
RESEARCH CONTRlBUTlONS

Image Processing
and Computer
Vision

ID-A Translation Invariant
Robert Haralick
Editor Data Structure for Storing

Images

DAVID S. SCOTT and S. SITHARAMA IYENGAR

ABSTRACT: There are a number of techniques for

representing pictorial information, among them are

borders, arrays, and skeletons. Quadtrees are often used
to store black and white picture information. A variety of
techniques have been suggested for improving quadtrees,
including linear quadtrees, Qh4ATs (quadtree medial axis
transform), forests of quadtrees, etc. The major purpose of
these improvements is to reduce the storage required
without greatly increasing the processing costs. All of
these methods suffer from the fact that the structure of
the underlying quadtree can be ve y sensitive to the
placement of the origin.

In this paper we discuss a translation invariant data
structure {which we name TlD) for storing and processing
images based on the medial axis transform of the image
that consists of all the maximal black squares contained
in the image. We also (discuss the performance of TlD
with other existing structures such as QMATs, forests of
quadtrees, and normalized quadtrees. Some discussion on
the union and intersection of images using TID is
included.

1. INTRODUCTION
Efficient methods for region representation are im-
portant for use in manipulating pictorial informa-
This research was partially supported by CES-LSU.

0 7986 ACM OOOl-0782/86/0500-0418 750

tion. There are a number of techniques for repre-
senting pictorial information, among them are bor-
ders, arrays, and skeletons [31]. The quadtree has
recently become an important data structure in im-
age processing. The early history of quadtrees may
be traced in papers by Alexandridis and Klinger [2],
Hunter [ll], Hunter and Steiglitz [12, 131, Klinger
and Dyer [19], and Tanimotto and Pavlidis [36].

Methods for the region representation using quad-
trees exist in the literature [5, 22, 231. Much work
has been done on quadtree properties, and algo-
rithms for translations and manipulations have been
derived by Dyer 141, Samet [24-27, 29, 301, Shneier
1341, and others. The question of efficient quadtree
storage was addressed by Gargantini [7], Grosky and
Jain [lo], Raman and Iyengar [15], Iyengar, Sadler,
and Kundu [16], Jones and Iyengar [17, 181, and
Samet [31]. For details on other representation on
image data structure see [S, 311.

Recently Samet [31] applied the concepts of skele-
ton and medial axis transform to images represented
by quadtrees and defined a new data structure
termed QMAT. Basically, this data structure results
in a partition of the image into a set of nondisjoint
squares having sides of arbitrary length (but not ar-
bitrary centers) rather than, as in the case of quad-
trees, a set of disjoint squares having sides of lengths

418 Communications of the AC,%4 May 1986 Volume 29 Number 5

that are powers of 2. The data structures proposed
by Samet, Dyer, Rosenfeld, Jones, Iyengar, Gargan-
tini, and others can be very sensitive to the place-
ment of the origin.

Li, Grosky, and Jain [20] define a normalized
quadtree structure with respect to translations. They
have obtained an algorithm that finds the position of
the quadtree requiring the minimum number of
nodes. The algorithm uses a binary array representa-
tion of the image and attempts translations of magni-
tude power of 2 in the vertical, horizontal, and cor-
ner directions. The algorithm requires O(2’“) space
and has an execution time of O(n.2’“)(n is the grid
resolution of the image). For a broader treatment on
this see [26]. Details on space and time efficiency
of virtual quadtrees can be referred to Jones and
Iyengar [8].

In this paper we present a shift-invariant maximal
block data structure (TID) by representing the maxi-
mal blocks by triples containing the size of the block
and the coordinates of the upper left-hand corner.
The TID of the image will generally have many
fewer black nodes than the other corresponding
structures. Empirical results confirming this are dis-
cussed in Section 5.

The remainder of the paper is organized as fol-
lows: Section 2 describes previous methods of storing

Example 1 Example 2

FIGURE 1. Sample Regions

Research Contributions

images and reveals their sensitivity to the placement
of the origin. Section 3 defines TIDs and presents a
formal algorithm for computing them. Section 4 dis-
cusses storing and searching TIDs efficiently. Section
5 gives theoretical and computational comparisons
of TIDs with other storage techniques. Section 6
concludes the paper.

2. COMPARISON OF SENSITIVITY

2.1 Current Representation Methods
A quadtree is a tree structure with the restriction
that any node must have either four offspring (or
children or descendents) or none. In a quadtree rep-
resenting a picture, the root represents the whole
picture. Each offspring represents one quadrant in
the order northwest, northeast, southwest, southeast.
In turn, their offspring each represent a subquadrant
of the four quadrants and so on until every terminal
node represents a region that is either all black or all
white. Figures 1 and 2 show a typical picture of a
simple region and its quadtree representation. In
quadtrees, parents are labeled “GRAY” and leaves
are either “BLACK” or “WHITE.”

Various improvements to quadtrees have been
suggested including forests of quadtrees [lo, 171,

hybrid quadtrees [15, 211, linear quadtrees [7], and
optimal quadtrees for image segments [lo]. All of
these methods try to optimize quadtrees by remov-
ing some or all of the gray and white nodes. All of
them maintain the same number of black nodes.

Recently Samet [31] presented a modification of
quadtrees called QMAT (for quadtree medial axis
transform). In a QMAT, black nodes in the original
quadtree are allowed to expand to absorb adjacent
smaller black nodes. Thus, while quadtrees decom-
pose the image into certain disjoint squares of
Z-power order, QMATs cover the image with
squares of arbitrary order (but not of arbitrary cen-
ter) that are not disjoint in general. Black nodes in

A BC E Ii DGI J KL M

FIGURE 2. Quadtrees for Example 1 and Example 2 of Figure 1

May 1986 Volume 29 Number 5 Communications of the ACM 419

Research Contributions

QMATs are allowed to expand so that they overlap
the boundary of the image. Thus QMATs can lead to
a significant reduction in BL,ACK nodes compared
to the original quadtree. Other early work on medial
axis transformation includes Rosenfeld and Pfaltz’s
work done in lS66 [Zla].

