
THE PEBBLE CRUNCHING MODEL FOR LOAD BALANCING
IN CONCURRENT HYPERCUBE ENSEMBLES

Sandeep Gulati t Jacob Barhen’ S. Sitharama Iyengar ’

C3P-GlO

$ Jet Propulsion Laboratory, Caltech
4800OakGroveDrive

t Department of Computer Science

Pasadena, California 91109
Louisiana State University
Baton Rouge, LA 70803

ABSTRACT

The successful development of fifth generation
systems require enormous computational capability
and flexibility necessitating the ability to achieve
operational responses in hard real-time through
optimal resource utilization. This entails dynamically
balancing the computational load among all the pro-
cessing nodes in the system. We propose a graph-
theoretic, receiver-initiated, distributed protocol for
dynamic load balancing protocol in large-scale hyper-
cube ensembles. Using attributed hypergraphs as the
primary data structure for constraint modeling and
dynamic optimization, we consider systems running
precedence-constrained heterogeneous tasks. Fault
Tolerance is ensured by incorporating an integrity
check for the decision nodes and their subsequent
reelection if needed. Simulation studies are used to
evaluate the performance of the algorithm.

I. INTRODUCTION

Real time optimization of overall performance of
a distributed processing system requires that, the tasks
being executed be uniformly distributed amongst the
various processing nodes, in a manner which maxim-
izes resource utilization to enhance the total
throughput of the system. Load balancing then, is a ”
distributed decision process ” [9] which using a local
view of the global system state, arbitrates on the
assignment of the system’s resources to the tasks
requesting them. In general, given a job load com-
posed of modules with interlying dependencies to be
executed on a multiprocessor configuration with
prefixed interconnection network, determine an
assignment pattern, or, a mapping function for
shuffling tasks between the processors, such that total
eXeCUtiOn time of the job is minimized by avoiding

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1988 0-89791-273-X/88/0007/0189 $1.50

under-utilized processors. The difficulty here lies in
the conflict of constraints over a configuration space
which grows exponentially with the number of tasks.

Determination of feasible assignment patterns for
a given system may be static, as discussed by Barhen
[ll, Chou and Kohler [3], Livny [9] and Tantawi and
Towsley [17] or dynamic Eager et al 141, Lin and
Keller [8], Stankoviv and Sidhu [16]. If the mapping
is static then the tasks and their dependencies are
known apriori and can be mapped onto the network
nodes before the computation begins. Once assigned to
a particular processor the tasks are bound to it during
their entire lifetime. On the other hand in dynamic
assignment the computation is modeled by a dynami-
cally created task precedence graph and the perfor-
mance depends upon the process migration mechanism
and the size of information domain analysed for load
dispersal. Hereafter we focus on the dynamic load
balancing.

Distributed systems may adopt either sender-
initiated or receiver-initiated strategies for dynamic
load balancing. In systems using sender-initiated
requests, the overloaded nodes search for underloaded
nodes to which some of their excess load may be
transferred while in the latter the situation is reversed
and underutilized nodes search for congested nodes
from which load may be transferred to enhance the
throughput by preventing processor inactivity due to
lack of task availability. Analytical models and simula-
tions have shown [4] sender-initiated strategies outper-
form receiver-initiated strategies at light to moderate
system loads while receiver-initiated strategies are
preferable at high system loads, assuming that the pro-
cess migration cost under the two strategies are com-
parable. Receiver initiated policies require the transfer
of executing partially completed tasks, thus incurring
substantial process migration costs in most systems.
This is avoidable in sender-initiated strategies by
ensuring that load balancing is performed only when
new tasks are spawned. This advantage may however
be lost in systems executing tasks of unequal lengths
where preemptions and migration of executing tasks
are required to ensure that all processors are equitably
loaded.

The primary focus of this paper is to explore a
new strategy for dynanic load balancing in hypercubes.
We describe a user transparent, distributed, two-tiered
graph-theoretic algorithm to dynamically allocate
tasks onto the different nodes. A receiver-initiated stra-

189

tegy is adopted wherein the underloaded processors
broadcast there status to the neighbouring nodes ena-
bling the saturated processors to construct domains
within which they could redistribute the load. These ”
balancing domains ” or ” pebbles ” so constructed are
represented using attributed hypergraph data structure.
These domains are not however immediately closed
because at the time of process migration tasks may be
dispatched to processes embedded in other pebbles. So
in order to actuate the distribution the pebbles are
transmitted to their respective cluster controllers which
compute an optimal mapping of migtatable tasks onto
the underloaded processors. This is achieved through ”
pebble crunching “, which involves controlled frag-
mentation and recombinations of pebbles owned by
different nodes. This modified schema is then redistri-
buted among the candidate nodes to actually carry out
the load partitioning. The algorithmic details are
described in the subsequent sections.

2. PRELIMINARIES

2.1 ENVIRONMENT CHARACTERISTICS

This load balancing schema is primarily targeted
loosely coupled, computation ensembles with n homo-
geneous processing elements interconnected through a
broadcast based communication subnet instead of
shared variables. The interconnection network topol-
ogy may be of the type of two-dimensional, spanning
bus hypercube, toroid, 2-ary N-cube, hypertree or
cube-connected cycles. A common characteristic
shared by these interconnection networks is the high
degree of interconnectivity. In addition the following
characterize the architectural properties of the pro-
posed model.

