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Because of the number of setups directly affects the fixturing, 
tolerancing, and machining time, an algorithm has been developed 
to determine the minimum number of setups required for producing 
the part. The algorithm first attempts to fathom the possibility of 
achieving the target part from a single setup. This step involves 
exploring the possibility of achieving the target part from a single 
machining direction in the set of candidate machining directions 
defined by the enclosing object faces. If multiple setups is inevitably 
required, then the algorithm searches from the minimum number of 
setups to achieve the target part by enumeration. 

As an illustration, consider the part shown in Fig. 14(a). This part 
is machinable from the enclosing object MEB since all the part faces 
are visible. The system then determines that at least two machining 
setups are required to achieve the finished part requirement. The 
“removal volume” formed by the union of valid prisms and residues 
from each setup is subsequently constructed as shown in Fig. 14(b). 
The prisms provide depth information for material removal from the 
part in the form of z = f ( x ,  y )  where z is the depth from the 
enclosing object (or raw stock) face, and (x, y )  are the coordinates 
of a point on an enclosing object face. Using this depth information 
with linear interpolation techniques, cutting strategies and a tool 
path can be derived (see Fig. 14(c)). The generated enclosing object 
and the orientation of the enclosing object face can be used as a 
reference for the raw stock and fixture positioning, respectively. 

V . CONCLUSIONS 

We have presented a machinability test that determines whether a 
given part can be machined from a certain set of machining direc- 
tions, such as those obtained from the convex hull, the minimum 
enclosing box, or by the augmentation of these surfaces. The 
analysis of machinability focuses only on polyhedral parts. How- 
ever, curved surfaces can also be incorporated via polygonal 
faceting. This provides an automatic method for segmenting the 
surface into portions that need to be accessed from different direc- 
tions. 
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A “Retraction” Method for Learned Navigation in 
Unknown Terrains for a Circular Robot 

Nageswara S .  V. Rao, N. Stoltzfus, and S .  S. Iyengar 

Abstract-We consider the problem of learned navigation of a circu- 
lar robot R ,  of radius 6 ( B 0), through a terrain whose model is not a 
priori known. W consider two-dimensional finite-sized terrains popu- 
lated by an unknown (but, finite) number of simple polygonal obstacles. 
The number and locations of the vertices of each obstacle are unknown 
to R ;  R is equipped with a sensor system that detects all vertices and 
edges that are visible from its present location. In this context, we deal 
with to problems: the visit problem and the terrain model acquisition 
problem. In the visit problem, the robot is required to visit a sequence 
of destination points, and in the terrain model acquisition problem, the 
robot is required to acquire the complete model of the terrain. We 
present an algorithmic framework for solving these two problems based 
on a retraction of the free space onto the Voronoi diagram of the 
terrain. We then present algorithms to solve the visit problem and the 
terrain model acquisition problem. 

Keywords-Incidental learning, polygons, retraction, unknown ter- 
rains, Voronoi diagrams. 

NOMENCLATURE 
Number of obstacles. 
Number of vertices of outer face of D(0). 
Expansion factor in obtaining E( 0) from C( 0). 
Number of concave vertices. 
Set of obstacles or terrain. 
ith obstacle. polygon. 
Number of positions in the visit problem. 
Total number of obstacle vertices. 
Robot. 
Set of visited nodes by NA V .  
Set of nodes with neighbors visited by NA V .  
Radius of the robot. 
Free-space. 
Maximal connected component of set of free positions of 
R .  
Sum of * and R .  
Convex hull of vertices of 0. 
Dual graph of Vor (0). 
Expanded convex hull of 0. 
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Vor (0) Voronoi diagram of 0. 
Vor, (0) Modified Voronoi diagram. 
Vor: (0) Connected component of Vor, (0). 
(( 0) 
a E ( 0 )  Boundary of E ( 0 ) .  

Navigation course of terrain 0. 

I .  INTRODUCTION 

The problem of planning collision-free paths for moving a body 
through a terrain whose model is known has been extensively 
studied under the popular generic appellation of the piano movers 
problem. Some of the most important contributions to the solution 
of this problem are due to Lozano-Perez and Wesley [7], O'Dunla- 
ing et al. [Ill,  Reif [17], and Schwartz and Sharir 1181. Sharir [19] 
and Yap [20] present excellent surveys of various solutions to this 
problem. In these problems, a precise model of the terrain is 
available for the purpose of path planning. 

Another interesting problem of robot navigation deals with the 
collision-free navigation through an unknown terrain, i.e., a terrain 
whose model is not a priori known. Abelson and diSessa [I] 
presented an algorithm for a point robot to escape from planar 
mazes, using touch sensing. Lumelsky and Stepanov [8] presented 
algorithms for a point robot to move from a source point to a 
destination point, using touch sensing, in a planar terrain populated 
with arbitrary shaped obstacles. Cox and Yap [2] have recently 
developed algorithms to navigate a rod to a destination position in 
planar polygonal terrains (i.e., planar terrains populated by polygo- 
nal obstacles); here the rod has touch-sensing ability, and the 
solution is based on the notions of retraction.' For planar polygonal 
terrains with convex obstacles, Oommen et a/. [12] have developed 
algorithms for a point robot to navigate to a destination point, and at 
the same time "learn" about the parts of terrain encountered on the 
way to the destination. Here, the robot uses a combination of touch 
sensing and distance probing. Earlier, Iyengar et al. [3] have 
presented a similar approach in the context of heuristic navigation 
algorithms. Rao et al. [13] and Rao and Iyengar [I61 solved the 
same problem for a point robot equipped with a sensor that obtains 
all the visible obstacle boundaries; the obstacles need not be convex 
in this case. In the method of [12], the visibility graph of the terrain 
is incrementally constructed. It is shown in [16] that a subgraph of 
the visibility graph (obtained by removing the edges and vertices 
corresponding to concave obstacle vertices) suffices to ensure the 
correctness of the navigation algorithm. Also, the same method can 
be extended to the case of a circular robot [ 161. The above problems 
can be grouped under the generic name of the visit problem, 
wherein a robot is required to visit a sequence of destination points 
through an unknown terrain. 

