the overhead for
migrating a task and its state tables, communication link
breakage and re-establishment need to be accounted for.
So the total interprocess communication cost for mi-
grating a task, T, from the processor i to j is denoted by

MIG, = M, +TSIZE;+S®,+TAB,
J

where TSIZE,, denotes the propagation delay for
migrating task 7, from node i to node .

TAB, refers to the cost of migrating all state tables and
process control block (PCB) pertaining to the task and
®,; denotes the overhead of breaking and re-establishing
all links for task T executing on node i. The latter pertains
to the message passing overhead involved in transmitting
control packets to all the nodes communicating with the
task on node i.

2.3 Constraint representation using hypergraphs

Using the Unbalance factor, we construct the feasible
balancing horizons for the heavily loaded nodes. These
denote the existing neighbouring nodes which are lightly
loaded and can accept excess load. However these local
domains are not closed as they are constructed, in that
they are candidates for further optimisation. This is
desirable from several standpoints. For example, as
shown in Fig. 1, nodes ¢ and f are in the balancing
horizons of L, M, and P. Now, if all of then were to send
their excess tasks to C it would immediately get saturated
and load balancing would again be required, incurring a
heavy overhead in repeated process migrations. This is in
fact a major drawback with the existing dynamic load
balancing models, e.g. Ref. 8, that make migration
decisions based on local task gradients. Also a selection
between the nodes ¢ and f needs to be made since at this
stage they are both contenders for sharing load with
nodes L, M and P.

Figure 1.

This necessitates incorporating a global decision
mechanism, which using the process-interaction
characteristics determines a mapping of migratable tasks
onto the appropriate processing nodes, such that pro-
cessor utilisation is enhanced. But to perform such an
optimisation, the relevant system information needs to
be communicated to a controller node, which can then
make the balancing decisions. This objective entails a
data structure which can effectively bridge the gap
between representation domain used for load balancing
and the information required to compute a distribution
mapping. To this end we propose the use of attributed
hypergraphs to express the optimisation constraints and
encapsulate the dynamic structure of balancing domains.
Some of the terminology pertinent to the model is
presented below.
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Definition 1:

Let X = {x,,x,,...,x,} be a finite set, and let E = (E,|ie
I) be a family of subsets of X. The family E is said to be
a hypergraph on X if

() E+® (iel)
2 UE =X
iel
The couple H = (X,E) denotes a hypergraph. The

elements of X are called vertices and elements of E are
called hyperedges.

Definition 2:

An attributed hypergraph is one whose vertices are
associated with a nominal list of numerical attribute
values. Here it is used to model the loading state of the
system where each attributed hyperedge corresponds to
the domain of processors over which a heavily loaded
node may distribute its excess load and the vertices in the
hyperedge represent the underutilised processors.

We further introduce the notion of a pebble, which is
the fundamental unit of information interchange in the
model. A pebble is an attributed hyperedge associated
with some owner node, P, which is not itself a component
of any other pebble. It is denoted by E, = [(x, k,[A]) | x,
€X and keN and [A4] is a set of m-attribute tuple
denoting the cost of migrating m-excess tasks.

So a pebble has the following structure, (xl, k,(a,,a,,,

o))y (6),(Ayy, 5y, ..,a5), ooty (X Gy s s
m,))] where x,, X,, ..., x, are the lightly nodes with which
the pebble-owner could share its excess taskload; k, j and
denote the accepting capability of receivers. (a,l,aﬂ,
a,) is the attribute tuple where a,; denotes the cost of
migrating the jth excess-task to node i. A pebble is also
referred to as Local Balancing Horizon, (LBH) of an
overloaded node.

Definition 3 :

A Pebble Cluster corresponds to the attributed hyper-
graph constructed by the Distribution Cluster Controller
(DCC) upon receiving the pebbles from all the heavily
loaded nodes in the cluster. Fig. 1 illustrates a pebble
cluster. Initially each cluster has several overlapping
pebbles with overlapping vertices denotmg the con-
tending receiver nodes which can receive tasks from
more than one overloaded node in the cluster. Further,
the ensemble itself may consist of overlapping pebble
clusters.