Ill

PI

[31

141

the processing nodes in the ensemble are homo-
geneous, in that a job submitted at any node in the
network may be processed at any other node in
the network
the node behaviour is heterogeneous in that tasks
are spawned, destroyed or arrive from the external
hosts, at arbitrary rates on the different nodes.
Placement of new external tasks on the processing
nodes is either done by the user or by a host pro-
cessor whose primary function in most systems is
to serve as an input/output device. Consequently
response time is different for each node depend-
ing upon the computational requirements of the
tasks and local availability of resources and
precedence-constraints among the tasks.
there are reliable, error-free, full duplex commun-
ication links between the processing nodes. The
network communication protocol is completely
separated from the inter-task communication pol-
icy.
there is no intermediate buffering of data and con-
trol messages. The messages are received by a
node from a remote node in the order in which
they are transmitted. This is a difficult assumption
to satisfy in loosely coupled homogeneous ensem-
bles as a significant number of messages reach out
of order due to channel contention and process

VI

2.2

priorities. However if the operating system imple-
ments virtual time, as is the case for some of the
recent versions, then this assumption can be met.
an executing process is interrupted by any control
messages directed to the node on which it is exe-
cuting and the nodes have the ability to distin-
guish between different types of messages when
operating in the asynchronous mode.

Problem Descriptors
Load balancing calls for an optimal task distribu-

tion in a configuration space with conflicting demands
HI. In order to avoid processor thrashing or excessive
accumulation of load on any processing node and to
achieve maximal utilization of system resources the
tasks need to be spread out evenly over all the nodes.
On the other hand the goal of minimizing interproces-
sor communication to prevent channel saturation
requires that tasks be clustered on few, adjacent
processor-nodes. This necessitates a two-tiered solu-
tion to the problem alongwith a classification of con-
straints into two broad categories, processor-workload
characteristics and process-interaction characteris-
tics. The former serves as a thresholding parameter to
initiate load balancing while the latter are a function of
processor utilization, queue length, memory requirc-
merits, task mix, resource requirements etc. The latter
are used to decide on how to actually distribute the
load and refer to the process management overhead
and the degree of reduced network usage as a conse-
quence of process-migration, breakage and
reestablishment of inter-process communication links,
precedence constraints etc.

2.2.1 Processor-Workload Characteristics

The load of each processing node Pi is deter-
mined by the number of tasks currently being served,
blocked i.e hanging at synchronization points or
queued at that site. For the ith processing node we
define a threshold load which is defined to be the load-
ing condition for a processor such that further addition
of tasks to it leads to no further gain in processor utili-
zation. Based on the instantaneous task load we quanti-
tatively define the loading states for a processing node
to be excessive, optimal and light. An excessively
loaded node can get rid of some of its present load
while a lightly loaded node could absorb more load. If
the system is in neither of these states then the loading
is optimal. As stated earlier the system tends to
improve throughput by avoiding idle or lightly loaded
processors. We also define the notion of Balancing
Region, BRi, for a processor i which includes all pros-
pective candidates for receiving tasks. This region can
be defined statically and changed dynamically depend-
ing upon the state of the system. So task migration is
essentially a comparison between the degree to which
the load distribution of the balancing region is unbal-
anced and the loading threshold. To quantitatively
measure the degree of “balancedness” of a system,
Livny’s [9] Unbalance Factor defined over a balancing
region may be used, which is given below

190

r
A

UlfF(i,t) =

I

bL(A ,t)

minjdR,(,)(“rJ(~~)

0

(&(A,+ 1)A
W~j,BR,(,)(“i,j (t>>=o)

(&.(A,r)> 1)A
(minfeoR,(,,(“i.,(‘))‘O)

otherwise
&

where AL, (i ,t)maxk,sR,(r)(mi,i (t)-mi,t (t)) is the
relative load-difference of i at time t. BRi(t) refers to
the balancing region for a processor i at time t, which
here refers to the hypercube dimension D, and mi j(t)
denote the number of tasks at processor j. So then,
given the load vector specifying the instantaneous load
at each node determine an assignment such that unbal-
ance in the system and total communication costs,
measured as the sum of total data transfers between the
nodes are minimized.

2.2.2 Processor-Interaction Characteristics

The availability of a neighbouring underutilized
node alone does not merit load sharing, specially if the
process migration overhead and interprocess commun-
ication link breakage and reestablishment were to lead
to a greater turnaround time for the migrated task than
if it were to be locally processed. So a quantification
for the message passing overhead due to precedence
constraints or synchronization requirements and the
parameters affecting process-migration is needed to
ascertain the effectiveness of balancing alternatives.

Computations intended to run on concurrent com-
putational ensembles are decomposed into set of tasks
which could then be concurrently executed. This prob-
lem decomposition often induces precedence con-
straints among the tasks which the distributed nature of
the computational system translates into message pass-
ing requirements. These message passing requirements
due to precedence constraints are determinable at load
time when the tasks are pumped to the various nodes
by the host processor or at process creation time if they
are dynamically spawned. Each task is provided with a
list specifying the messages it sends to the other nodes
with their addresses, list of node addresses from which
it is to receive messages and the length of messages.
Thus the task coupling function due to precedence
constraints is specified apriori and is used here as a
decision criterion. Let n”ij(SiSj> denote the length of
k th message exchanged between the processes execut-
ing on nodes i and j. If the channel capacity in
bytes/set is denoted by D, the total message passing
overhead for a process executing on node i that needs
to be incurred before it is completed is given by,

Mpmi = I% I: [

Ilk ij (Si Sj)

D
+ Zij F (nk (6i Sj))

j#i k

where Zi. clock cycles is the fixed protocol and routing
overhea d and is in general a function of the node on
which a task is executing. In addition, the overhead
for migrating the task and its state tables, communica-
tion link breakage and reestablishment need to be
accounted for. So the total interprocess communication

cost for migrating a task, T, from processor i to j is
denoted by

MIGT = Mpmsr + TSLZEi,T + MPIJ + TABTij
i

where TSI.Ei,~ denotes the propagation delay for
migrating task T, from node i to node j. TAB, refers to
the cost of migrating all state tables and process con-
trol block, (PCB) pertaining to the task and ~ij denotes
the overhead of breaking and reestablishing all links
for task T executing on node i. The latter pertains to
the message passing overhead involved in transmitting
control packets to all the nodes communicating with
the task on node i.