Another important problem, called the terrain model acquisition 
problem, deals with autonomously building a terrain model by a 
robot. The case of a point robot in three-dimensional terrains 
populated by polyhedral obstacles has been studied by Rao et al. 
[13]; in this formulation the robot can detect all visible obstacle 
boundaries. This method is based on incremental construction of the 
visibility graph of the terrain. Lumelsky et al. [9] proposed two 
methods for acquiring the terrain model, in planar terrains populated 
arbitrary shaped obstacles, by a point robot equipped with a touch 
sensor. 

In the case of robot sensor capable of detecting visible obstacle 

' The term retraction corresponds to a continuous map from a topological 
space X to a subset A of X such that every point of A is mapped onto 
itself and every point in X - A  is mapped onto some point in A [ 5 ] .  
Retractions were found to have properties that are conducive to efficient 
solutions for several motion planning problems in known terrains [20]. 
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boundaries, Rao [I51 showed that the visit problem and the terrain 
model acquisition problem are intimately related to each other in 
that both can be solved under a single framework. A graph, called 
the navigation course, that satisfies a set of required properties can 
be used as an underlying structure for any graph search algorithm; 
such approach provides algorithms to solve both the visit and terrain 
model acquisition problems [15]. A brief account of this framework 
is presented in Section I1 for completeness. The visibility-graph- 
based solutions of Oommen et al. [12], Rao et al. [13], [14], [16] 
for the visit problem, and of Rao et al. [I41 for the terrain model 
acquisition problem can be unified under this framework (for these 
cases, the visibility graph is the navigation course). A retraction, 
from the free space onto the Voronoi diagram, yields another 
navigation course for a point robot, as stated in [15]. However, the 
treatment of [I51 is tutorial in nature, and no technical details, such 
as proofs of the properties, etc., are given. 

Research in these navigational problems has been motivated by a 
practical application involving the development of an autonomous 
robot intended for carrying out rescue operations in nuclear power 
plants in the events of radiation leaks [3]. A solution to the visit 
problem enables a robot to carry out a set of operations in different 
locations in unfamiliar environments. in this application, the motion 
planning is essentially sensor-based and involves expensive sensor 
operations. Furthermore, during the navigation, the robot may 
temporarily navigate into local detours because of the partial nature 
of information returned by sensors. By suitably "learning" a terrain 
model, one can reduce the number of sensor operations and also the 
number of detours [12]. Furthermore, if a complete terrain model is 
available, the robot can avoid local detours and also the expensive 
sensor operations. A dedicated rescue robot typically idles in be- 
tween the rescue operations, which are fairly infrequent in most 
cases. In such situation, the robot could be employed to acquire a 
terrain model during the idle periods. 

In this paper, we consider planar terrains composed of polygonal 
obstacles and a circular robot. We propose a retraction method, 
based on Voronoi diagram of the terrain, for solving both the visit 
problem and the terrain model acquisition. In this method, the robot 
mostly navigates along the Voronoi diagram of the terrain, and thus 
has an advantage of keeping as far away from the obstacles as 
possible. This aspect seems very important in practical implementa- 
tions as the earlier methods, based on the visibility graphs, require 
navigation along obstacle boundaries. Additionally, the proposed 
method results in a storage complexity of O ( N )  as opposed to 
O ( N 2 )  of visibility-graph-based methods, where N is the total 
number of obstacle vertices. Although the retraction method has 
been well-developed for known terrains, some additional work is 
needed to adapt it to unknown terrains. This work includes, among 
others, the introduction of additional vertices so as to ensure local 
constructibility property (to be defined later in Section III), obtain- 
ing tighter bounds on the number of sensing points, etc. 

The organization of the paper is as follows: The basic framework 
of our solution is outlined in Section 11; this section is a recapitula- 
tion of [15], and is provided for completeness. In Section 111, we 
present the definition and properties of the navigation course to be 
used for navigational purposes. In Section IV, we present solutions 
to the visit problem and the terrain model acquisition problem. 

11. BASIC ALGORITHM 

We consider a finite-sized two-dimensional terrain populated by a 
set 0 = { 0, , 0, , * . . 0,) (n is finite) of simple disjoint polygons, 
called the obstacles. Each obstacle Oi has a finite number of 
vertices. The terrain is completely unknown to R ,  i.e., the number 
of obstacles and the number of locations of vertices of each obstacle 

I ". 
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are unknown. The free space is given by 
n 

Q =  no: 
i =  1 

where 0: is the complement of 0; in the plane. The closure of the 
free space is denoted by G. Let N denote the total number of 
vertices of all obstacles and let C denote the total number of 
concave vertices. 