2.2 Sensitivity of Placement
All of the methods: of representing images given suf-
fer from sensitivity to the placement of the origin.
Two images that are translations of each other can
give rise to very different looking structures. We ex-
amine this phenomenon for those methods by using
the example of a 2”-’ X 2”-’ black square embedded
in a 2” x 2” image. In Example 1 the black square is
in the upper left corner. In Example 2 it is translated
down and right one pixel. Figure 1 shows Examples
1 and 2 for n = 3. Figure 2 gives the quadtrees for
these two patterns and Table I gives the number of
each kind of node. Example :L in Table I is constant
for all values of 11. The deriva.tion of the entries in
Example 2 for arbiirary n is given in [32].

Observation 1: The quadtree for Example 2 grows
exponentially in n .and the quadtree for Example 1

has 5 nodes independent of n. How do the various
representation schemes apply to Example 2? Most of
the schemes eliminate most or all of the pointers
and white nodes and do noth.ing to black nodes.
Thus linear quadtrees, compact quadtrees, hybrid
quadtrees, and forests of quadtrees are all inevitably
forced to store 3 (2” - n) - z black nodes plus per-
haps some others. The scheme capable of eliminat-
ing black nodes is given in [31].

Observation 2: The QMAT for Example 2 has an
interesting structure. Most of the image is covered
by only four nodes but a sequence of decreasing

FIGURE 3. The 172 Black Blocks for Example 2 with n = 6

TABLE I. Number of Each Kind of Node in the Quadtrees
for II = 3

‘. _,
- ,.:.. 0. ;.- ._ :, &@llp,,: ~~.&g&jjff?

* ,.,‘f: i 2
pf)p “. 2

..y _* __ _._ arbitfaryir :. ‘.

Grey node 1 13 2”+’ - 3

White node 3 27 3(2” + n - 2)
Black node 1 13 3(2” - n) - 2

sized nodes is needed to cover the rest. Figure 3
shows the 172 black blocks for Example 2 with
n = 6. The four blocks labeled A expand to cover
most of the square but the blocks labeled B are
needed to cover the rest.

Based on the above observation, we can state the
following theorem.

THEOREM 1

For n 2 5 the Qh4AT for Example 2 has 2n - 2 black
nodes, 4n - 6 white nodes, and 2n - 3 gray nodes.

PROOF

See [32].

Observation 3: The shift sensitivity of the image
data structures (such as quadtrees, compact quad-
trees, and QMATs) derives from the fact that the
positions of the maximal blocks are not explicitly
represented in the data structure. Instead, these po-
sitions are determined by the paths leading to them
from the root of the tree. Thus, when the image is
shifted, the maximal blocks are formed in a different
way.

Sensitivity to the placement of the origin is partic-
ularly annoying when translating images (e.g., when
several images are combined). As the example above
shows, even small translations can make enormous
changes in the underlying representation. The possi-
bility for black nodes to overlap the boundary in
QMATs creates a further obstacle to correctly com-
bining several QMATs. In the next section we intro-
duce a new data structure for storing images that is
translation invariant.

3. TID-A TRANSLATION INVARIANT
DATA STRUCTURE

3.1 The Medial Axis Transform
The maxnorm (or infinity norm) of a point (a, b) is
max(](a (1, ((b ((). The distance between two points
(a, b) and (c, d) is

W, bl, k 4) = max(lla - cll, Ilb - 4).
The set of all points B which are a distance 01 from a
fixed point A is a square of size 2a centered on A.

In any image, a maximal black square is any

420 Communications of the ACM May 1986 Volume 29 Number 5

Research Contributions

square of black pixels that is not contained in any
larger square of black pixels. The medial axis trans-
form with respect to the maxnorm is the set of all
maximal black squares contained in the image. This
concept was exploited by Samet in deriving QMATs.
The medial axis transform (MAT) of an image is
clearly translation invariant since it only depends on
the intrinsic geometry of the image. In this section
we will investigate various aspects of MATS. In par-
ticular, Section 3.4 discusses the desirability of elim-
inating redundant squares.

3.2 Computing Distances
Before determining the maximal squares in an
image, it is first necessary to compute the distance
from each black pixel to the nearest white pixel
(or boundary). D can be computed in linear time
(in the number of pixels) using the algorithm given
by Borgefors [3].

3.3 Locating Maximal Squares
Definition of a Maximal Black Square: A maximal

square is a black square of pixels that is not con-
tained in any large square.

Let D(i, j) be the distance from (i, j] to the nearest
white pixel. A maximal square is a black square of
pixels that is not contained in any larger black
square. The square centered on (i, j) will be the
largest black square centered on (i, j) (which will
always be of odd order with side s = (2 * D(i, j) - I]).
A constant 2-square will be a 2 x 2 square of pixels
that all have the same D value. The square centered
on a constant 2-square will be the largest black
square centered on the P-square (which will have
even order with side equal to twice the constant D
value). Two pixels will be considered adjacent if
they share a common side or corner. Two adjacent
pixels will be called neighbors. The key result for
locating maximal squares is stated in the following
theorem.

THEOREM 2

A black square is maximal if and only if either: (1) It is
centered on a constant 2-square or (2) It is centered on
(i, j) and both (a) D(i, j) is a local maximum of D and (b)
(i, j) is not part of a constant 2-square.