2.3 Constraint Representation Using Hypergraphs

Using the Unbalance factor the feasible balancing
horizons for the heavily loaded nodes are constructed
if they exist i.e there exist neighbouring nodes which
are lightly loaded and can accept excess load. However
these domains are not closed as they are constructed,
in that they are candidates for furthur optimization.
This is desirable from several standpoints. For exam-
ple, as shown in Fig. 1, nodes c and f are in the baIanc-
ing horizons of L, M, and P. Now, if all of them were
to send there excess tasks to C it would immediately
get saturated and load balancing would again be
required, incurring a heavy overhead in repeated pro-
cess migrations. Also a selection between the nodes c
and f needs to be made since at this stage they are both
contenders for sharing load with nodes L, M and P.

This necessitates incorporating a global decision
mechanism, which using the process-interaction
characteristics determines a mapping of migratable
tasks onto the appropriate processing nodes such that
processor utilization is enhanced. But to perform such
an optimization, the process-interaction characteristics
and relevant system information need to be communi-
cated to a controller node, which can then make the
balancing decisions. This objective entails a data struc-
ture which can effectively bridge the gap between
representation domain used for load balancing and the
information required to compute a distribution map-

191

ping, To this end we propose the usage of attributed
hypergruphs to express the optimization constraints
and encapsulate the dynamic structure of balancing
domains. Some of the terminology pertinent to the
model is presented below,

Definition I: Let X = {x~J~,..?,, } be a finite set,
and let E= (Ei) i E I) be a familiy of subsets of X.
The family E is said to be a hypergraph on X if
(1) Ei # @ (i E I)
(2) UEi=X.

iel

The couple H = (X,E) denotes a hypergraph. The ele-
ments of X are called vertices and elements of E are
called hyperedges.

Dejinition 2: An attributed hypergraph is one
whose vertices are associated with a nominal list of
numerical attribute values. Here it is used to model the
loading state of the system where each attributed
hyperedge corresponds to the domain of processors
over which a heavily loaded node may distribute its
excess load and the vertices in the hyperedge represent
the underutilized processors.

We further introduce the notion of a Pebble,
which is the fundamental unit of information inter-
change in the model. Pebble is an attributed hyperedge
associated with some owner node,P , which is not
itself a component of any other pebble. It is denoted by
EP=[(Xi,k,[A]) /XiCX andkc Nand[A]is set of
m-attribute tuple denoting the cost of migrating m-
excess tasks. So a pebble has the following structure,
~Xi~k~~ull~a12~~~~ulIk~~~~xj~~u2l~a22~~~~u2j~~~~~~~

(~,,,,1,a,~,a,,,~ ,.., a&))] , where xl;r2,..,xk are the lightly
nodes with which the pebble-owner could share its
excess taskload; kj and denote the accepting capability
of receivers. (Uil,ai2>.+Pik) is the attribute tuple where
aij denotes the cost of migrating the jth excess-task to
node i. A pebble is also referred to as Local Balancing
Horizon of an overloaded node, or LBH.

Definition 3: A Pebble Cluster corresponds to the
attributed hypergraph constructed by the Distribution
Cluster Controller upon receiving the pebbles from all
the heavily loaded nodes in the cluster. Fig. 1 illus-
trates a pebble cluster. Initially each cluster has
several overlapping pebbles with overlapping vertices
denoting the contending receiver nodes which can
receive tasks from more than one overloaded node in
the cluster. Further the ensemble itself, may consist of
overlapping pebble clusters.

3. STATIC NODE CLUSTER FORMATION

In order to enforce a hierarchial control the nodes
in the ensemble are partitioned into static clusters and
DCCs are elected for each cluster. The common cri-
teria for clustering being minimization of internodal
communication cost, connectedness or k-link failure
resilience i.e the nodes remain strongly connected upto
k link failures, minimization of routing tables or a bal-
anced structure with respect to certain metrics e.g com-
putational power, size etc. As the processors and com-
munication links have been assumed to be reliable and
stationary, the criterion adopted here for clustering is
balance i.e the processing nodes are partitioned into

clusters of approximately equal size for the purpose of
load balancing where the clusters are in the form of
route balanced m-ary trees. Given the degree of each
node in the m-ary tree and the number of clustering
levels desired the clusters can be constructed using the
bottom-up algorithms proposed by by Ramamoorthy et
al, [14]. The root of each m-ary subtree at each level is
designated as the DCC. The parent of each DCC then
becomes the cluster controller for the next Level of
hierarchy. This process is repeated upwards till the
root of the tree which is designated as the System
Cluster Controller. All the controllers above the level
of DCC are elected from among the DCC nodes to
save on communication overhead in transmitting the
partially computed allocations. Each node is then made
aware of its own controller node. Fig. 2 shows a 16
node hypercube partitioned into hierarchical static
clusters.

PEBBLE CRUNCHING
LEUEL 2 FOR DCC’ S

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

FIGURE 2. CLUSTER TREE FOR A 16 NODE ENSEMBLE

Since clustering is used primarily for the purpose
of reducing communication overhead for control, the
nodes in one cluster are not forbidden from sharing
their excess tasks with nodes in another cluster. In fact
the LBH of overloaded boundary nodes will contain
nodes in the adjacent cluster. However the decision to
share tasks with nodes in other clusters are taken after
pebble crunching is completed within a local cluster
and the crunched pebbles are communicated to the
next level controller. If a particular DCC is the next
level controller then it is required to send request pack-
ets to all Lower level controllers asking for pebble clus-
ters. This process is recursively folded upto the root of
the cluster tree.

