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ABSTRACT: There are a number of techniques for 

representing pictorial information, among them are 

borders, arrays, and skeletons. Quadtrees are often used 
to store black and white picture information. A variety of 
techniques have been suggested for improving quadtrees, 
including linear quadtrees, Qh4ATs (quadtree medial axis 
transform), forests of quadtrees, etc. The major purpose of 
these improvements is to reduce the storage required 
without greatly increasing the processing costs. All of 
these methods suffer from the fact that the structure of 
the underlying quadtree can be ve y sensitive to the 
placement of the origin. 

In this paper we discuss a translation invariant data 
structure {which we name TlD) for storing and processing 
images based on the medial axis transform of the image 
that consists of all the maximal black squares contained 
in the image. We also (discuss the performance of TlD 
with other existing structures such as QMATs, forests of 
quadtrees, and normalized quadtrees. Some discussion on 
the union and intersection of images using TID is 
included. 

1. INTRODUCTION 
Efficient methods for region representation are im- 
portant for use in manipulating pictorial informa- 
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tion. There are a number of techniques for repre- 
senting pictorial information, among them are bor- 
ders, arrays, and skeletons [31]. The quadtree has 
recently become an important data structure in im- 
age processing. The early history of quadtrees may 
be traced in papers by Alexandridis and Klinger [2], 
Hunter [ll], Hunter and Steiglitz [12, 131, Klinger 
and Dyer [19], and Tanimotto and Pavlidis [36]. 

Methods for the region representation using quad- 
trees exist in the literature [5, 22, 231. Much work 
has been done on quadtree properties, and algo- 
rithms for translations and manipulations have been 
derived by Dyer 141, Samet [24-27, 29, 301, Shneier 
1341, and others. The question of efficient quadtree 
storage was addressed by Gargantini [7], Grosky and 
Jain [lo], Raman and Iyengar [15], Iyengar, Sadler, 
and Kundu [16], Jones and Iyengar [17, 181, and 
Samet [31]. For details on other representation on 
image data structure see [S, 311. 

Recently Samet [31] applied the concepts of skele- 
ton and medial axis transform to images represented 
by quadtrees and defined a new data structure 
termed QMAT. Basically, this data structure results 
in a partition of the image into a set of nondisjoint 
squares having sides of arbitrary length (but not ar- 
bitrary centers) rather than, as in the case of quad- 
trees, a set of disjoint squares having sides of lengths 
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that are powers of 2. The data structures proposed 
by Samet, Dyer, Rosenfeld, Jones, Iyengar, Gargan- 
tini, and others can be very sensitive to the place- 
ment of the origin. 

Li, Grosky, and Jain [20] define a normalized 
quadtree structure with respect to translations. They 
have obtained an algorithm that finds the position of 
the quadtree requiring the minimum number of 
nodes. The algorithm uses a binary array representa- 
tion of the image and attempts translations of magni- 
tude power of 2 in the vertical, horizontal, and cor- 
ner directions. The algorithm requires O(2’“) space 
and has an execution time of O(n.2’“)(n is the grid 
resolution of the image). For a broader treatment on 
this see [26]. Details on space and time efficiency 
of virtual quadtrees can be referred to Jones and 
Iyengar [8]. 

In this paper we present a shift-invariant maximal 
block data structure (TID) by representing the maxi- 
mal blocks by triples containing the size of the block 
and the coordinates of the upper left-hand corner. 
The TID of the image will generally have many 
fewer black nodes than the other corresponding 
structures. Empirical results confirming this are dis- 
cussed in Section 5. 

The remainder of the paper is organized as fol- 
lows: Section 2 describes previous methods of storing 

Example 1 Example 2 

FIGURE 1. Sample Regions 
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images and reveals their sensitivity to the placement 
of the origin. Section 3 defines TIDs and presents a 
formal algorithm for computing them. Section 4 dis- 
cusses storing and searching TIDs efficiently. Section 
5 gives theoretical and computational comparisons 
of TIDs with other storage techniques. Section 6 
concludes the paper. 