PROOF

(-) Let Q be a maximal square. Suppose Q has even
order and let T be the l-square on which Q is cen-
tered. Suppose T is not constant. Let D(i, j] >D(k, m)
for two pixels in T. Then the odd ordered square
centered on (i, j) strictly contains Q which is a con-
tradiction. So T must be a constant. This completes
Part 1 of the theorem.

Suppose Q has odd order with center (i, j). Sup-

pose (k, m) is adjacent to (i, j) with D(k, m) > D(i, j).
Then the square centered on (k, m) will strictly con-
tain Q, which is a contradiction. This is Part 2a of
the theorem. Suppose (i, j) is part of the constant 2-
square T. Then the square centered on T strictly
contains Q, which is a contradiction. This is Part 2b
of the theorem. This completes (+).

(c) Let Q be the square centered on the constant
P-square T and suppose Q is strictly contained in
some larger square S. Let (i, j) E T and (k, m) E T be
such that (i, j) is closer to the center of S than (k, m).
Then the square centered on (i, j) is contained in S
and contains no boundary squares of S, which con-
tradicts the definition of D(i, j). Thus Q must be
maximal. Suppose Q is centered on (i, j) and both
Parts 2a and 2b hold and suppose Q is strictly con-
tained in a larger black square S.

Suppose S is of odd order centered on (k, m). By
symmetry we may assume either (a) i = k and j < m
or (b) i < k and j < m. In Case (a) D(i, j + 1) = D(i, j)
+ 1. In Case (b) D(i + 1, j + 1) = D(i, j) + 1. Both
possibilities contradict Part 2a and so S may not be
of odd order.

Suppose S is of even order with central 2-square T.
Let (k, m) be the pixel in T closest to (i, j). If (i, j) #
(k, m), then the odd square centered on (k, m) strictly
contains Q. This is the previous case which contra-
dicts Part 2a.

Finally suppose (i, j) = (k, m). If (n, p) is some pixel
in T, then D(n, p) cannot be greater than D(i, j) by
Part 2a and if D(n, p) is less than D(i, j), then Q is not
contained in S. Thus T is a constant 2-square, which
contradicts Part 2b. Hence Q is maximal. cl

The characterization of maximal squares in Theo-
rem 2 is purely local and all maximal squares can be
identified in one pass through the pixels. Thus the
maximal squares can be located in linear time. In
fact, the squares can be identified during the second
pass of the Borgefors algorithm [3] and so no addi-
tional pass is needed.

3.4 Eliminating Redundant Maximal Squares
Not all maximal squares may be needed to cover an
image. Figure 4 displays a black rectangle that is the
union of two squares. However, the image contains
six maximal squares (each centered on a 3). It is
clearly desirable to eliminate unnecessary maximal
squares. The squares at the ends are needed and all
of the others are not. In this case, a unique pair of
maximal squares covers the image. If we make the
rectangle 11 wide instead of 10, then one additional
square is needed. Both ends are still required but
any one of the five interior squares could be used.
(See Figure 5.)

May 1986 Volume 29 Number 5 Communications of the ACM 421

Research Contributions

FIGURE 4. A Black Rectangle That is the Union of Two Squares

FIGURE 5. Expansion of the Rectangle in Figure 4

Ilnfortunately, there appears to be no fast (local)
way of determining whether a particular maximal
square is covered by three or four maximal squares.
Figure 6a-c gives s;ome examples illustrating this
point. In each case, the maximal square centered on
the circled pixel is covered by the maximal squares
centered on the darkened pixels.

In general, there are complex dependencies among
the maximal squares that are expensive to compute
and difficult to ana.lyze, which makes it difficult to
determine an optimal subset to delete.

For these reasons we will only consider eliminat-
ing maximal squares that are covered by only two
other maximal squares. These seem by far to be the
most common kind. of dependency and more impor-
tantly, such a dependency has a local characteriza-
tion. Namely, let Q be a maximal square centered on
(i, j]. Q can be covered by two other squares if and
only if one of the following holds: (a) D(i, j - 1) =
D(i, j) = D(i, j + I) > 1, (b) D(i - 1, j) = D(i, j) =
D(i+l,j)>l.

This means that such redundant squares are al-
ways signaled by a consecutive sequence of pixels
(either horizontally or vertically) with constant D
value. Only local maxima of I~ need be considered
for elimination, so we assume all of the pixels are
local maxima except possibly the ends. Let the D
value be k and let n be the maximum number of
consecutive pixels with constant D value.

n pixels

m . Ikl

How many of the squares are redundant? Two
squares cover everything in between provided that
at most 2k - 2 centers lie in between. Thus, to deter-
mine which squares, to include, start at one end,

FIGURE 6. Examples to Show That There is No Fast Way of
Determining Whether a Particular Maximal Square is Covered by

Three or Four Maximal Squares

include the end square, delete the 2k - 2 square,
include the next, delete the next 2k - 2, include the
next, and so on until the end is reached. Always
include the other end. If the endpoints are not local
maxima, then they are “included” in whatever large
square contains them.

Figure 7 shows an example with k = 2 and n = 8.

Note that both endpoints are not local maxima. If
the algorithm starts at the left, and the circled cen-
ters are kept, then two squares are deleted for each
one kept because 2k - 2 equals 2. The endpoints are
covered by the circled 3s. Obviously the squares that
are kept may depend on whether the algorithm
starts at the left or right end but the number of
squares deleted may be the same.