4. LOAD BALANCING ALGORITHM

Based on the above preliminaries we now present
the load balancing protocol involving four phases. In
the first phase each processor determines its loading
state. If a processor is not being fully utilized due to
process or data unavailability, it conveys this informa-

192

tion to all its neighbouring nodes. In the next phase, all
the overloaded processors in the neighbourhood of the
lightly loaded node, use this information to construct
their local balancing horizon, which is represented by a
hyperedge of an attributed hypergraph, also denoted as
a pebble. In phase 3, this information is transmitted to
the Distribution Cluster Controller (DCC) for that pro-
cessor which constructs a pebble cluster from the peb-
bles. The complete hypergraph or pebble cluster,
encompasses all the feasible reassignments for that
cluster. This pebble cluster may however contain
several overlapping pebbles i.e two or more excessiv-
ley loaded nodes which can share their load with the
same set of underloaded nodes. Transversals are then
computed for this hypergraph and the overlapping
nodes are assigned to one of the nodes containing them
in their local balancing horizon. The crunched pebbles
are rebroadcast to their respective owners which can
then distribute the load in the new balancing regions.

PHASE I: RECEIVER.INITIATED LOAD
REQUESTS DURING THRESHOLD DEPLETION

Before an instantaneous global scenario can be
constructed for generating the load distribution, its
constituent components are composed using the infor-
mation broadcast by the processors regarding their
loading conditions. The imbalance function is used by
each processor to determine if it can benefit by accept-
ing or by ridding itself of additional load. If there is a
processor which can accept additional tasks for execu-
tion i.e it is a underloaded node, then it broadcasts this
information alongwith the excess capacity to all its
neighbouring processors. This state recording and
broadcasting algorithm is superimposed on the under-
lying computation. Since all state communication is
interrupt based, the arrival of a control packet from the
adjacent lightly loaded node, forces the destination
processor to interrupt processing, and examine the
incoming message. If the interrupted node is also
operating below its threshold capacity then it ignores
this incoming information and continues processing.
An excessively loaded node however extracts out the
address of the sending node. The information pertain-
ing to all the neighbouring processors with which it
could possibly share its load, is collected to construct
or update the local balancing horizon (LBH). The
Local Balancing Horizon of a heavily loaded processor
then is a domain of underutilized, neighbouring pro-
cessors over which it could distribute its excess tasks.
There are two observations regarding the the construc-
tion of LBH as given below.

OBSERVATION I. As there is no global system
clock controlling these events and each processor
records and transmits its state independently, a
mechanism is needed which will enable a heavily
loaded processor to know when all the lightly loaded
nodes have communicated their status as their number
is not known a priori. So ths heavily loaded processor
could be made to wait for CTij + $j, from the time of

id
arrival of the first control frame, where Tij is the pro-
pagation delay for a control frame from node i to reach
node j. The buffering and protocol overhead is denoted

by ?j and d refers to the fanout of processor j. At the
expuy of this interval the pebble construction is ini-
tiated and any packet which arrives late is rejected, for
the current balancing cycle. This ensures that nodes do
not wait infinitely for the prospective receivers, How-
ever, most of the targetted hypercube computational
ensembles are loosely synchronized and cannot be
expected to display preset, collective behaviour.

OBSERVATION II. Rather than providing each
node with a deterministic, repetitive control, the LBH
construction algorithm is made completely asynchro-
nous and distributed. Instead of transmitting loading
states at regular intervals, the state changes are broad-
cast as they occur, i.e the LBH is continuously updated
and monitored. Each time there is a state change in
some processing node, for example a heavily loaded
node becomes a lightly loaded node, it dissolves its
own LBH and broadcasts this state change to its neigh-
bours. On the other hand if an underloaded node
receives tasks for execution and exceeds the optimum
loading level, it transmits a control frame to this effect
SO that all overloaded nodes in its immediate neigh-
bouhood can delete it from their LBHs. With this stra-
tegy each update in the LBH requires broadcasting one
control packet. This approach does not impose addi-
tional synchronization overhead as the overloaded
nodes do not need to wait for all underloaded nodes in
the neighbourhood to communicate their status before
it can construct the pebble to send it to the DCC. On
the other hand, the LBH is dynamically updated and
can be transmitted immediately upon reauest to the
DCC.

PHASE 2: PEBBLE CONSTRUCTION AND
ATTRIBUTE ENCAPSULATION

In this phase, the heavily loaded sender nodes
construct pebbles to transmit their local balancing hor-
izons to the DCC upon request. On the basis of their
current loading state and the threshold each overloaded
node determines its shareable task set, which contains
a list of excess tasks that may be migrated to other
nodes. For each task, T, in the shareable task set it
computes the balancing delay and the protocol over-
head, MIGT and uses it to construct its pebble. This
pebble denoted by Ei, is then transmitted to the Distri-
bution Cluster Controller for crunching, i.e to deter-
mine the globally optimal load distribution

PHASE 3: TRANSVERSAL COMPUTATION AND
GLOBAL BALANCING

During this phase all pebbles in a cluster are cen-
trally operated upon to determine task reallocation
schema. The DCC collects all the pebbles dispatched
by the nodes for which a LBH exists. If a heavily
loaded node does not have any underutilized processor
in its neighbourhood then its LBH is empty. A node
with an empty LBH may be required to share its load
with processors more than one hop away. Thus the
LBH of such a processor includes all the underloaded
nodes in the nodal cluster. All such nodes send a con-
trol message to the DCC, informing it of the unavaila-
bility of local nodes for sharing their load. The DCC

193

then constructs the pebble for them. In this phase the
loading state of the entire system or the pebble cluster
is modeled as an attributed hypergraph where each
pebble denotes a hyperedge. A hypergraph is said to
have a cycle if there is a hyperedge that is a subset of
some other hyperedge. The immediate implication of
the existence of a cycle in the hypergraph being that
there is a pebble whose owner can share tasks with a
node or a set of nodes which is a subset of nodes with
which another pebble could share its tasks. It denotes
a maximal sharing conflict situation. The load sharing
algorithm involves determining all such cycles at the
outset and reducing them by allowing their owners to
share their excess tasks with the nodes in the cycle.
After reducing all proper cycles in the pebble cluster
we need to determine the minimum transversah with
respect to each pebble to find out all possible
conflicting load assignments or those nodes whrch are
in the shareable task set of two or more nodes.