3. STATIC NODE CLUSTER FORMATION

In order to enforce a hierarchical control the nodes in the
ensemble are partitioned into static clusters and DCCs
are elected for each cluster. The common criteria for
clustering being minimisation of internodal communi-
cation cost, connectedness or k-link failure resilience, i.e.
the nodes remain strongly connected up to k link failures,
minimisation of routing tables or a balanced structure
with respect to certain metrics, e.g. computational power,
size etc. As the processors and communication links have
been assumed to be reliable and stationary, the criterion
adopted here for clustering is balance, i.e. the processing

nodes are partitioned into clusters of approximately
equal size for the purpose of load balancing, where the
clusters are in form of route balanced m-ary trees. Given
the degree of each node in the m-ary tree and the number
of clustering levels desired, the clusters can be constructed
using the bottom-up algorithm proposed by
Ramamoorthy ef al.'* The root of each m-ary subtree at
each level is designated as the DCC. The parent of each
DCC then becomes the cluster controller for the next
level of hierarchy. This process is repeated upwards till
the root of the tree which is designated as the System
Cluster Controller. All the controllers above the level of
DCC are elected from among the DCC nodes to save on
communication overhead in transmitting the partially
computed allocations. Each node is then made aware of
its own controller node. Fig. 2 shows a 16 node hypercube
partitioned into hierarchical static clusters.

DCCy,

Level 2 %\ forj)\CC's

Pebble crunching

%/Dcc., DCC), DCC13 \%DCCM
\
Level 1 /
'Y 3K [
1 2 3 4|56 9 10 1112 1314 1516
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 2. Cluster tree for a 16 node ensemble.

Since clustering is used primarily for the purpose of
reducing communication overhead for control, the
nodes in one cluster are not forbidden from sharing their
excess tasks with nodes in another cluster. In fact the
LBH of overloaded boundary nodes will contain nodes
in the adjacent cluster. However the decision to share
tasks with nodes in other clusters are taken after pebble
crunching is completed within cluster and the crunched
pebbles are communicated to the next level controller. If
a particular DCC is the next level controller then it is
required to send request packets to all lower level
controllers asking for pebble clusters. This process is
recursively folded up to the root of the cluster tree.

4. LOAD BALANCING ALGORITHM

Drawing upon the above preliminaries we now present
the load balancing protocol involving four phases. In the
first phase each processor determines its loading state. If
a processor is not being fully utilised due to process or
data unavailability it broadcasts this information to all
its neighbouring nodes. In the next phase, all the
overloaded processors in the neighbourhood of the
lightly loaded node, use this information to construct
their local balancing horizon, which is represented by a
hyperedge of an attributed hypergraph, also denoted as
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a pebble. In phase I11, this information is transmitted to
the DCC for that processor which constructs a pebble
cluster from the pebbles. The complete hypergraph or
pebble cluster, encompasses all the feasible reassignments
for that cluster. This pebble cluster may however contain
several overlapping pebbles, i.e. two or more excessively
loaded nodes which can share their load with the same
set of underloaded nodes. Transversals are then com-
puted for this hypergraph and the overlapping nodes are
assigned to one of the nodes containing them in their
local balancing horizon. The crunched pebbles are then
transmitted to the next level of DCCs which arbitrate
balancing decisions over cluster boundaries. This crunch-
ing process is recursively repeated up to the level of
System Cluster Controller (SCC). This ensures that
distribution of tasks is arbitrated globally. The crunched
pebbles are re-broadcast to their respective owners which
can then distribute the load in the new balancing regions.

Phase 1. Receiver-initiated load requests during
threshold depletion

Before an instantaneous global scenario can be con-
structed for generating the load distribution, its con-
stituent components are composed using the information
broadcast by the processors regarding their loading
conditions. The imbalance function, LBH, is used by each
processor to determine if it can benefit by accepting or
ridding itself of additional load. If there is a processor
which can accept additional tasks for execution, i.e. it is
underloaded, then it broadcasts this information along
with the excess capacity to all its neighbouring processors.
This state recording and broadcasting algorithm is
superimposed on the underlying computation. Since all
state communication is interrupt based, the arrival of a
control packet from the adjacent lightly loaded node,
forces the destination processor to interrupt processing,
and examine the incoming message. If the interrupted
node is also operating below its threshold capacity then
it ignores this incoming information and continues
processing. An excessively loaded node however extracts
out the address of the sending node. The information
pertaining to all the neighbouring processors with which
it could possibly share its load, is collected to construct
or update the local balancing horizon (LBH). The Local
Balancing Horizon of a heavily loaded processor is
defined to be the domain of underutilised, neighbouring
processors over which it could distribute its excess tasks.
There are two observations regarding the construction of
LBH as given below.