Consider a circular body R of radius 6, (6 2 0); R is treated as 
an open disc of radius 6. R houses a computational device with a 
storage capability and is capable of moving along a straight-line path 
or a curved path of second degree (in either case the path is 
specified). The location of the center of R is called the position of 
R .  Let x be a position of R .  A point y E fi is said to be visible to 
R if the straight line segment joining x and y is entirely contained 
in G. R is equipped with a sensor that detects the maximal set of 
points on the obstacle boundaries that are visible from its present 
location. Such an operation is called a scan operation. The visible 
vertices and edge intervals are listed in the clockwise direction. The 
scan operation is an abstraction of a 360“ scan performed by a 
vision of a sonar system. 

Initially, R is located at a point do without intersecting any 
obstacle, and at a finite distance from some obstacle. In the terrain 
model acquisition problem [14]-[16], R is required to acquire the 
model of the terrain to a degree that it can navigate to any reachable 
destination (or conclude that the destination is not reachable) by 
using a path-planning algorithm of known terrains. Note that for a 
point robot this requirement is tantamount to acquiring the entire 
model of the terrain. In any case, no sensor operations are required 
for navigational purposes, after the terrain model has been com- 
pletely acquired. In the visit problem, R is required to visit the 
positions d , ,  d, ,  * . . , d, (in the specified order), if a path through 
these positions exists [12], [13]-[16]. If no such path exists, then R 
must report so within a finite amount of time. 

We now present the algorithm NA V ,  which is the basic strategy 
used by R [15]. Here, R performs a “graph exploration type” of 
navigation using a combinatorial graph, called the navigation course, 
E(O), of the terrain 0. The nodes (edges) of ((0) are called ( 
nodes (( edges). ((0) is a 1-skeleton embedded in fl, i.e., each [ 
vertex is a point in Q and each ( edge is a one-dimensional curve 
joining the vertices. Further, a E node specifies a collision-free 
position for R ,  i.e., a position for R such that it is entirely 
contained in Q. An edge that joins two ( nodes U ,  and U, specifies 
a collision-free path between U ,  and U,. The E(0) is initially 
unknown, and it is incrementally constructed using the data obtained 
through the sensor operations. The algorithm NA V is given below 
(a detailed explanation of NAV is given in [15]): 

Algorithm NA V( U )  

1. 
2. 
3. 
4. 
5. 
6. then 
7. select U* E S,; 
8. 
9. move to U*; 
10. NAV(u*); 
11. else 
12. 

end 

begin 
perform a scan operation from U ;  
mark U as visited, delete it from S, and append it to SI; 
compute the adjacency list of U ;  

append to S, all neighbors of U that have not been visited; 
if (S, is not empty) 

plan a path from U to U*; 

return to start vertex uo; 
endif 

NA V is initiated with a vertex U = uo and S ,  = { uo} .  The set 
S, contains all 4 vertices that are visited by R .  The set S, contains 
all ( vertices that are not visited by R ,  but each U E S, is adjacent 
to some vertex in SI. There exists a path along the computed 
edges from any vertex of S, to any vertex of S,. In each step, R ,  
located at U, selects a U* ES,, and then moves to U*. 

Suppose that t: (0) satisfies the property of local-constructibility, 
i.e.. the adjacency list of a ( vertex U can be computed from the 
information obtained by a scan operation performed from U. Fur- 
ther, suppose that E(0) satisfies finiteness property, i.e., [ ( O )  has 
a finite number of vertices and edges. Also, let ((0) satisfy graph 
connectivity property, i.e., any two ( vertices are connected by a 
path of ( edges. Then we have the following observation. 

Observation 1: If ( (0) satisfies the properties of finite- 
ness, connectivity and local-constructibility , then, R , executing the 
algorithm NAV, visits all vertices of ((0) in a finite amount of 
time. 

III. THE NAVIGATIONAL COURSE 

In this section, we present a specific navigation course i (0)  
based on the Voronoi diagram of the terrain and prove some 
properties that are relevant to the navigation algorithms of the next 
section. In Subsection III-A, we present a preliminary structure 
Vor, (0), which is then modified in subsection 111-B to yield the 
required navigation course E (0). 

A .  Basic Structure 
For x E Q, we define Near (x) as the set of points such that each 

point belongs to the boundary of some obstacle Oi, i = 1, 2, * . * ,  n, 
and is closest to x. The Voronoi diagram, Vor (O), of the terrain 
populated by 0 is the set { x E G 1 Near (x) contains more than one 
point}. In this case, Vor (0) is a union of O( N )  straight lines and 
parabolic arcs [4], [6], [21]. Each of these lines or parabolic arcs is 
referred to as a V edge. The points at which the edges meet are 
called V vertices. Fig. 1 shows an example of a Voronoi diagram 
for a simple terrain. 

Consider the convex hull C ( 0 )  of the union of vertices of all 
obstacles (Fig. 2(a)). Let E ( 0 )  denote the polygonal region ob- 
tained by pushing the edges of C( 0) outward by a finite distance of 
s 2 6 and taking the interior of “grown” region as shown in Fig. 
2@). The exact value of s is inconsequential to the correctness of 
the present method, but it decides how far away the robot moves 
from the terrain during the navigation; in particular s = 6 is an 
appropriate choice. We define Vor, ( U )  = (Vor (Q)  n E ( 0 ) )  U 
aE(O),  where a E ( 0 )  is the boundary of E ( 0 ) .  See Fig. 3 for an 
example. The set of vertices of Vor, (0) is the union of 1) V 
vertices, 2) vertices of the envelope E(O),  and 3) intersection 
points of edges of a E ( 0 )  with V edges. The set of edges of Vor, 
(0) is the union of 1) edges of aE(O) ,  2) V edges that are 
completely inside E ( O ) ,  and 3) V edges such that precisely one 
vertex lies inside E( 0) (in this case we only take the portion of the 
V edge that lies inside E ( 0 ) ) .  The edges (vertices) of Vor, (0) are 
called VI edges ( V,  vertices). Vor, (0) is a planar graph formed 
by VI vertices and VI edges. The set of all VI  vertices that are 
adjacent to a VI vertex U constitute the set of neighbors of U .  