Definition 3: A transversal of a hypergraph I-I =
(X; E1,E2,Ex,...Em) is defined to be a set T CX such
that

TnEi~ (i = 1,2,3 ,..., m).
where the minimum transversal is defined by the

set T nEi.
Definition 4 : The transversal number, 2(H) of a

hypergraph is defined to be the minimum number of
vertices in a transversal, and is denoted by
z(H)=min(TI.

In this method the minimum transversal with
respect to each pebble, in the attributed hypergraph is
needed to determine the globally balanced task alloca-
tion, for all the excessively loaded nodes.

Berge [2] has described an algorithm for deter-
mining the minimum transversal Tr A which is sum-
marized below

STEP 1. Determine the set of all minimal subsets
ofAr.eMinA={A,,A, ,..., A,).

STEP 2. successively determine the following
families:

Al =A, + Tr Ar=(a 1 aEAr)
Az=A,U A, + TrAz=Min(TrAIV Tr AZ)
As=AzU A3 + TrA3=Min(TrA2V TrA-J

etc.
Using Tr (A nB)= Min (Tr A V Tr J3) the

TrA k+r can be computed from Tr A, . If ther; are k
excessively loaded nodes in the system whose LBRs
have been submitted to the DCC then this algorithm
constructs Tr A = Tr Ak ink steps.

This algorithm computes the composite minimal
transversal sets for the entire hypergraph, i.e it deter-
mines all the conflicting nodes in the system. But it
cannot be used per se because with each node in the
conflict set there is no information regarding the own-
ers. The above algorithm could however be modified
to compute the minimum transversal with respect to
each pebble owner, such that as soon as a node is
detected which can share tasks with two nodes a task

sharing decision is taken. But this underutilized node
may be in the pebble of some other node with a lower
balancing cost, in which case a nonoptimal assignment
would have taken place. So a mechanism is needed to
determine all pebble owners with respect to each
conflicting node in the pebble cluster. Using the
Process Interaction characteristics we could then
decide iipon the minimal cost task migration among
the various candidates.

Since the ensemble nodes have been assumed to
be reliable and stationary, and a static clustering algo-
rithm is used to partition them into clusters and the
cluster controllers are aware of the nodes in their
respective cluster, we can create a data structure at the
cluster controller which considerably simplifies
minimum transversal computation. At each cluster
controller a k X k+l, boolean bit matrix which is main-
tained as a boolean template. It is constructed using the
information contained in the pebbles where k
corresponds to number of nodes in the cluster and 1
denotes the number of overlapping boundary nodes
belonging to a different cluster which could be in the
LBH of two nodes. Also two pebbles cannot have
more than one boundary node in their LBH thus plac-
ing a bound on 1. An element bi’ of this boolean matrix
is set to 1 if node j is in the LBH of i. The minimum
transversal computation then reduces to filling the tem-
plate and scanning along the columns for more then
one 1. So K+lth minimum transversal can be computed
in O(k’). Fig. 3 shows how the template is used to
compute minimum transversals with respect to each
pebble in a given cluster. For details refer [ll]. The
nodes in a minimal transversal are considered
equivalent i.e a processor may distribute its load to
either of these nodes or divide the excess load equally
among all the nodes in the minimal transversal.
Pseudo-code for the algorithm to determine global
balancing schema is given below.

Booleatr Pebble Crunching Ternplate

194

algorithm PEBBLE-CRUNCHING (A,E);
I* A is the set of processors in the system and

E denotes the pebbles or attributed-hyperedges */

1.

2.

3.
4.

5.

!I

8.

9.

10.

11.

12.

13.

14.
15.

16.

begin
partition E into sets C and E-C
using Graham Reduction;

/*C is the set of all proper
cyclic-hyperedges in the
hypergraph *I

assign and mark processors in each set in C to
their pebble-owners and dissolve cyclic pebbles;
for all empty pebbles do

Ej = {E-C};
/* balancing domain of empty
pebbles is the entire system */

for all pebbles in E-C do
begin

compute-transversals(E-C);
assign nodes in TR (E-C);

I* assign nonconflicting nodes *I
for all nodes in TR(E-C) do

begin
form sets, OWNERi of pebble
owners for each node in TR(E-C)
for all sets O~‘NERi do
begin

using the attribute tuple extract out
all tasks that can be assigned to
node i;

perform the minimal-overhead
task assignment among the several
owners;
mark nodes in TR(C) assigned;

end
end

end
for all pebbles in {E} do

if a task Qj; in attribute-tuple
is assigned to a
receiver in same tuple then

replace all (Xi ,k ,{ A 1)
tuples with (Xi,aji);

/* the attribute list in
hyperedge is
replaced with the

end;
processor-task pairs *I

end I* pebble-crunching *I

Each DCC runs the algorithm Pebble Crunching
to COnStmCt a task redistribution schema which is
optimal within a cluster. These crunched pebble C~US-
ters are then passed onto the cluster controllers at the
next level in the hierarchy. As mentioned previously
the higher level controllers are elected from among the
DCC’S to reduce the number of nodes involved in con-
trol functions and to reduce on communication costs.
This computation is recursively carried upto the root of
the cluster tree, which then returns the crunched peb-
bles to their respective owners.