Observation 1

As there is no global clock controlling these events and
each processor records and transmits its state inde-
pendently, a mechanism is needed which will enable a
heavily loaded processor to know when all the lightly
loaded nodes have communicated their status as their
number is not known a priori. So the heavily loaded
processor could be made to wait for 27, T, + ¢,, from the
time of arrival of the first control frame, where T;; is the
propagation delay for a control frame from node i to
reach node j. The buffering and protocol overhead is
denoted by ¢; and d refers to the fan-out of processor ;.
At the expiry of this interval the pebble construction is

initiated and any packet which arrives late is rejected, for
the current balancing cycle. This ensures that nodes do
not wait infinitely for the prospective receivers. However,
most of the targeted hypercube computational ensembles
are loosely synchronised and cannot be expected to
display preset collective behaviour.

Observation 2

Rather than providing each node with a deterministic,
repetitive control, the LBH construction algorithm is
made completely asynchronous and distributed. Instead
of transmitting loading states at regular intervals, the
state changes are broadcast as they occur, i.e. the LBH is
continuously updated and monitored. Each time there is
a state change in some processing node, for example a
heavily loaded node becomes a lightly loaded node, it
dissolves its own LBH and broadcasts this state change
to its neighbours. On the other hand if an underloaded
node receives tasks for execution and exceeds the
optimum loading level, it transmits a control frame to
this effect so that all overloaded nodes in its immediate
neighbourhood can delete it from their LBHs. With this
strategy each update in the LBH requires broadcasting
one control packet. This approach does not impose
additional synchronisation overhead as the overloaded
nodes do not need to wait for all underloaded nodes in
the neighbourhood to communicate their status before it
can construct the pebble to send it to the DCC. On the
other hand, the LBH is dynamically updated and can be
transmitted immediately upon request to the DCC.

Phase 2. Pebble construction and attribute encapsulation

In this phase, the heavily loaded sender nodes construct
pebbles to transmit their local balancing horizons to
the DCC upon request. On the basis of their current
loading state and the threshold each overloaded node
determines its shareable task set, which contains a list of
excess tasks that may be migrated to other nodes. For
each task, T, in the shareable task set it computes the
balancing delay and the protocol overhead, MIG, and
uses it to construct its pebble. This pebble denoted by E,,
is then transmitted to the Distribution Cluster Controller
for crunching, i.e. to determine the globally optimal load
distribution.

Phase 3. Transversal computation and global balancing

During this phase all pebbles in a cluster are centrally
operated upon to determine task re-allocation schema.
The DCC collects all the pebbles dispatched by the nodes
for which a LBH exists. If a heavily loaded node does not
have any underutilised processor in its neighbourhood
then its LBH is empty. A node with an empty LBH may
be required to share its load with processors more than
one hop away. Thus the LBH of such a processor includes
all the underloaded nodes in the nodal cluster. All such
nodes send a control message to the DCC, informing it
of the unavailability of local nodes for sharing their load.
The DCC then constructs the pebble for them. In this
phase the loading state of the entire system or the pebble
cluster is modeled as an attribute hypergraph where each
pebble denotes a hyperedge. A hypergraph is said to have
a hypercycle if there is a hyperedge that is a subset of
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some other hyperedge. The immediate implication of the
existence of a hypercycle in the hypergraph being, that
there is a pebble whose owner can share tasks with a
node or a set of nodes which is a subset of nodes with
which another pebble could share its tasks. It denotes a
maximal sharing conflict situation. The load sharing
algorithm involves determining all such cycles at the
outset and reducing them by allowing their owners to
share their excess tasks with the nodes in the cycle. After
reducing all proper cycles in the pebble cluster we need to
determine the minimum transversals with respect to each
pebble to find out all possible conflicting load assignments
or those nodes which are in the shareable task set of two
or more nodes.