In the remainder of this section we investigate four basic proper- 
ties of Vor, (0): 1) finiteness, 2) connectivity, 3) local con- 
structibility, and 4) terrain visibility. Note that the first three 
properties have been discussed in the last section, and terrain 
visibility will be subsequently discussed in this section. These four 
properties together will be used to prove the correctness of our 
navigation algorithm. It can be shown that Vor (0) will also satisfy 
these four properties, but in the present application it would require 
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Fig. 3.  The definition of Vor, (0) for the terrain 0 of Fig. I(a). 

\ 

(b) 

(0). 
Fig. 1. The Voronoi diagram. (a) The terrain 0 = { 0,, 0, , 0,). (b) VOI 

that R navigate infinitely away from the terrain to ensure the 
terrain-visibility property. This problem is overcome by using Vor, 
(0), and this aspect is hrther elaborated subsequently. 

I )  Combinatorial Properties: We now estimate bounds on the 
number of VI vertices and edges. It is shown that the number of V 
vertices is O ( N )  [4],  [6] .  Since E ( 0 )  is convex, there can be at 
most N intersections between the edges of Vor (0) and aE(0) .  
Thus, the number of VI vertices is O ( N ) ,  and by Euler’s equation’ 
it follows that the number of V ,  edges is O ( N ) .  In the present 
application, we need more precise bounds on the number of VI 
vertices because each VI vertex represents a time-consuming sensor 
operation. 

Consider an obstacle 0; and the subset of Vor, (0) such that 
each point on this subset has a nearest neighbor on the boundary of 
0;. This subset consists of one cycle and a finite set of trees (see 
Fig. 4) .  We now define the dual D ( 0 )  as Vor (0) as follows: draw 
perpendiculars to each obstacle edge at the convex end points 
(obstacle vertices) and extend them outwards as shown in Fig. 5. 
Now 0 is partitioned into regions such that the points belonging to 
each partition are closer to either an obstacle or an obstacle vertex. 
We represent each region by a D node. Two D nodes are con- 
nected by a d edge if and only if the corresponding regions meet at 
either a V edge or a perpendicular. Then D ( 0 )  can be shown to be 
a planar graph along with lines of Lee and Drysdale [7]. The dual of 
Vor (0) of Fig. 5 is shown in Fig. 6 .  We now use the dual D ( 0 )  to 
estimate the bounds on the number of V ,  vertices and VI edges. 

Lemma 1: 

i) ( n  + 5 ) / 2  5 # VI vertices s 4 N  - n - 2 
ii) 3(n + 1)/2 5 # V, edges 5 6 N  + 3n - 3 

Proof: First we prove the lower bounds. The graph of Vor, (0) 
contains n + 1 faces-one for each O;EO and the other corre- 
sponding the exterior of E ( 0 ) .  Let us count the number of edges 
that bound each of the faces of Vor, (0). By noting that each face 
has at least three VI edges, and each edge is counted no more than 
twice in the counting process, we have # VI edges 1 3(n + 1)/2. 
Now using Euler’s equation for Vor, (0), i.e., # VI vertices = 
# VI edges - # V ,  faces + 2, we obtain # V, vertices 2 ( n  + 
3 / 2 .  

To establish the upper bounds we proceed in two steps: 1) we first 
compute the upper bounds on the number of number vertices and 
edges of Vor (0) by suitably using the properties of D ( 0 ) ;  2) we 
use the bounds of step 1) to estimate the bounds on the number of 
V ,  edges and vertices. 

1 I _ - - - -  

(b) 

0 of Fig. l(a). (b) The extended hull E ( 0 )  of terrain 0 of Fig. l(a). 
Fig. 2. Definitions of E ( 0 )  and C ( 0 ) .  The convex hull C(0) of terrain Euler’s equation for any Planar graph G = (v, E )  with set offaces F is 

given bY I v I -k 1 FI = I E 1 -k 2. 
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faces of D ( 0 ) :  faces corresponding to V vertices, faces corre- 
sponding to obstacles, and the exterior infinite face. 

a) Consider faces formed by V vertices. There are 1 F, I - n 
- 1 such faces, and each face has at least three edges, since 
there are n faces formed by the obstacles, and there is an 
outer face (exterior inifinite face). Thus these faces yield a 
total count of at least 3( 1 F, I - n - I )  edges. 

b) Consider faces corresponding to obstacles. Each obstacle gen- 
erates a face of D ( 0 ) .  Each D edge denotes a transition from 
the influence of vertex to edge, or edge to vertex or edge to 
edge. A D edge corresponds to an edge-to-edge transition if 
the obstacle corner formed by the two edges is nonconvex. 
The D edges formed by the other two transitions correspond 
to convex obstacle vertices. There are N obstacle edges and at 
least 3 n  convex vertices. Thus, the faces generated by obsta- 
cles yield a total count of N + 3 n  D edges in all. 

Fig. 4. Subset of Vor, (0) corresponding to 0,. 

c) Let the exterior face contain p edges. 