Assuming that the algorithm always goes left to
right (and top to bottom), the results of the algorithm
on one sequence are fixed. The only remaining
question is what happens when a horizontal and a
vertical sequence intersect. Does it matter which
sequence is processed first? The answer is yes. Pro-
cessing in the wrong order may cause retention of
one more square than necessary. In Figure 8, if the
row is processed first, then the six circled centers
are kept. If the column is processed first, then the
central square is deleted before the row is processed.
This breaks the row into two separate pieces which
are processed separately. This results in the marked
square being deleted.

This phenomenon has nothing to do with which
sequence is longer. It can occur only when the cen-
tral square would be deleted in both directions. This
problem has a simple solution. Process all horizontal
sequences first. Whenever a square is about to be
deleted check to see if the center of the square is
part of a vertical sequence. If it is, then do not delete
the sequence and start the delete count over (i.e.,
delete to the next 2k - 2 squares). The vertical pass
is unaffected.

422 Communications of the ACM May 1986 Volume 29 Number 5

Research Contributions

The question of even order maximal squares re-
mains. As shown in Theorem 2, an even order maxi-
mal square is characterized as centered on a con-
stant 2 square. As for the odd order maximal
squares, there are a variety of ways an even order
maximal square might be redundant. We will only
consider two of them.

THEOREM 3

Lef T be a constant 2-square. The maximal square Q
centered on T is redundant if either (1) or (2) holds:
(1) None of the four pixels in T are local maxima of D.
(2) There exist two other constant a-squares R and S
such that R # T # S and T C_ R U S.

PROOF

If a pixel P is not a local maxima of D, then the
square centerd on P is contained in some larger odd
order square. If all four of the pixels in Tare not
local maxima, then Q can be covered with four
larger odd order squares. Hence Q is redundant.

The only way 2 can hold is if there is a 2 x 8
rectangle of constant D values with T being the cen-
tral square. Then Q is covered by the squares cen-
tered on R and S, so Q is redundant.

Theorems 2 and 3 together indicate that we need
only concern ourselves with pixels that are local
maxima of D. Redundant squares in sequences of
equal a-squares can be handled in the same way as
for odd order sequences.

The algorithms are given in the Appendix.
Facf 2: The TID of an image is a subset of the MAT

of the image. In particular, most of the redundant
maximal squares (all the maximal squares that are
covered by two others) can be computed in time
which is linear in the number of pixels. Proof of this
fact is given in [32].

FIGURE 7. An Example with k = 2 and n = 8

FIGURE 8. An Example of Row Processing

4. STORING AND SEARCHING A TID
Each maximal square in a TID is characterized by
three numbers (two to specify a location and one to
specify size). Using the center of the square for loca-
tion does not work well for even order squares, so
we will use the coordinates of the upper left corner
of the square and its size as the three parameters.
Thus each square in a TID has the representation
(i, j, s).

Unfortunately, unlike linear quadtrees, such tri-
ples of numbers do not have a natural linear order-
ing. The best thing that can be done is to choose
some priority order for the coordinates and then
order them lexicographically. We will assume that
i and j are sorted in increasing order but for reasons
which will become clear shortly, we will assume
that s is sorted in decreasing order. By symmetry we
may assume that i is ordered before j. Thus the
question is which of the three possible ordering
plans: (a) (i, j, s), (b) (i, s, j), or (c) (s, i, j), is the best.
There is no definitive answer to this question. It
depends on whether storage or access is of primary
concern.

Storage is conserved when the primary subdivi-
sions are large since the value of the primary vari-
able will only be stored once. On this grounds, Plan
(a) can be eliminated since there can be at most one
maximal square with corner (i, j) and so no savings
can be obtained at the second division compared to
Plan (b) or Plan (c). Plan (b) may be better since
there may be several squares of the same size with
the same i value.

For storage purposes the competition is between
Plan (b) and Plan (c). For most images Plan (c) is
superior since there will be many small squares
around and so the subsets of size 1, 2, and 3 will be
quite large allowing for a much greater space savings
than can be obtained by Plan (b).

For searching it is important to shorten the length
of the search whenever possible by skipping to the
beginning of the next primary or secondary classifi-
cation. The following discussion assumes that the
purpose of the search is to decide whether pixe1
(k, m) is black, that is, whether (k, m) is contained
in some square in the TID.

On this basis Plan (c) can be ruled out since it is
impossible to determine anything given just s. On
the other hand with Plan (a) or Plan (b) we can stop
the search as soon as k < i. The question of whether
Plan (a) or Plan (b) allows more skipping of squares
remains. For fixed i, Plan (a) skips all squares with
j > m. Plan (b) skips all squares with s < k - i.
Which set is larger? This obviously depends on the
image. For the purpose of analysis we make the fol-

May 1986 Volume 29 Number 5 Communications of the ACM 423

Research Contributions

lowing assumptions: (1) Every value of j is equally
likely. (2) All possible valu’es of s (i.e., 1 to number-i
+ 1) are equally likely.

Assumption 1 is true only for “random” squares
only if they have size 1. For larger squares the dis-
tribution is skewed, favoring smaller values of j.
Assumption 2 is even less reasonable. In most
images there will be many more small squares
than large squares.

For fixed i, Plan (a) skips all squares (1, j, s) with
1 = i and j > nt. By Assumption 1 this will be about
half the squares with 1 = i for a random (k, m).
Plan (b) will skip all squares (1, j, s) with 1 = i and
1 + s < k. By Assumption 2 this will be about half
the squares with 1 = i. Thus by analysis the two
plans are about the same. However, both biases in
the assumption favor Plan (b), particularly the sec-
ond one. Thus Plan (b) is better.

Unfortunately, only some constant fraction of the
squares can be skipped and so the search time is still
linear in the number of squares.