PHASE 4: PROCESS MIGRATION

men the SC- completes pebble crunching at the root
of the cluster uee, it needs to retufll the pebbles to their
respective owners. The returned pebbles have the form

Ei = [(x~,u I),(Xz,U*),-.,(Xj ,aj)] where xj denotes the
node j to which the excess task with balancing cost Uj
is to be transferred. These pebbles now contain the
closed balancing horizons which are globally optim-
ized, On receiving the distribution schema the owners
i.e the heavily loaded nodes transmit their excess tasks
to the nodes in the pebble. The migration phase
involves detaching processes from their current
environment and transfer& them to new nodes and
then reinstalling them. The processor dependent loca-
tions need to be remapped onto the new node, along-
with the redirection communication links between the
processes. The process migration mechanism also
needs to ensure that all processes with which this pro-
cess requires to communicate are informed of its
changed location. While this process is still being
migrated the process migration mechanism needs to
buffer all the incoming messages for this process and
pass them on to it, after its installation is over, because
when the process is migrating others continue to
interact with it.

5. SIMULATION FOR PERFORMANCE
EVALUATION IN LARGE SCALE SYSTEMS

A number of simulations were carried out on the
VAX 111780 to evaluate algorithm performance to
analyse the gain and variations in throughput, execu-
tion speedup and processor utilization with load
balancing as the systems are scaled up. The simulation
involved randomly generating large task sets and their
computational requirements, precedence graphs, nodes
on which they were to be externally submitted or
dynamically spawned., creation times, and interprocess
communication requnements. Data used during the
simulation was obtained from benchmarking tests con-
ducted on the NCUBE hypercube and results were
averaged over several runs.

Figure 6.1 shows the variation in processor utili-
zation with the number of nodes, with and without
load balancing where processor utilzation is defined as
the percentage of time the processing node is busy.
The processor utilization was averaged over all nodes
in the systeem. The graph shows that for a constant
number of tasks, as the system was scaled up there was
a decrease in processor utilization which could be attri-
buted to increased delays during process synchroniza-
tion and process migration. Fig. 6.2 demonstrates the
variation in the ratio of useful machine cycles to the
total machine cycles performed by the processing
nodes versus the number of nodes in the system. The
fall in the ratio as illustrated by the results is to be
expected because as the number of nodes is scaled up
the load balancing overhead increases as the number of
levels at which pebble crunching is performed
increases. Useful cycles here refer to the computa-
tional cycles spent on task execution and excludes the
overhead for load balancing, process migration and
context switching.

Fig. 6.3 illustrates the increase in throughput as
the number of nodes is increased. Though increase in
throughput is implicit here due to inCTeaSe ln con-
currency it is seen that pebble crunching load balanc*
ing dgo&nn leads to enhanced throughput than in

195

t

; ’ ; ’
/

3 4 6 7
(4) (0) (16) (32) (64) (128)

- NO. OF NODES ->

(ON LOGARITHMIC SCALE)

Figure 6.1 : Processor Utilization Vs No.
Of nodes

(4) (6) (16) (32) (64) (128)

-NO. OF NODES-->

(ON LOGRRITHMIC SCALE)

Figure 6.2 : Variation of useful work
with the No. of hypercube nodes

loo

. z CL”~lCR!J (oQ;CPT m 4 NanC GFlJCl

Figure 6.3 : Throughput VS No. of nodes

196

systems with no load balancing. What is more
significant from the graph is the fact that gains over
systems with no load balancing are higher as the sys-
tems are scaled up.

The computational overhead incurred by the algo-
rithm is heavily dependent upon the cluster size as
addition of clusters leads to an increase in the number
of pebble crunching cycles. Fig. 6.4 analyses this rela-
tionship between the cluster size and throughput. It
was seen that throughput does not monotonically vary
with cluster size. For large scale systems, with smaller
cluster size the cluster tree is large and pebble clusters
have to transmitted several times before a load distri-
bution is arrived at. With a large cluster size this pro-
cess is reduced. However in the latter case the message
passing overhead is higher as more local balancing
horizons need to be transmitted and pebble crunching
takes place over a larger set.

6. INCORPORATING FAULT TOLERANCE

The nature of applications envisaged for the
hypercube ensembles impose high demands on relia-
bility, availability and performance. Consequently the
traditional approaches for achieving fault tolerance
through modular redundancy and circuit duplication or
voting are not adequate as the number of standby
redundant spares need to be kept to a minimum for
extracting maximal concurrency from the system. So
mechanisms are needed for concurrent fault detection
and fault isolation. We now drop the assumption in
sec. 2.1 and consider both nodal and link failures. It is
assumed that the Distribution Cluster Controllers will
occassionally fail and new DCCs will need to be
elected and the nodes in the cluster made aware of
their presence. This may lead to a redefinition of the
nodal cluster itself and subsequent invalidation of the
transversal computing boolean template. Here we do
not concern ourselves with the implications of the
failure on the ensuing computation at a node but
instead on its implications on the load balancing pro-
cess. For example, if a DCC were to fail then there
would be no load balancing within a cluster. The peb-
bles would be transmitted to it but they will not be
crunched and returned.

In the past hardware solutions have been proposed
for providing fault tolerance in the event of node/link
failures (Rennels [15]). Rennels’s method attempts to
maintain original performance and connectivity by
adding another dimension to the hypercube to provide
spares. Each node in the basic hypercube is provided
with an additional serial port which is used to reach a
spare node. A group of nodes is connected to the same
spare via a crossbar matrix such that if any of them
fails the additional node can be inducted into the sys-
tem such that all neighbouring relations are preserved.
Our model can be implemented per se under this
framework as this processor shuffle does not disturb
the topology of the ensemble and static cluster organi-
zation is valid. However this implementation is avail-
able in very few prototype systems. So we propose a
distributed algorithm for detecting and recovering
from failures which does not require any hardware
modifications.