In the process of counting in parts a) to c), each edge is counted 
at most twice. Thus, we have, 2 1 E, I 5 3( I F, I - n - 1) + N 
+ 3n + p = 3 I F, I + N + p - 3 .  The application of Euler’s 
equation (i.e., 1 V, I + 1 F, 1 = I E, I + 2 )  establishes that I F, 1 
( 3 N - p - l b y u s i n g  IV,l 5 2 N .  

Now, each face of D ( 0 )  corresponds to precisely one of a V 
vertex, an obstacle or the exterior face; thus we have 1 F, 1 = # V 
vertices + n + 1 .  Thus, # V vertices 5 3 N  - n - p - 2 .  To get 
an upper-bound on the number of V edges, we apply Euler’s 
equation again (in the form 1 E, 1 5 I V, I + 1 F, 1 - 2) on E ( 0 ) .  
Hence, wehave  lEDl 5 2 N +  IFD\ - 2 s 5 N - p - 3 .  Now 
note that I E, I = # V edges + #perpendiculars (by the definition 
of D(O)),  and each obstacle gives rise to at least three perpendicu- 
lars. Thus we obtain # V edges s I E,  I - 3n = 5 N  - p - 3 n  
- 3 .  So far we have been able to get upper bounds on the number 
of V vertices and edges. Fig. 5 .  Partition of 52 with V edges and perpendiculars. 

D( 

Fig. 6. Dual D(0) corresponding to the partition of Fig. 5. 

Consider step 1). Let V,, E,, and F, represent the sets of 
vertices, edges, and faces, respectively, of D ( 0 ) .  Since there can 
be at most two perpendiculars from each obstacle vertex, there can 
be at most 2 N regions that yield d nodes. Thus, we have I V, I 2 
2 N. 

As shown in Fig. 5, each v node is formed by the meeting of at 
least three segments where each segment could be either a V edge 
or a perpendicular. Thus, each V vertex generates a face of D ( 0 )  
with at least three D edges. Now for each face of D( 0) let us count 
the number of D edges bounding the face. There are three types of 

Now consider step 2). By noting that there can be at most N 
intersections of the V edges with the E ( 0 )  and E ( 0 )  has at most 
p edges, we obtain # VI vertices 5 4 N  - n - 2 ,  and # ( edges 

rn 
2) Connectivity Property: A map Im: Q + Vor (0) is defined by 

O’Dunlaing and Yap [lo] as follows: Consider X E Q .  If x is on 
Vor (0), then Im(x) = x ;  otherwise, Near(x) = { p )  for some 
point p on aQ, the boundary of Q .  Let L be the semifinite straight 
line from p through x ,  and define Im ( x )  to be the first point y (if 
it exists), where L intersects Vor ( Q ) .  Intuitively, Im ( x )  is 
obtained by “pushing” x away from the closest wall (or corner) 
until it lies on the Voronoi diagram. We state a Theorem from [IO]. 

Fact 1: If Q is bounded, then i) the map Im is a continuous 
retraction of 0 onto Vor (0) (so Vor (0) is a retract of a), and ii) 
if Im(x) # x ,  then the clearance is strictly increasing along the 

We show the connectivity of Vor,(O) in the following lemma: 

5 6N-  3 n  - 3 .  

line-segment joining x to Im (x) .  

Lemma 2: The 1-skeleton Vor, (0) is topologically connected. 

Proof: The obstacle-free region Q is homeomorphic to (real) 
plane with n closed discs removed from it; each disc corresponding 
to a single obstacle. Hence, Q is (polygonally) path connected. Im is 
shown to be a continuous retraction of a bounded Q onto Vor (0) 
(Fact 1). Thus, Vor(0)  n E ( 0 )  is a continuous image of a con- 
nected set Q (bounded appropriately), and hence is connected. Now 
W O )  is topologically connected. Now (Vor ( Q )  n E ( 0 ) )  n 
aE(0)  # 4, and hence Vor, (0) = (Vor (w) f l  E ( 0 ) )  U aE(0)  

U 
3) Local Constructibility Property: In general, Vor, (0) does 

is connected by the Cloverleaf Theorem (Munkres [5]) .  
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Q n E ( 0 )  as follows: From each of V vertex U, draw extension 
lines joining U to all its nearest obstacle edges and vertices. See Fig. 
8. Furthermore, join each vertex of E ( 0 )  to its corresponding 
obstacle vertex; these lines are also called extension lines. The 
extension lines, V,  edges, and obstacle edges partition the closure 
of D n E(U)  into cells. Each cell is bounded by exactly two 
extension lines, exactly one V ,  edge, and at most one obstacle edge. 
Consider VI edges which are V edges. We have two basic types 
these VI edges: 

Type 1: Straight-line V ,  edges: These Vl-edges are formed by 
two obstacle vertices as in Fig. 9(a) or formed by two obstacles 
edges as in Fig. 9(b). In either case, the V,  edge, e,  has two convex 
cells on either side, whose union is star shaped with respect to both 
end vertices of e.  If the V,  edge terminates on a nonconvex obstacle 

sc"si"g"cr> 

4 
(a) 

(b) 
Fig. 7. Sensing vertices. (a) One sensing vertex. (b) Two sensing vertices. 

not satisfy the local constructibility as shown in the example of Fig. 
7(a). In this example, R has reached the VI vertex U by moving 
along the straight-line VI edge. After a scan operation has been 
performed from U ,  only one edge of the obstacle on the left is 
visible to R.  With the information, the other end vertex U ,  of the 
parabolic VI edge cannot be computed, since U ,  depends on the 
location of the perpendicular to the hidden obstacle edge. 