4.1 Translation, IRotation, and Union of TIDs
A TID is made up of maximal squares. Each square
is represented as a triple (i, j, s), where (i, j) is the
northwest corner of the square and s is the length of
the side. Thus a TID is just a list of such tuples.
Translations and rotations applied to the image are
just simple functions of these tuples. To translate a
triple (i, j, s) by I units right and 1 units up yields

T,(i, j, s) = (i i- I, j + 1, s).

Rotation by a/2 is only slightly more complicated
due to the fact that the NW corner of the square
changes upon rota.tion. The lr/2 rotation around the
origin is

R(i, j, s) = (-j, i + s, s)

Rotations around other coordinates can be obtained
by composing R with the appropriate translations.

Union of TIDs is straightforward-simply take the
union of the two lists. The resulting list will be the
TID of the combined images whenever the images
do not overlap. Two problems can occur when the
two images overlap. A square in one TID may be
contained in a square from tbe other TID and thus
be redundant, or several squares from both TIDs
could be combinecl to form a larger square. The first
problem can be ea,sily checked for. The second prob-
lem is harder-there appears to be no better solution
for reforming the array of pixels and recomputing
the TID. On the other hand the combined lists are
unlikely to contain many such larger squares (if any)
and thus should be an adequate representation of
tile image.

We analyze the union of two regions arising (or
suitably projected) from the superpositioning of the
images using TID as described in our other paper
[33]. The reader is referred to [33] for the basic idea
behind manipulation algorithms on TID and its rela-
tion to other representations.

5. THEORETICAL AND COMPUTATIONAL
COMPARISONS OF TIDs WITH OTHER
DATA STRUCTURES
The purpose of this section is to compare the storage
requirements and preprocessing costs of TIDs with
those of quadtrees, linear quadtrees, forests of quad-
trees, and QMATs.

(4

011111 011111
122211 112111
022300 012100
011310 011110
000210 000110
000100 000100

(b) (c)

x00011
101011
x010xx
x0001x
XXXllX
XXXlXX

(4

X00032
101022
x010xx
X0032X
xxx22x
XXXlXX

(4

011111
n cl 111111
011100
0

a
0

000110
ooopJoo

(f 1

FIGURE 9. Sample Region and Its Corresponding TID
Representation

424 Commulzications of the ACM May 1986 Volume 29 Number 5

Research Corrtributiorrs

It is well known that the storage requirements
for these modified quadtree data structures are
very shift sensitive. A rigorous analysis is given by
Iyengar and Lewis [14]. For the present discussion,
consider the image in Figure 9a. This region must be
embedded in a square of size 23 x 23. There are nine
possible locations (shown in Figure lOa-i) for the
embedded region within the square. Maximal square
characterization of Figure 9a using TID structure is
described in Table I. Table II summarizes the best,
worst, and average performance for the various
locations.

On the average, TID provided a 56 percent space
reduction over linear quadtrees and an 86 per-
cent reduction when compared to other data
structures. Reductions may not always be this
spectacular.

THEOREM 4
The number of nodes required to store a TlD does not
exceed the minimum tzumber required by optimally
locafed quadtrees, linear quadtrees, forests of quadtrees,
or Qh4ATs.

PROOF
The number of black nodes are identical for quad-
trees, linear quadtrees, and forests of quadtrees.
Each such black node is a subset of a maximal block.
This also holds for QMATs, since there are restric-
tions on the merging allowable under QMATs.
Therefore, at worst, there is one-to-one correspond-
ence between black nodes and TID nodes. (Notice
that quadtrees, forests of quadtrees, and QMATs
must also store white nodes.)

This space savings is not without costs. Scott and
Iyengar [ZO] note that the time required to construct
a TID is O(rc log(min(r, c))), where r and c are the
number of rows and columns in the embedded
region.

Suppose 2’-’ < max(r, c) I 2’ and let s = 2’. The
time complexity to construct a TID is at worst
O(s’log s), and may be much less since the embed-
ded region may not fill the s x s square. By compari-

TABLE II. Maximal Square Characterization of Figure 9a
Using TID Structure

ROW Column Size

1 2 3
1 5 2
2 1 1
2 2 3
4 4 2
6 4 1

(4 (b) (cl

(4 (4

(9) (h) 0)

FIGURE 10. Possible Placements of the Sample Region of
Figure 9 Inside a Square of Size 23 x 23

son, the time complexity to construct a modified
quadtree is O(s*). This slight reduction in time may
be more than offset by the complexity of the result-
ing tree if a poor location is chosen.

Is TID still advantageous if a search is made for a
good location? The costs associated with such a
search must be considered. Grosky and Jain [lo] de-
fine the normalized quadtree of an image as its
quadtree constructed for the location that results in
the minimum number of nodes. If the number of
nodes are minimized at more than one location,
Grosky and Jain [lo] use the northern- and western-
most of these locations. The extension of their defi-
nition to normalize linear quadtrees, forests, and
QMATs is obvious,

Grosky and Jain notice that the normalized quad-
tree may require a 2k+’ X 2k+’ square. We now ex-
tend their result to other data structures.

THEOREM 5
lf an image can be embedded in a 2k X 2k square, the
maximum square needed to normalize its data structure
is: 2k+’ x 2k+’ for quadtrees, linear quadtrees, and
Qh4AT; and 2’+2 X 2k+2 for forests of quadtrees.