Definition 3

A transversal of a hypergraph H = (X; E,, E,, E,, ..
is defined to be a set T < X such that

TNE +@& (i=1,23,...m).

where the minimum transversal is defined by the set
TNE.

aEm)

Definition 4

The transversal number, t(H) of hypergraph is defined to
be the minimum number of vertices in a transversal, and
is denoted by ©(H) = min|T]|.

In this method the minimum transversal with respect
to each pebble, in the attributed hypergraph is needed to
determine the globally balanced task allocation, for all
the excessively loaded nodes.

Berge? has described an algorithm for determining the
minimum transversal Tr 4 which is summarised below.

Step 1

Determine the set of all minimal subsets of A4 i.e.
Mind ={A4,,A4,,...,A,}.

Step 2
Successively determine the following families:
A, =A,-TrA, =(alaeA))
Ay, =A,UA,-»TrA,=Min(Tr4,vTrA4,)
A;=A,UA;—>TrA, =Min(Tr 4, v Tr 4,) etc.

Using Tr(4 n B) = Min(Tr A v Tr B), the Tr 4,,, can
be computed from Tr A4,. If there are k excessively loaded
nodes in the system whose LBRs have been submitted to
the DCC then this algorithm constructs Tr 4 = Tr 4, in
k steps.

This algorithm computes the composite minimal
transversal sets for the entire hypergraph, i.e. it deter-
mines all the conflicting nodes in the system. But it
cannot be used per se because with each node in the
conflict set there is no information regarding the owners.
The above algorithm could however be modified to
compute the minimum transversal with respect to each
pebble owner, such that as soon as a node is detected
which can share tasks with two nodes a task sharing
decision is taken. But this underutilised node may be in
the pebble of some other node with a lower balancing
cost, in which case a nonoptimal assignment would have
taken place. So a mechanism is needed to determine all

pebble owners with respect to each conflicting node in
the pebble cluster. Using the Process-Interaction
characteristics we could then decide upon the minimal
cost task migration among the various candidates.

Since the ensemble nodes have been assumed to be
reliable and stationary, and a static clustering algorithm
is used to partition them into clusters and the cluster
controllers are aware of the nodes in their respective
cluster, we can create a data structure at the cluster
controller which considerably simplifies minimum trans-
versal computation. At each cluster controller a k x k + 1,
boolean bit matrix which is maintained as a boolean
template. It is constructed using the information con-
tained in the pebbles where k& corresponds to number of
nodes in the cluster and / denotes the number of
overlapping boundary nodes belonging to a different
cluster which could be in the LBH of two nodes. Also
two pebbles cannot have more than one boundary node
in their LBH thus placing a bound on /. An element b,
of this boolean matrix is set to 1 if node j is in the LBH
of /. The minimum transversal computation then reduces
to filling the template and scanning along the columns
for more then one /. So K+ /th minimum transversal can
be computed in O(k?).

Resolved nodes

.Scanning
level

Transversal nodes

2722727222222 3 7 227 27 7 7 A 2 2 R v 2

N\

2882722228722 22222222272 72227 7777222277777 A7 222777727727 a0

~— Pebble owners for cluster 2 —>

N, sz Y
a b ¢ d e f g h r s_t

N

Nodes de-activated

Deficient nodes

Figure 3. Boolean pebble crunching template.

Fig. 3 shows how the template is used to compute
minimum transversals with respect to each pebble in a
given cluster. For details refer to Ref. 11. The nodes in a
minimal transversal are considered equivalent, ie. a
processor may distribute its load to either of these nodes
or divide the excess load equally among all the nodes in
the minimal transversal. Pseudo-code for the algorithm
to determine global balancing schema is given below.

algorithm PEBBLE-CRUNCHING (A,E);
/* A is the set of processors in the system and E denotes
the pebbles or attributed-hyperedges */
begin
1 partition E into sets C and E-C using Graham
Reduction;
/* C is the set of all proper cyclic-hyperedges in
the hypergraph */
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2 assign and mark processors in each set in C to their
pebble-owners and dissolve cyclic pebbles;
3 for all empty pebbles do
4 E, ={E-C};
/* balancing domain of empty pebbles is the
entire system */
5 for all pebbles in E-C do
begin