To alleviate the above problem, we introduce additional vertices, 
called sensing vertices, that are suitably computed points on V ,  
edges as explained below. If R is located at a V,  vertex U ,  the 
sensor gives the clockwise listing of the obstacle vertices and 
intervals of obstacle edges that are visible from U. We first compute 
the vertices and edge segments that are closest to U. There will be a 
VI edge emanating from v corresponding to each consecutive pair 
of objects found above. We can compute the equations of these 
edges in 0( N )  time [4], but we may not be able to compute the end 
vertices of these edges as in Fig. 7. Note that this happens when at 
least one of the obstacle edges incident on a convex vertex is not 
detected by the sensor. In this case, we extend the known obstacle 
edge to intersect the VI edge at a sensing vertex. If there are two 
sensing vertices at any step, then we choose the one that is nearest 
to U along the V, edge. Next, R first moves to the sensing vertex 
and then performs a scan operation and obtains the hidden obstacle 
edge. By scanning from at most two sensing vertices, the other end 
of the V,  edge can be computed (Fig. 7). Thus, after including the 
sensing vertices, Vor , (0) satisfies the local-constructibility prop- 
erty. In all, there can be at most N-C sensing vertices, since each 
sensing vertex corresponds to one obstacle vertex and only a convex 
obstacle vertex can give rise to a sensing vertex. 

4) Terrain Visibility Property: In order to establish the correct- 
ness of our algorithms, we require one additional property other 
than those discussed in Section 11. This property, called terrain 
visibility, can be defined as follows: Every point in the closure of 
free space D is visible from some V,  vertex, i.e., for X E ~ ,  there 
exist a VI vertex U such that the line joining x and U is entirely 
contained in a. 

We shall now show that Vor, (0) satisfies the terrain-visibility 
property. Let us obtain the cellular decomposition of the closure 

vertex as in Fig. 9(c), then the case is similar to one shown in Fig. 

Type 2: The parabolic V ,  edges formed by one obstacle edge e ,  
and one obstacle vertex, say U (Fig. 9(d)). Consider the decomposi- 
tion of the region into a triangle and a quadrilateral by joining the 
end vertices of e by a straight line (Fig. 9(d)). The region is convex 
with respect to either of the end vertices of e .  

Lemma 3: Vor, (0) satisfies the terrain-visibility property. 

ProoS: Every point in the complement of C ( 0 )  is visible from 
some vertex of E ( @ .  Consider x E Q f l  C ( 0 ) .  First, if Im(x) E 
C(O),  then move along the corresponding V edge e along some 
direction until either we meet a V vertex or we move out of C ( 0 ) .  
If the former occurs, then x lies in the cell associated with e and 
hence is visible from its end vertices. If the latter occurs, then 
reverse the direction of motion along e and traverse in the other 
direction until a V vertex U is encountered. Second, if Im (x) does 
not belong to C ( 0 ) ,  then move along the corresponding V edge 
toward C ( 0 )  until we meet a E ( 0 )  at the intersection point y .  As 
we traverse along Vor (0) always choose the V edge that is closest 
to x at V vertices (if V vertices are encountered). It is clear that 
the line joining x to y will be free of obstacles and hence x is 

Along the lines of this lemma, we can show that Vor (0) satisfies 
the terrain-visibility property. Consider the case where the terrain 
consists of two parallel finite line segments of equal length (an 
appropriate terrain consisting of polygons can also be designed 
similarly, but we stay with the present example for simplicity). The 
Voronoi diagram in this case corresponds to an infinite line equidis- 
tant from the obstacle line segments. Now the points that are on the 
"outer side" of the line segments, can be seen from the points of 
the Voronoi diagram that are infinitely away from the terrain. This 
means that the robot has to travel (on the Voronoi diagram) an 
infinitely long distance away from the terrain in order to see the 
"hinder" parts of the obstacles. This problem does not arise in 
Vor, (0) because of E ( 0 ) .  

B. Navigation Course 

For x E D,  let Clearance ( X) denote the Euclidean distance of x 
from a member of Near (x). Consider a subset of Vor, (0) given 
by { x E Vor, (0) I Clearance (x) 2 S}, and let VorT (0) be the 
connected component (of this subset) that contains Im (d , ) .  An edge 
of Vor: (0) could be a truncated version of an edge of Vor (0), in 
which case we attach a vertex at the truncated end. These vertices 
are called the truncated vertices and the corresponding edges are 
called the truncated edges. Consider a concave obstacle vertex U 

and the V,  edge e that is incident on U (more precisely, the end of e 
gets arbitrarily: close to U ;  for practical purposes, this is treated as if 
e is incident on U). For 6 > 0, the edge e is truncated such that U is 

9 W .  

visible from y .  
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Fig. 8. Cellular decomposition of a f l  E ( 0 ) .  
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V -edge 
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(C) (d) 
Decomposition based on edges. Fig. 9. 

eliminated from VorT (0), since the Clearance ( x )  is 0 at x = U 
and then increases as x is moved away from U along e .  In this case, 
each the VI edge yields one truncated edge. We can have another 
case where each edge yields two truncated edges. Consider the VI 
edge e with end points U, and U, such that Clearance ( x )  decreases 
until some point and then increases as x is moved from U ,  to U, 

along e .  Then, if the value of Clearance ( x )  falls below 6 at any 
point on e ,  we will have two truncated edges (one each from U ,  and 
u z ) .  In summary, there can be at most two new truncated vertices 
formed out of a single VI edge. 