Our strategy is based on the PMC model intro-
duced by Preparata et al 1131. Its essential characteris-
tic is to decompose the ensemble into subunits which
are capable of testing each other. By this method, a
fault-free unit will ultimately detect a faulty node
which can then be excluded from the processing set. If
the faulty node turns out to be a DCC then another
DCC needs to be elected and its existence made known
to the others. Through simulations it was found (sec-
tion 6) that there is an optimal cluster size for a given
hypercube dimension at which the pebble crunching
yields maximal throughput. So initially the ensemble is
divided into optimal size clusters. As the computa-
tions proceed in time some processors or links may
fail, varying the effective cluster size. The fault

diagnosis algorithm is implemented within each cluster
to maintain a conceptual consistency with the load
balancing algorithm, though it need not be so. Each
cluster is denoted by a configuration graph [11 J, K =
(N,L) where N is the set of processors and L is the set
of physical communication channels. Also each node
and edge is associated with an “active” or “failed’ state
denoted by a boolean variable. These individual states
are combined to form a diagnostic state vector which
epitomizes the active state of the entire configuration
graph, denoted by S = C
nbl,nb2...,nbN,lb,,2,1b2,3,..., IbNelfl }. Further diugnosa-
bility, of nodes and links from the perspective of an
intact node, has been defined [l l] as,

Definition A node nj is diagnosable from ni if there
exists a path in the configuration graph

where ni , nk etc. are operational nodes. A COnUInmiCa-
tion link lj,k is diagnosable from node i if nodes
n. and flk are diagnosable from ni. In a hypercube of
dimension k, each node can diagnose upto k nodes and
broadcast their status to the others nodes in the cluster.
This requires that the communication subsystem does
not fail, in that diagnostic messages can be sent and
acknowledged within fixed time intervals if the node
being checked is functional. Since each node has an
independent communications processor, node failure
can be distinguished from link failure. But a confirmed
node failure results in all its outgoing links being
declared faulty too.

For our purpose we do not want tasks to be
transmitted to failed nodes or over non-operational
links. Since this model is receiver initiated a node will
be able to convey request for addi%onal workload only
if it is intact and receipt of this request implicitly
implies link availability. But it may fail after the
load-request has been broadcast to the neighbours and
any processes migrated to it after crunching will be
lost. To prevent this task loss and reduce the message
passing overhead needed for diagnosing the health of
receiver nodes the diagnosis defined previously is car-
ried out after the crunched pebbles have been returned
to their owners i.e before process migration and tasks
transmitted to a designated receiver only if it is deter-
mined to be intact.

197

In contrast to the traditional approach to fault
diagnosis whereby all nodes in the system are uni-
f&mly diagnosed we introduce a distinction in our
model. Only the functionality of elected DCCs is diag-
nosed by their immediate neighbours at regular inter-
vals. Results of this neighbourhood test are then
broadcast to other nodes in the cluster. Links are also
validated by this process with each node updating its
diagnosibility state vector, S, for the path to the current
DCC. As the inter-nodal communication paths in the
hypercubes are directly determined by the addresses of
the source and destination nodes and their hamming
distance we do not need to maintain the complete diag-
nosibility vector and only the address of current DCC
and knowledge of failed neighbouring link is adequate.
If a DCC failure is detected then another will have to
be elected in accordance with some protocol that
ensures a unique winner.

There are two basic approaches to “elections in a
distributed system” 163, bully approach and invifa-
tional approach which can be used to select unique
controllers from among a collection of nodes. In the
former, a priority schema is used to order the proces-
sors and the one with the highest priority from among
the nodes participating in the election will become the
new DCC. In the invitational approach the nodes
which wish to become controllers invite other nodes to
join them as a group. As mentioned earlier this model
carries out recovery within the clusters setup initially
for performance optimality. So we use the bully elec-
tion approach to re-elect DCCs in which the nodal
address serves as a priority metric. In accordance with
the binomial spanning tree, (BST), paradigm which
encaptures the addressing and connectivities among
the hypercube nodes we designate a higher priority for
nodes whose addresses have lower boolean value.

Pseudocode for algorithm for diagnosing the
status of the current_DCC and reelecting a new one if
it fails is given below. This is executed periodically on
every node in the cluster. Since the size of a cluster is
bounded from above, the boolean template used for
computing the transversals during pebble crunching
can retain its structure as shown in Fig 2. Every node
is given a copy of this template which is activated
when that node becomes the current DCC. After a
faulty DCC comes up it is allowed to-become a con-
troller again by participating in the elections after the
active DCC crashes.

7. CONCLUSIONS

In this paper we have described a robust,
demand-driven, distributed protocol for dynamic load
balancing for heavily-loaded hypercube ensembles
using a graph-theoretic approach. An attributed-
hypergraph is used to model the instantaneous loading
state for the system and provides a versatile mechan-
ism for constraint representation and cost encapsula-
tion. Unlike some of the existing algorithms this
methodology ensures that process migration takes
place only if it is profitable and with minimal over-
head. Existence of lightly loaded processors is not seen
as an adequate criterion for load sharing. This

procedure DCC-monitoring (i : node;
current-clust-size : integer)

1 entry fault-monitoring ;
2 begin

:
repeat

5
6
7

delay(t : cycles);
if i E current DCC neighbourhood then

send diagnosisqacket ;
async wait (t2 : timeunits);

/* waitTor interrupt for upto t2 sec.*/
if no response then

broadcast DCC Down ;
set link (i,ctient-DCC) down ;
update Si ;

I*Si is the DSV for node i *I
else

iz
10
11

12
13
14
15
16
17

append ji ,current DCC ,ni to Si ;
broadcast DSVto neighbours;

endif;
else

18

asyn wait(t5 : timeunits);
/* wait7or DSVgkt from neighbouring node */

if DCC down then initiate elections for
new DCC

19

2

else update DSV and broadcast it ;
endif; -_ -

until forever ;
22 end /* procedure *I

/* bully algorithm for electing a new DCC */

ii E;yn faulty-recovery ; .