May 1986 Volume 29 Number 5 Communications of the ACM 425

FIGURE 11. An Example Using al 2k” x 2k” Figure For Optimal
Positioning

PROOF
Figure 11 is an example where it is necessary to use
a 2’+’ X 2“+’ square for optimal positioning. If an
image requires a 2k+2 x zk+’ square, the optimal po-
sition cannot be in a principal quadrant (i.e., quad-
rants from the root). Figure 12a-c details the possible
cases, where A, B, C, and D represent subimages of
arbitrary complexity. Each of these cases is worse
for the quadtree or QMAT. and no better for a lin-
ear quadtree than the placement of Figure 12d in
a 2 ‘+’ X 2 k+’ square.

Figure 12c, however, may represent a better place-
ment for the forests of quadtrees data structure if
two of the subimages are good black. This will be
the case if both remaining subimages are white or if
at least one of them has a good white gray root. q

Fact 2: Theorem 5 defines the size of the area that
must be searched. TIDs on the other hand need only
the r x c enclosing rectangle (r x c 5 zk x 2”) since
no location search is necessary.

For the example in Figure lOa, the optimal loca-
tions for most of the modified quadtrees occur
within the 23 x 2” square of Figure lla-i. (See Table
III.) The exception is the forests of quadtrees, which
is normalized by a horizontal translation at 3 pixels.
The performance of normalized data structures is
compared in Table IV.

To normalize th.e image representation, each of
the 4” (=s’) possible locations (4k+2 for forests of
quadtrees) must be examined to determine its suita-
bility. The cost of constructing any of these modified
quadtrees is O(?). If the suitability of any location is
assessed by actually constructing the data structure,
then the normalization cost is O(s4).

Some reduction is possible for quadtrees and
linear quadtrees. Grosky and Jain [lo] give an
O(s’log s) algorithm to find the optimal location.
This algorithm may be adopted to linear quadtrees
with only a slight increase in the proportionality
constant. The algorithm is based on a process of
merging nodes from the bottom up while keeping
track of the potential number of leaves. It does not

(4 (4 (d)

FIGURE 12. Subimages of Arbitrary Complexity

extend to forests of quadtrees or QMATs. For in-
stance, if a forest of good white gray nodes is merged
with at least two good black nodes, all of the de-
scendant gray nodes and white leaves would need to
be counted. whereas most of them would otherwise
be discarded.

We can define the cost of preprocessing as the
total number of operations required to construct the
data structure. If translation invariance is achieved
by searching for the optimal placement, then the
cost of the search much be considered in the prepro-
cessing costs. Table V compares the total preprocess-
ing costs for these data structures.

The Grosky and Jain algorithm finds the optimal

TABLE Ill. Number of Nodes Required to Represent Figure lOa-i

Best 33 12 26 33 6
Worst 57 18 58 57 6
Average case 44 13 42 44 6

TABLE IV. Number of Nodes Required for Normalized Data
Structures

Normalized quadtree 33
Normalized linear quadtree 12
Normalized forest of quadtrees 24
Normalized QMAT 33
TID 6

TABLE V. Preprocessing Costs for Normalized Data Structures

TID
Normalized quadtfee
Normalized linear quadtree
Normalized forest of quadtrees
Normalized QMAT

May 1986 Volume 29 Number 5

Research Colltributions

location without actually constructing the data
structure. Once the optimal location is found, the
data structure must still be constructed, although
the total time required is dominated by the search
time.

As was noted previously, search time to normalize
a quadtree is less than that for a linear quadtree. TID
requires no normalizing search, so the only cost is
the actual construction cost. Therefore, we expect
the TID to be slightly more cost efficient and storage
efficient than the other structures.

APPENDIX
6. CONCLUDING REMARKS

(1) The greatest advantage of TIDs over other
methods of storing images is that TIDs are transla-
tion invariant. This is particularly important if sev-
eral images are combined into one composite. An-
other interesting feature of TIDs is the fact that the
image itself need not be a square of Z-power order. A
square of any order or even any rectangular image
can be represented without having to embed it in a
square of Z-power order.

procedure deletesquare (a, numrow,
numcol)

(* delete unneeded local maxima and *)
(* mark essential constant 2-squares *)
begin

deleterows (a, numrow, numcol);
deletecols (a, numrow, numcol);

end;

For example, if a black square of order (Zk + 1) X

(Zk + 1) needs to be stored, the TID would just be the
black square. To store it as a quadtree requires that
it be embedded in a z~+’ x zk+’ square. The best
embedding would require zk+’ + 2 black leaves.

procedure deleterows (a, numrow,
numcol);

(2) The second advantage of a TID is that the
number of black squares stored may be significantly
less than the number in the corresponding quadtree.
This is important in such tasks as drawing the image
where the time required will be proportional to the
number of squares. For example, Tamminen [35]
quotes 5168 black leaves for the quadtree encoding
the circle inscribed in a 21° x 21° square. The corre-
sponding TID has 601 black squares, an 83 percent
reduction.

(* delete unneeded local maxima by
scanning rows *)

(* count counts the number of
consecutive *) ,

(* deleted squares *)
begin

for i := 2 to numrow-1 do
begin

d. .= 0;
for k := 1 to numcol-1 do
if a[i,k].horiz () 1 or

(a[i-l,k].dist = a[i,k].dist
and

Scott and Iyengar [32] note that the time required
to construct a TID is O(rc log(min(r, c))), where r and
c are the number of rows and columns in the em-
bedded region. Suppose z’-’ c max(r, c) 5 2’ and let
s = 2. The time complexity to construct a modified
quadtree is O(s’). This slight reduction in time may
be more than offset by the complexity of the result-
ing tree if a poor location is chosen. The time com-
plexity to construct a TID is at worst O(s’ log s), and
may be much less, since the embedded region may
not fill the s x s square. By comparison, the time
complexity to construct a modified quadtree is O(?).
This slight reduction in time may be more than off-
set by the complexity of the resulting tree if a poor
location is chosen. (TIDSOFT-A software to manip-
ulate different image settings implemented on a
VAX-11/780 is available on request.)