Now E (0), based on retraction, is obtained by deleting all the 
truncated vertices and edges from VorT (0) and adding the suitable 
sensing vertices. If 6 > 0, all the VI edges that are incident on 
concave obstacle vertices will be removed when E (0) is computed. 
Additionally, for point robots we specifically delete all edges that 
are incident on concave obstacle vertices. In Fig. 10, we show the 
terrain 0 = {O,, 0,, 0,}, and the corresponding Vor, (0). In 
Fig. 11, we show E(0) for a circular robot. In obtaining E(0) from 
Vor, (0), we add at most N - C sensing vertices and delete C VI 
vertices that correspond to concave obstacle vertices. Thus, the 
number of E vertices is at most 5N - 2C - n - 2 .  

Let \k be the maximal set of free positions of R that contains 
initial position do. Consider the set r = { x + y I x E q, y E R } ;  
here R is treated as an open disc of radius 6. The closure of r 
contains obstacle vertices, intervals of obstacle edges, and circular 

Fig. 10. The terrain 0 = { 0, , O,, 03}. 

Fig. 11. [ ( O )  for the terrain of Fig. 10. 

arcs of radius 6. The intervals of obstacle edges that are contained 
in r suffice to compute 9. Thus, the terrain-visibility property here 
means that every point on the obstacle boundary contained in is 
visible from some VT vertex. Summarizing the discussion of this 
section, we have the following properties. 

Theorem I :  E(0) contains at most 5N - 2C - n - 2 vertices, 
and satisfies the properties of connectivity, terrain visibility, and 
local constructibility . w 

IV . NAVIGATION ALGORITHMS 

The algorithm ACQUIRE that solves the terrain model acquisi- 
tion problem is a direct implementation of the algorithm NA V ;  the 
algorithm NAV is executed until S ,  becomes empty-at this point 
all vertices are visited and by the terrain-visibility property the 
entire terrain model is available. Once the model is available, we 
can use the algorithm of O’Dunlaing and Yap [lo] to plan a path to 
reach any destination point. In the view of Observation 1 and 
Theorem 1, we have the following theorem. 

Theorem 2: The algorithm ACQUIRE solves the terrain model 
acquisition problem in a finite amount of time in at most 5N - n - 
2C - 2 scan operations with a time complexity of O ( N 2 ) .  After 
the execution of ACQUIRE, R can navigate to any reachable 
destination with a time complexity of O ( N 2 )  and with no sensor 
operations. 

Proof: The correctness of ACQUIRE follows along the lines of 
[15], where it has been established that the four properties of 
finiteness, connectivity, terrain visibility, and local constructibility 
suffice to guarantee that the terrain model will be correctly acquired. 
The bound on the number of sensor operations follows from Theo- 
rem 1. 

We use the adjacency list representation for E(0). We store the 
coordinates of each E vertex in the adjacency lists. The storage 
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(b) 
Fig. 12. Execution of LNAV. (a) No backtracking. (b) Backtracking. 

complexity of ACQUIRE is O ( N ) .  We use a depth-first imple- 
mentation of NAV so that the cost of each backtracking is O ( N )  
and the cost of computation of each adjacency list of a ,$ vertex is 
O ( N ) .  Thus, the time complexity of ACQUIRE is O ( N 2 ) .  After 
the terrain model is built, we use the O ( N  log N )  time algorithm 

rn 
Now consider a solution to the visit problem. The algorithm 

L N A V ,  that navigates R from its present location at dj to a 
destination point d i+ l  (if such path exists), is obtained by slightly 
modifying ACQUIRE as follows. After each scan, R checks to 
see if D,+l  is reachable, and moves to d i + l  if it is reachable. If 
not, the execution is continued. In the worst case, R would acquire 
the entire terrain model, and if di+ is not found to be reachable at 
this stage, then it is correctly declared as not reachable. See Fig. 12 
for examples of R escaping out of a maze using LNA V.  

LNA V completely relies on the sensor information for naviga- 
tion. Since the sensor obtains only partial information about the 
terrain, R might navigate into local concavities as in Fig. 12(b). If 
R is required to navigate in regions that it has navigated in the 
previous traversals, it can use the previous information to plan its 
present course of navigation. We obtain the algorithm GNA V that 
achieves this objective as follows. We store the adjacency lists 
computed by R over the traversals in a global model representing a 
partial ,$(O). The set S, is also stored over the traversals. Consider 
the navigation from d ,  to di+ GNA V computes a ,$ vertex (on 
the available part of f (0)) that is reachable from d, and moves to 
this vertex. Then R computes an available ,$ vertex d* that is 
closest to d ,+ l  according to some criterion such as distance. Then 
R moves along a path on E(0) to d*. From d*, R uses LNA V to 
navigate to d i + l .  Moreover, R checks the set S,  after every scan 
operation. After S,  becomes empty, R switches off its sensor and 
navigates using the algorithm of [lo] alone. At this stage, R has 
acquired a model of the terrain that is sufficient to navigate to any 

of [IO] to plan the subsequent navigation paths. 

reachable point. At any intermediate stage, the details of the partial 
model of the terrain depend on the paths traversed by R in. the 
earlier traversals. Compared to ACQUIRE, this solution requires 
at most M extra sensing operations, each operation corresponding 
to the position d j ,  i = 0, 1, * .  . ( M  - I ) .  Thus, we have the 
following theorem (again a detailed proof follows along the lines of 
[ 151 and Theorem 2). 