iFcurrent DCC faulty then
suspeiid load balancing procedures ;
for all nodes in the cluster do

determine if remote node k has address
with lower binary value than i ;
I* select only nodes with higher priority */

send am-becoming-DCC packet to node k ;
endfor ;
asyn-wait{ t3 : timeunits);
if a node k with higher priority indicates

a desire to become DCC then
i suspends its bid to be the new DCC ;
asyn wait (t4 : timeunits);

/* waiTfor id of new_DCC */
set current_DCC to new_DCC ;

else
for all nodes in the cluster do

determine remote nodes with addresses
having higher binary value than i ;
/* inform lower priority nodes /*

send am-new-DCC packet to k ;
endfor ;

endif ;
endif _

43 end I* procedure *I

Pseudocode for Fault Diagnosis and
Reconfiguration algorithms

198

approach is particularly desirable for large applications
with spontaneous and erratic task generation at certain
nodes leaving others underutilized. The algorithm
described here dynamically recomputes the task distri-
bution in a manner which enhances resource utilization
by distributing load over underutilized processors. The
algorithm avoids processor thrashing as it does not
allow for arbitrary migration or broadcast of excess
tasks to a lightly loaded processor beyond its excess
capacity.

The model has also been extended to incorporate
fault-tolerance in the event of node and link failures. It
is ensured that tasks are not transmitted to nodes which
have crashed or cannot be reached. On detection the
faulty nodes are removed from the Ioad balancing
environment to prevent process loss. In the event of a
DCC failure, contingency procedures are provided for
re-electing another one from among the fault-free
nodes in the cluster to take over the control functions.
However to limit the amount of control traffic, fault
diagnosis and recovery is performed at the cluster level
rather than the system level.

ACKNOWLEDGEMENTS

This research was sponsored in part by Office of
Basic Energy Sciences, U.S. Department of Energy
under contract number DE-ACOS-840R21400 with
Martin Marietta Energy Systems through Oak Ridge
National Lab.

8. REFERENCES

[I] BARHEN, J., ” Combinatorial Optimization of
the Computational Load Balance For a Hypercube
Supercomputer “, pp. 71-80.

[2] BERGE, C., Graphs and Hypergraphs, North-
Holland, 1973.

[33 CHOW, Y. and KOHLER, W.H., ” Models for
Dynamic Load Balancing in a Heterogeneous
Multiprocessor Multiple Processor System ‘I,
ZEEE Transactions on Computers, Vol. C-28, No.
5, May 1979, pp. 354-361.

[4] EAGER, D.L., LAZOWSKA, E.D. and ZOHAR-
JAN, J., ” A Comparison of Receiver-Initiated
and Sender-Initiated Adaptive Load Sharing ‘I,
Sigmetrics, Vol. 13, No. 2, 1985, pp. l-3.

[5] EFE, K., ” Heuristic Models of Task Assignment
Scheduling in Distributed Systems “, Computer,
June 1982, pp. 50-56.

[61 GARCIA-MOLINA, H., “Elections in a Distri-
buted Computing System”, IEEE Transactions on
Computers, Jan. 1982, Vol. C-3 1, No. 1, pp. 48-
59.

[7] GULATI, S., IYENGAR S.S and BARHEN J.,
“The Pebble Crunching Model for Dynamic Load
balancing in Homogeneous Computation Ensem-
bles”, (submitted for publication).

[8] LIN, F.C.H and KELLER, R.M, ” The Gradient
Model Load Balancing Method “, IEEE Trans. on
gf$are Engg., Vol. SE-I 3, No. 1, Jan. 1987, pp.

- .

[91 LIVNY, M., ” The Study of Load Balancing
Algorithms For Decentralized Distributed Pro-
cessing Systems “, Ph.D Dissertation, Weizmann
Institute of Science, Aug. 1983.

[lo] LU, H. and CAREY, M.J., ” Load-Balanced Task
Allocation in Locally Distributed Computer Sys-
terns “, Proc. 1986 International Conference on
Parallel Processing, 1986, pp. 1037-1039.

[ii] MAEHLE, E., MORITZEN K., and WIRL K., ”
A Graph Model for Diagnosis and
Reconfiguration and its Application to a Fault-
Tolerant Multiprocessor System ‘I, IEEE Conf. on
Fault Tolerant Computing, 1986, pp. 292-297.

1121 NI, L.M., XU C. and GENDREAU, T.B., ” Distri-
buted Drafting Algorithm for Load Balancing I’,
IEEE Trans. on Software Engg., Vol. SE-11, No.
10, Oct. 1985, pp. 1153-1161.

[13] PREPARATA, F.P, MERTZE G., and CHIEN
R.T., “On the Connection Assignment Problem of
Diagnosable Systems”, IEEE Transactions on
Electronic Computers, Vol. EC-16, June 1967,
pp. 848-854.

1141 RAMAMOORTHY, C.V., SRIVASTAVA, J. and
TSAI W., ” Clustering Techniques for Large Dis-
tributed systems “, Proc. 1986 Int’l Conference
on Distributed Computing Systems, 1986, pp.
395-404.

1151 RENNELS, D.A., ” On implementing Fault-
Tolerance in Binary Hypercubes ‘I, Proc. of the
IEEE Conference on Fault Tolerant Computing,

Cl6

117

1986, pp. 344-349.
_ -

STANKOVIC, J.A. and SIDHU, IS., ” An Adap-
tive Bidding Algorithm for Processes, Clusters
and Distributed Groups ‘I, Proc. of the 4th Znt’l
Conference on Distributed Computing Systems,
1984, pp. 49-59.
TANTAWI, A.N. and TOWSLEY, D., ” Optimal
Load Balancing in Distributed Computer Systems
“, Journal of ACM, Vol. 32, No. 2, 1985, pp. 445.

199