6 compute-transversals(E-C);
7 assign nodes in TR(E-C);
/* assign nonconflicting nodes */
8 for all nodes in TR(E-C) do
begin
9 Sform sets, OWNER, of pebble owners for
each node in TR(E-C)
10 for all sets OWNER, do
begin
11 using the attribute tuple extract out all
tasks that can be assigned to node i,
12 perform the minimal-overhead task
assignment among the several owners;
13 mark nodes in TR(C) assigned,;
end
end
end
14 for all pebbles in {E} do
15 if a task a; in attribute-tuple is assigned to a
receiver in same tuple then
16 replace all (x,,k,{A}) tuples with (x,,a;);
/* the attribute list in hyperedge is
replaced with the processor-task pairs
*/
end;
end /* pebble-crunching */

Each DCC runs the algorithm Pebble-Crunching to
construct a task redistribution schema which is optimal
within a cluster. These crunched pebble clusters are then
passed onto the cluster controllers at the next level in the
hierarchy. As mentioned previously the higher level
controllers are elected from among the DCC’s to reduce
the number of nodes involved in control functions and to
reduce on communication costs. This computation is
recursively carried up to the root of the cluster tree,
which then returns the crunched pebbles to their
respective owners.

Phase 4. Process migration

When the SCC completes pebble crunching at the root of
the cluster tree, it needs to return the pebbles to their
respective owners. The returned pebbles have the form
E, = [(x,,a,), (x5,a,). ..., (x;,a;)] where x; denotes the
node j to which the excess task with balancing cost g, is
to be transferred. These pebbles now contain the closed
balancing horizons which are globally optimised. On
receiving the distribution schema the owners, i.e. the
heavily loaded nodes transmit their excess tasks to the
nodes in the pebble. The migration phase involves
detaching processes from their current environment and
transferring them to new nodes and then re-installing
them. The processor dependent locations need to be re-
mapped onto the new node, along with the redirection
communication links between the processes. The process
migration mechanism also needs to ensure that all

processes with which this process requires to com-
municate are informed of its changed location. While this
process is still being migrated the process migration
mechanism needs to buffer all the incoming messages for
this process and pass them on to it, after its installation
is over, because when the process is migrating others

_ continue to interact with it.

5. SIMULATION FOR PERFORMANCE
EVALUATION IN LARGE-SCALE
SYSTEMS

A number of simulations were carried out on the VAX
11/780 to evaluate algorithm performance to analyse the
gain and variations in throughput, execution speedup
and processor utilisation with load balancing as the
hypercube dimensions are scaled up. The simulation
involved randomly generating large task sets and their
computational requirements, precedence graphs, nodes
on which they were to be externally submitted or
dynamically spawned, creation times, and interprocess
communication requirements. Data used during the
simulation was obtained from benchmarking tests con-
ducted on the 64-node NCUBE hypercube computer and
results were averaged over several runs.

Figure 4.1 shows the variation in processor utilisation
with the number of nodes, with and without load
balancing. Processor utilisation is defined as the per-
centage of time that the processing node is busy. The
processor utilisation was averaged over all nodes in the
system. The graph shows that for a constant number of
tasks, as the system was scaled up there was a decrease in
processor utilisation which could be attributed to
increased delays during process synchronisation and
process migration. Figure 4.2 demonstrates the variation
in the ratio of useful machine cycles to the total machine
cycles performed by the processing nodes versus the
number of nodes in the system. The fall in the ratio as
illustrated by the results is to be expected because as the
number of nodes is scaled up, the load balancing overhead
increases since the number of levels at which pebble
crunching is performed increases. Useful cycles here refer
to the computational cycles spent on task execution and
excludes the overhead for load balancing, process
migration and context switching.

Figure 4.3 illustrates the increase in throughput as the
number of nodes is increased. Although the increase in
throughput is implicit due to the increase in concurrency,
it is seen that pebble-crunching algorithm leads to
enhanced throughput, as compared to systems with no
load balancing. What is more significant from the graph,
is the fact that gains over systems with no load balancing,
increase as the systems are scaled up.