a[i+l,k].dist = a[i,k]:dist)
then

begin
d := a[i,k].dist;
count := 0;
maxcount := 2 * (d-l);

end
else
if a[i,k].dist () d then
begin

twosquare(i,k,no);
if a[i,k].horiz (> 3 then
twosquare(i-1,k);
d := a[i,k].dist;
count := 0;
maxcount := 2 * (d-l)

end
else

In principle the TID for a 2” x 2” image requires if count = maxcount then

3n bits for each maximal square. In practice this can
be reduced by techniques described in Section 3.4.
But the savings is never more than a factor of 3 (the
last parameter at least must always be stored for
every square). Thus the circle example from Section
4 could not be stored in less than 6010 bits. (In fact,
this particular example would take about 15000
bits since there are only four squares of each size,
which is not much less than the 17,805 quoted by
Tamminen [35].)

May 1986 Volume 29 Number 5 Communications of the ACM 427

Research Contributions

begin
twosquare(i,k);
if a[i,k].horiz () 3 then

twosquare(i-1,k);
count := 0;

end
else
if a[i,k].dist = d then
begin

co;nt := count + 1;
ali,k].horiz := 0;

end
end

end;

procedure deletecols (a, numrow,
numcol);

(* delete unneeded local maxima by
scanning cols *)

begin
for i :=' 2: to numcol-1 do
begin

d := 0;
for k := 1 to numrow-l do
if a[i,kJ.horiz () 0 then
begin

d := a[i,k].dist;
count := 0;
maxcount := .2 * (d-l) ;

end
else
if a(i,kJ.dist () d the
begin

twosquare(i,k,no);
if a[i,k].horiz () 3

twosquare(i,k-1,no)

n

then
I

Acknowledgments. We thank Professor Hanan
Samet for his constructive comments and criticism
of our paper. The comments of the referees, the
technical editor, Professor Haralick, Steven L. Tani-
motto, and our graduate students Nick Lakahni,
Nancy Gauthier, Jerry W. Lewis, and S.V.N. Rao on
an earlier version of this paper are greatly appreci-
ated.

REFERENCES
Note: Reference [9] is not cited in the text.

1. Abel, D.J.. and Smith, J.L. A data structure and algorithm based on a
linear key for a rectangle retrieval problem. Comput. Graphics Image
Processing 24. 1 (Oct. .1983), 1-13.

2. Alexandridis, N.. and Klinger. A. Picture decomposition, tree data-
structures and identifying directional symmetries as node combina-
tions. Comput. Graphics Image Processing 8, 4 (1978), 43-47.

3. Borgefors, S. Comput. Graphics Image Processing 27, 3 (1983).
4. Dyer, CR. Computing the Euler number of an image from its quad-

tree. Comput. Graphics Image Processing 13, 3 (1980), 279-276.

d := ali,kJ.dist;
count := 0;
maxcount := 2 * (d-l)

end
else
if count = maxcount then
begin

twosquare(i,k);
if a[i,kl.horiz () 3 then

twosquare(i,k-1,no);
count := 0;

end
else
if a[iSl ,k].dist = d then
begin

count := count -t- 1;
a[i,kj.horiz := 0;

end
end

end;

procedure twosquare (i,j);
(* check is a[i,j] is the NW *)
(* corner of a constant 2-square *)
begin

d := a[i,j].dist;
if a[i+l,j].dist = d and
a[i,j+l].dist = d and
a[i+l,j+l].dist = d then

begin
a[i,j].horiz := 3;
a[i,jfl].horiz := 2;
a[i+l,jJ.horiz := 2;
a[i+l,j+l].horiz := 2;

end
end;

5. Dyer, CR.. Rosenfeld, A., and &met, H. Region representation:
Boundary codes for quadtrees. Commun. ACM 23, 3 (Mar. 1980).
171-179.

6. Ferrari, L., Sankar. P.V., and Sklansky. 1. Minimal rectangular parti-
tions of digitized blobs. Comput. Vision, Graphics Image Pro-
cessing 28. (Oct. 1984), 58-71.

7. Gargantini, 1. An effective way to represent quadtrees. Commun.
ACM 25, 12 (Dec. 1982). 905-910.

6. Gauthier, N.K., Iyengar. S.S., Lakhani, N.B.. and Manohar, M. Space
and time efficiency of the forest of quadtrees representation. J. Image
Vision Comput. 3, 2 (May 1985), 63-70.

9. Gauthier. N.K., Iyengar, S.S.. Scott. D.S., Lakhani, N.B., and Lewis, J.
Performance analysis of TID. In Proceedings of IEEE Computer Vision
and Pattern Recognition Conference, (San Francisco, Calif., June 9-13,
1985). 416-418.

10. Grosky, W.I.. and Jai”, R. Optimal quadtrees for image segments.
IEEE Trans. Pattern Anal. Machine Intell. PAM-S, 1 (1983), 77-83.

11. Hunter, GM. Efficient computation and data structures for graphics.
Ph.D. dissertation, Dept. of Electrical Engineering and Computer
Sciences, Princeton Univ., Princeton, N.J., 1978.

12. Hunter. G.M., and Steiglitz. K. Operations on images using quad-
trees. IEEE Trans. Pattern Anal. Machine Infell. PAMI-1, 2 (Apr. 1979).

13. Hunter. G.M.. and Steiglitz, K. Linear transformation of pictures
represented by quadtrees. Comput. Graphics Image Processing IO, 3
(July 1979). 289-296.