Theorem 3: The algorithm GNA V solves the visit problem. The 
terrain model will be completely built by R in at most 5N + M - 
n - 2C - 2 scans, after which the execution of each traversal 
involves no scan operations and will have a time complexity of 

We can compare our method with the visibility-graph-based 
methods for the terrain model acquisition problem. The number of 
scan operations in the visibility graph based approach is at most 
N - C + 1 [16]. In the retraction method this bound is 5N - n - 
2 - 2C. The storage complexity of visibility graph based method is 
O ( N 2 ) ,  whereas in the case of the retraction method, it is O ( N ) .  
The overall time complexity of visibility-graph-based methods is 
O ( N 2  log N )  [16], as opposed to O ( N 2 )  of the retraction method. 

V. CONCLUSIONS 

We presented an algorithmic framework, based on a retraction of 
free-space onto the Voronoi diagram, to solve two navigational 
problems-the visit problem and the terrain model acquisition prob- 
lem-for a circular robot in unknown terrains. We presented a 
geometric structure, called the navigation course, based on the 
retraction of the terrain. The robot uses the navigation course as a 
road map in solving the two navigational problems. The framework 
presented in this paper (and also in [15]) is general in that any graph 
structure that satisfies the properties of finiteness, connectivity, local 
constructibility, and terrain visibility can be used to solve the 
navigation problems. It will be interesting to see if such navigation 
courses, based on more general retractions, can be obtained in cases 
such as three-dimensional terrains, polygonal robots, robots com- 
posed of linkages, etc. 
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Performance Analysis of Total Least Squares 
Methods in Three-Dimensional 

Motion Estimation 

Subhasis Chaudhuri and Shankar Chatterjee 

Abstract-An algorithm is presented to obtain the total least squares 
(TLS) estimates of the motion parameters of an object from range/stereo 
data or perspective views in a closed form. TLS estimates are suitable 
when data in both time frames are corrupted by noise, an appropriate 
model for motion analysis in practice. We analyze the robustness of 
different linear least squares methods for the estimation of motion 
parameters against the sensor noise and possible mismatches in estab- 
lishing object feature point correspondence. As the errors in point 
correspondence increase, the performance of an ordinary least squares 
(LS) estimator was found to deteriorate much faster than that of the 
TLS estimator. The CramCr-Rao lower bound (CRLB) of the error 
covariance matrix is derived for the TLS model under the assumption of 
uneorrelated additive Gaussian noise. The CRLB for the TLS model is 
shown to be always higher than that for the LS model. Simulation 
experiments are performed to demonstrate that the proposed solution 
closely approximates the CRLB for the TLS model. 
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I. INTRODUCTION 

The estimation of three-dimensional motion parameters plays an 
important role in dynamic scene analysis. It may find many practical 
applications such as target tracking, motion control, robot manipula- 
tion of dynamic objects, recognition of 3-D objects from a sequence 
of perspective views, etc. Such a broad scope of dynamic scene 
analysis has triggered the interest of a large number of researchers, 
and various algorithms have been proposed to estimate the 3-D 
motion parameters. 

Motion estimation algorithms can be broadly classified into two 
categories: methods based on optical flow and those based on 
feature point correspondence. Although these methods have been 
extensively used in the literature, the performances of these methods 
are yet to be completely evaluated. Studies related to the sensitivity 
analysis for the determination of optical flow with regard to depth 
discontinuity and the textural variation in the image have been 
reported in [l]. 

When trying to track moving objects having a simple structure 
(e.g., machine parts), it is computationally advantageous to deter- 
mine the motion of a few interesting object points that can be 
observed during the event. Using a sequence of images, the motion 
of a single rigid object observed under central projection has been 
studied in [2] and [3]. It is assumed that the exact point correspon- 
dences are known across the whole sequence. For a fixed trajectory 
denoting constant motion for an object, object feature point corre- 
spondence can be established [4], [5] using a path coherence con- 
straint. We investigate quantitatively the robustness of different 
linear methods of motion estimation based on feature point corre- 
spondence between two frames. We consider only the least squares 
methods that have closed-form solutions, namely, the ordinary least 
squares (LS) method, the constraint least squares (CLS) method, 
and the total least squares (TLS) method. Some error analysis for 
the motion estimation algorithms based on feature point correspon- 
dence has been reported in [6] and [7]. However, they consider only 
the sensor noise in their data. We study the accuracy of these 
algorithms when there are mismatches in point correspondence in 
addition to having sensor noise in the data. 

The motion of a rigid object may be given by an affine transform 
Qi = PiR + i 

where pi  = [ p , i p z , p 3 i ]  is a row vector representing the coordi- 
nates of the ith point in the object, 4, is the coordinates of the same 
point after the motion, R is a 3 x 3 orthonormal rotation matrix, 
? = [ ?, t ,  ?z] is the translation of the object between two successive 
time frames. The motion understanding problem involves the esti- 
mation of the R matrix and the 5 vector. 

In range imaging, 3-D coordinates of certain feature points on the 
object are available at each time instant. Alternatively, such 3-D 
data can be obtained from instantaneous stereo triangulation. The 
translation vector ? can be easily estimated by noting the change in 
the centroid of the object in two successive frames, and no point 
correspondence need be established for this purpose. While analyz- 
ing range/stereo data, the object-centered coordinate system is 
assumed in this paper. When the correspondence between two data 
sets are given, an LS estimate of R can be obtained 181-[lo], but the 
estimated rotation matrix may not be orthonormal. A CLS method 
for this purpose has been proposed in [ 1 I] and [ 181. These methods 
implicitly assume the measurement errors to be confined to a single 
frame only. However, due to the nature of the gathering process of 
the image/range data, pi  and Qi are both prone to measurement 
noise. In order to account for the noise in both time frames, the use 
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