The computational overhead incurred by the algorithm
is heavily dependent upon the cluster size, as the addition
of clusters, leads to an increase in the number of pebble
crunching cycles. Fig. 4.4 analyses this relationship
between the cluster size and system throughput. It was
seen that throughput does not monotonically vary with
cluster size. For large-scale systems, with smaller cluster
size the cluster tree is large and pebble clusters have to be
transmitted several times before a load distribution is
arrived at. With a large cluster size this is reduced.
However, in the latter case, the message passing overhead
is higher as more local balancing horizons need to be
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Figure 4.3. Variations of throughput with the ensemble dimen-
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balancing; @, 2 clusters (except by 4 node case).

transmitted and pebble crunching takes place over a
larger set.

6. INCORPORATING FAULT TOLERANCE

The failure of applications envisaged for the hypercube
ensembles impose high demands on reliability, avail-
ability and performance. Consequently the traditional
approaches for achieving fault tolerance through modu-
lar redundancy and circuit duplication or voting are
inadequate as the number of standby redundant spares
need to be kept to a minimum for extracting maximal
concurrency from the system. So mechanisms are needed
for concurrent fault detection and fault isolation. We
now drop the assumption in Section 2.1 and consider
both nodal and link failures. It is assumed that the
Distribution Cluster Controllers will occasionally fail

N W B O a ® O o
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Useful machine cycles
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T

| ! 1 Il 1 1
2 3 4 5 6 7
@) (8) (16) (32) (64) (128)

E— No. of nodes —_—
(on logarithmic scale)

Figure 4.2. Variation of useful work with the number of hypercube
nodes.
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Figure 4.4. Cluster size implications on the system throughput.
[J, total of 120 modes in the hypercube ensemble.

and new DCCs will need to be elected and the nodes in
the cluster made aware of their presence. This may lead
to a redefinition of the nodal cluster itself and subsequent
invalidation of the transversal computing boolean tem-
plate. Here we concern ourselves with the implications of
such failure on the load balancing process, and not on
the ensuing computation at the failed node. For example,
if a DCC were to fail then there would be no load
balancing within a cluster. The pebbles would be
transmitted to it but they will not be crunched or
returned. If recovery procedures are not provided this
would go unnoticed because pebble owners would assume
lack of underutilised nodes.

The well established paradigm for tackling transient
failures, e.g. power glitches, clock failure, bus error etc.,
is to rollback to a pre-established computation check-
point or do a process restart. The main problem here is
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asynchronous fault detection and isolation, as it needs
extensive monitoring or self-checking of memory, bus
and processor integrity ; perhaps at the cycle level. Since
such an implementation would result in severe per-
formance degradation it is not considered. But if
concurrent integrity-monitoring on the hypercube was
viable then the pebble-crunching algorithm could easily
be extended to operate in the presence of above failures,
as the knowledge of such a failure could trigger a
dissolution of all partial balancing horizons belonging to
the neighbouring nodes of the failed node, rejecting all
pebbles and control packets in transition, and aborting
the crunching cycle for that cluster could counter the
effects of such a failure.

In the past hardware solutions have been proposed for
providing fault tolerance in the event of node/link
failures (e.g. Rennels)!® for the hypercube. Rennels’s
method attempts to maintain original performance and
connectivity by adding another dimension to the hyper-
cube to provide spares. Each node in the basic hypercube
is provided with an additional serial port which is used to
reach a spare node. A group of nodes is connected to the
same spare via a crossbar matrix such that if any of them
fails the additional node can be inducted into the system
such that all neighbouring relations are preserved. Our
model can be implemented per se under this framework
as this processor shuffle does not disturb the topology of
the ensemble and static cluster organisation is valid.
However this implementation is available in very few
prototype systems so we propose a distributed algorithm
for detecting and recovering from failures which does not
revire any hardware modifications.

Our strategy is based on the PMC model introduced
by Preparata et al.'® Its essential characteristic is to
decompose the ensemble into subunits which are capable
of testing each other. By this method, a fault-free unit
will ultimately detect a faulty node which can then be
excluded from the processing set. If the faulty node turns
out to be a DCC then another DCC needs to be elected
and its existence made known to the others. Through
simulations it was found (Section 6) that there is an
optimal cluster size for a given hypercube dimension at
which the pebble crunching yields maximal throughput.
So initially the ensemble is divided into optimal size
clusters. However, as the computations proceed, some
processors or links may fail, varying the effective cluster
size. The fault diagnosis algorithm is implemented within
each cluster to maintain a conceptual consistency with
the load balancing algorithm, though it need not be so.
Each cluster is denoted by a configuration graph,!!
K = (N, L) where N is the set of processors and L is the
set of physical communication channels. Also each node
and edge is associated with an ‘active’ or ‘failed’ state
denoted by a boolean variable. These individual states
are combined to form a diagnostic state vector which
epitomizes the active state of the entire configuration
graph, denoted by S = {nb,,nb,,...,nb,, b, ,, b, ,, ...,
b_, v}. Further diagnosability, of nodes and links from
the perspective of an intact node, has been defined!! as,