428 Communications of the ,4CM May 1986 Volume 29 Number 5

Research Contributions

14. Iyengar. S.S.. and Lewis, J.W. Translation properties and the space
efficiency of modified quadtree data structure. Tech. Rep. 84-031,
Louisiana State Univ., Baton Rouge, 1984.

15. lyengar. S.. and Raman, V. Properties of the hybrid quadtrees. In
Proceedings of fhe 7th International Confewnce on Pattern Recognifion.
(Montreal, Quebec, Canada, July 30-Aug. 2. 1984). 824-827.

16. Iyengar, S.S.. Sadler, T.. and Kundu, S. A technique for representing
a tree structure with predicates by a forest data structure. Tech.
Rep. 84-029. Dept. of Computer Science, Louisiana Slate Univ.,
Baton Rouge, 1984.

17. Jones. L.. and lyengar. S.S. Representation of regions as a forest of
quadtrees. In Proceedings of the IEEE Conference an Pattern Recognition
and Image Processing. (Dallas, Tex., 1981) 57-59.

16. Jones, L., and Iyengar, S.S. Space and time efficient virtual quad-
trees. IEEE Trans. P&fern Anal. Machine Intel!. PAMI-6, 2 (Mar. 1984),
244-247.

19. Klinger. A.. and Dyer, CR. Experiments in picture representation
using regular decomposition, Comgut. Graphics Image Processing 5.
1 (1<76), W-105.

20. Li, M.. Grosky. W.I.. and Jain, R. Normalized quadtree with respect
to translations. Comput. Graphics Image Prows&g 20, 1 (Sept.), 72-81.

21. Raman. V.. Iyengar. S., and Kundu, S. An optimized quadtree struc-
ture for pictorial data representation using top and bottom compac-
tion techniques. In Proceedings of fhe IEEE Systems, Man, and Cyber-
nefics Conference, (Bombay, India, Dec. 1983) 771-776.

21a. Rosenfeld. A., and Pfaltz, J.L. Sequential operators in digital picture
processing. 1, ACM 13, (1966). 471-494.

22. Sam& H. Region representation: Quadtrees from binary arrays.
Comput. Graphics Image Processing 78, 1 (i980), 88-93.

23. Samet, H. Region representation: Quadtrees from boundary codes.
Commun. ACM 23, 3 (Mar. 1980) 163-170.

24. Sam&. H. An algorithm for converting rasters to quadtrees. ZEEE
Trans. Pattern Anal. Machine Intell. PAMI-3, (Jan. 1981), 93-95.

25. Samet, H. Connected component labeling using quadtrees. I. ACM
28, (July 1981). 487-501.

26. Satnet. H. Computing perimeters of images represented by quad-
trees. IEEE Trans. Pattern Analysis Machine Infell. PAMI-3, 6 (1981),
683-687.

28. Samet, H. Data structures for quadtree approximation and compres-

27. Samet. H. Neighbor finding techniques for images represented by
quadtrees. Compuf. Graphics Image Processing 18, 1 (Jan. 1982)
37-57.

sion. Computer Science TR-1209, Univ. of Maryland, College Park,
Md., Aug. 1982.

29. Samet. H. Distance transform for images represented by quadtrees.
IEEE Trans. Pattern Anal. Machine Intell. PAMZ-4, 3 (1982). 298-303.

30. Sam&. H. Algorithms for the conversion of quadtrees to rasters.
Comput. Graphics Image Processing 26, 1 (Apr. 1984). l-16.

31. Sam& H. A quadtree medial axis transform. Commun. ACM 25, 9
(Sept. 1983). 680-693.

32. Scott. D.. and lyengar, S.S. TID-A translation invariant data struc-
ture for storing images. Tech. Rep. 84-027, Dept. of Computer Sci-
ence. Univ. Texas at Austin, 1984.

33. Scott, D., and Iyengar, S. A new data structure for efficient storing of
images. Pattern Recognition Left., 3 (1985), 211-214.

34. Shneier. M. Path-length distances for quadtrees. Inform. Sci. 23, 1
(1981), 49-67.

35. Tamminen. M. Comment on quad- and octtrees. Commun. ACM 27,3
(Mar. 1984). 248-249.

36. Tanimoto, S.. and Pavlidis. T. A hierarchical data structure for pic-
ture processing. Comput. Graphics Image Processing 4. 2 (June 1975).
104-119.

CR Categories and Subject Descriptors: [Data]: Data Structures-
trees: 1.2.lO[Artificial Intelligence]: Vision and Scene Understanding-
representations. data structures and fransforms

General Terms: Algorithms, Theory
Additional Key Words and Phrases: translation invariant data strut

ture. quadtrees. medial axis transformation

Received 5/84; revised 3/85; accepted l/86

Authors’ Present Addresses: David S. Scott, Department of Computer
Science, University of Texas, Austin, TX 78712. S. Sitharama Iyengar.
Department of Computer Science, Louisiana State University, Baton-
Rouge, LA 70803.

a I I,
republish. requires a fee and/or specific permission,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Comoutine Machinerv. To CODV otherwise. or to

c
1987 ACM

COMPUTER SCIENCE
CONFERENCE’“’

FEBRUARY 17-19 ST. LOUIS, MISSOURI

Quality Technical Program
Educational Exhibits
CSC Employment Register
National Scholastic

Programming Contest
SICCSE Technical Symposium

Attendance & Exhibits Information:
ACM CSC ‘87, Conference Dept. Q

11 West 42nd Street, New York, NY 10036
?8t (212) 869-7440

May 1986 Volume 29 Number 5 Communications of the ACM 429