Definition
A node n; is diagnosable from n, if there exists a path in
the configuration graph

B =<n. 0 onn b n S

2 Itja

where n,, 1, etc. are operational nodes. A communication
link /; , is diagnosable from node i, if nodes n; and n, are
diagnosable from »,. In a hypercube of dimension &, each
node can diagnose up to k nodes and broadcast their
status to the other nodes in the cluster. This requires
that the communication subsystem does not fail, in that
diagnostic messages can be sent and acknowledged
within fixed time intervals if the node being checked is
functional. Since each node has an independent com-
munications processor, node failure can be distinguished
from link failure. But a confirmed node failure results in
all its outgoing links being declared faulty.

For our purpose, we do not want tasks to be
transmitted to failed nodes or over non-operational
links. Since the model is receiver-initiated a node will be
able to convey request for additional workload only if it
is intact and receipt of this request implicitly implies link
availability. But it may fail after the load-request has
been broadcast to the neighbours and any processes
migrated to it after crunching will be lost. To prevent this
task loss and reduce the message passing overhead
needed for diagnosing the health of receiver nodes the
diagnosis defined previously is carried out after the
crunched pebbles have been returned to their owners, i.e.
before process migration and tasks transmitted to a
designated receiver only if it is determined to be intact.

In contrast to the traditional approach to fault
diagnosis whereby all nodes in the system are uniformly
diagnosed we introduce a distinction in our model. Only
the functionality of elected DCCs is diagnosed by their
immediate neighbours at regular intervals. Results of this
neighbourhood test are then broadcast to other nodes in
the cluster. Links are also validated by this process with
each node updating its diagnosability state vector, S, for
the path to the current DCC. As the internodal
communication paths in the hypercubes are directly
determined by the addresses of the source and destination
nodes and their hamming distance we do not need to
maintain the complete diagnosability vector and only the
address of current DCC and knowledge of failed
neighbouring link is adequate. If a DCC failure is
detected then another will have to be elected in
accordance with some protocol that ensures a unique
winner.

There are two basic approaches to ‘elections in a
distributed system’,® bully approach and invitational
approach which can be used to select unique controllers
from among a collection of nodes. In the former, a
priority schema is used to order the processors and the
one with the highest priority from among the nodes
participating in the election will become the new DCC.
In the invitational approach the nodes which wish to
become controllers invite other nodes to join them as a
group. As mentioned earlier this model carries out
recovery within the clusters setup initially for per-
formance optimality. So we use the bully election
approach to re-elect DCCs in which the nodal address
serves as a priority metric. In accordance with the
binomial spanning tree, (BST), paradigm which en-
captures the addressing and connectivities among the
hypercube nodes we designate a higher priority for nodes
whose addresses have lower boolean value.

Pseudocode for algorithm for diagnosing the status of
the current-DCC and re-electing a new one if it fails is
given below. This is executed periodically on every node

212 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

GT0Z ‘2T Afeniged uo A1SIBAIUN [eUOIRURIU| epLIOH e /BI0'S[euinolpioxo julwody/:dny wolj pepeojumoq



http://comjnl.oxfordjournals.org/

THE PEBBLE CRUNCHING MODEL FOR FAULT-TOLERANT LOAD BALANCING

in the cluster. Since the size of a cluster is bounded from
above, the boolean template used for computing the
transversals during pebble crunching can retain its
structure as shown in Fig. 2. Every node is given a copy
of this template which is activated when that node
becomes the current-DCC. After a faulty DCC comes up
itis allowed to become a controller again by participating
in the elections after the active DCC crashes.

procedure DCC _monitoring (i: node; current_clust_size:

integer)

1 entry fault-monitoring ;

2 begin

3 repeat

4 delay(t: cycles);

S if ie current DCC neighbourhood then

6 send diagnosis_packet

7 asyn_wait (12: timeunits);
/* wait for interrupt for upto 12 sec. */

8 if no response then

9 broadcast DCC_Down;

10 set link (i,current_DCC) down;

11 update S;;

/* S, is the DSV for node i */

12 else

13 append li‘rurrenl,,l)(‘(“rni 1o Sl’

14 broadcast DSV to neighbours;

15 endif ;

16 else

17 asyn_wait(t5: timeunits);
/* wait for DSV_pkt from neighbouring node
*

18 if DCC down then initiate elections for new DCC

19 else update DSV and broadcast it;

20 endif;

21 until forever;

22 end /* procedure */

/* bully algorithm for electing a new DCC */

23 entry faulty_recovery;

24 begin

25 if current_DCC faulty then

26 suspend load balancing procedures;

27 for all nodes in the cluster do

28 determine if remote node k has address with
lower binary value than i;
/* select only nodes with higher priority */

29 send am_becoming_DCC packet to node k;

30 endfor ;

31 asyn_wait(t3: timeunits);

32 if a node k with higher priority indicates a desire
to become DCC then

33 i suspends its bid to be the new DCC;

34 asyn_wait (t4: timeunits);
/* wait for id of new_DCC */

35 set current_DCC to new_DCC,;

36 else

37 for all nodes in the cluster do

38 determine remote nodes with addresses having

higher binary value than i,
/* inform lower priority nodes */

39 send am_new_DCC packet to k;
40 endfor;

41 endif;

42 endif

43 end /* procedure */

7. CONCLUSIONS

In this paper we have presented a robust, graph-theoretic,
demand-driven distributed protocol for dynamic load
balancing in heavily-loaded concurrent hypercube en-
sembles running unstructured applications. An
attributed-hypergraph is used to model the instantaneous
loading state for the system and provides an efficient and
versatile mechanism for constraint representation and
cost encapsulation. Unlike some of the existing load
balancing algorithms, this methodology ensures that
task migration takes place only if it is profitable and with
minimal message passing overhead. Existence of lightly
loaded or idle processors is not seen as an adequate
criterion for load sharing, specially if it were to lead to
turnaround time greater than that required to process the
task locally. This approach is particularly desirable for
large applications with spontaneous and erratic task
generation at certain nodes leaving others underutilised.
The algorithm described here dynamically re-computes
the task distribution in a manner which enhances resource
utilisation by distributing load over underutilised proces-
sors. Processor thrashing is avoided as the algorithm
does not allow for arbitrary loading gradient-based
migrations or broadcast of excess tasks to a lightly
loaded processor beyond its excess capacity.

The model has also been extended to incorporate
fault-tolerance in the event of node and/or link failures.
It is ensured that tasks are not transmitted to nodes
which have failed or cannot be reached due to link
failures. On detection, the faulty nodes are removed from
the load balancing environment to prevent process loss.
In the event of a DCC failure, contingency procedures
are provided for re-electing another one from among the
fault-free nodes in the cluster to take over the control
functions. However to limit the amount of control traffic,
fault diagnosis and recovery is performed only at the
cluster level rather than the system level.

Some directions for future work include embedding
hard deadlines and associated penalties for tardiness into
the model to extend it to real-time applications and
transaction processing. Another interesting problem is to
further reduce the communication overhead of control
message traffic to implement this algorithm in long haul
distributed computing environment.
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database management systems and
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science. The aim of DEXA ’90 is to present
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systems. The conference will offer the oppor-
tunity to extensively discuss requirements,
problems and solutions in the field.

Contributions should cover new require-
ments, concepts for implementations (e.g.
languages, models, storage structures), man-
agement of meta data, system architectures,
and experiences gained by using traditional
databases in as many areas of application as
possible (at least in the fields listed).

The conference should inspire a fruitful
dialogue between developments in practice,
users of database and expert systems, and
scientists working in the field.

For further information contact:

Prof. Dr. A. Min Tjoa, University of Vienna,
Department of Statistics and Computer
Science, Liebiggasse 4, A-1010 Wien. Tel:
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