2. COMPARISON OF SENSITIVITY 

2.1 Current Representation Methods 
A quadtree is a tree structure with the restriction 
that any node must have either four offspring (or 
children or descendents) or none. In a quadtree rep- 
resenting a picture, the root represents the whole 
picture. Each offspring represents one quadrant in 
the order northwest, northeast, southwest, southeast. 
In turn, their offspring each represent a subquadrant 
of the four quadrants and so on until every terminal 
node represents a region that is either all black or all 
white. Figures 1 and 2 show a typical picture of a 
simple region and its quadtree representation. In 
quadtrees, parents are labeled “GRAY” and leaves 
are either “BLACK” or “WHITE.” 

Various improvements to quadtrees have been 
suggested including forests of quadtrees [lo, 171, 

hybrid quadtrees [15, 211, linear quadtrees [7], and 
optimal quadtrees for image segments [lo]. All of 
these methods try to optimize quadtrees by remov- 
ing some or all of the gray and white nodes. All of 
them maintain the same number of black nodes. 

Recently Samet [31] presented a modification of 
quadtrees called QMAT (for quadtree medial axis 
transform). In a QMAT, black nodes in the original 
quadtree are allowed to expand to absorb adjacent 
smaller black nodes. Thus, while quadtrees decom- 
pose the image into certain disjoint squares of 
Z-power order, QMATs cover the image with 
squares of arbitrary order (but not of arbitrary cen- 
ter) that are not disjoint in general. Black nodes in 
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FIGURE 2. Quadtrees for Example 1 and Example 2 of Figure 1 
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QMATs are allowed to expand so that they overlap 
the boundary of the image. Thus QMATs can lead to 
a significant reduction in BL,ACK nodes compared 
to the original quadtree. Other early work on medial 
axis transformation includes Rosenfeld and Pfaltz’s 
work done in lS66 [Zla]. 

2.2 Sensitivity of Placement 
All of the methods: of representing images given suf- 
fer from sensitivity to the placement of the origin. 
Two images that are translations of each other can 
give rise to very different looking structures. We ex- 
amine this phenomenon for those methods by using 
the example of a 2”-’ X 2”-’ black square embedded 
in a 2” x 2” image. In Example 1 the black square is 
in the upper left corner. In Example 2 it is translated 
down and right one pixel. Figure 1 shows Examples 
1 and 2 for n = 3. Figure 2 gives the quadtrees for 
these two patterns and Table I gives the number of 
each kind of node. Example :L in Table I is constant 
for all values of 11. The deriva.tion of the entries in 
Example 2 for arbiirary n is given in [32]. 

Observation 1: The quadtree for Example 2 grows 
exponentially in n .and the quadtree for Example 1 

has 5 nodes independent of n. How do the various 
representation schemes apply to Example 2? Most of 
the schemes eliminate most or all of the pointers 
and white nodes and do noth.ing to black nodes. 
Thus linear quadtrees, compact quadtrees, hybrid 
quadtrees, and forests of quadtrees are all inevitably 
forced to store 3 (2” - n) - z black nodes plus per- 
haps some others. The scheme capable of eliminat- 
ing black nodes is given in [31]. 

Observation 2: The QMAT for Example 2 has an 
interesting structure. Most of the image is covered 
by only four nodes but a sequence of decreasing 

FIGURE 3. The 172 Black Blocks for Example 2 with n = 6 

TABLE I. Number of Each Kind of Node in the Quadtrees 
for II = 3 

‘. _, 
- ,.:.. 0. ;.- ._ :, &@llp,,: ~~.&g&jjff? 

* ,.,‘f: i 2 
pf)p “. 2 

..y _* __ _._ arbitfaryir :. ‘. 

Grey node 1 13 2”+’ - 3 

White node 3 27 3(2” + n - 2) 
Black node 1 13 3(2” - n) - 2 

sized nodes is needed to cover the rest. Figure 3 
shows the 172 black blocks for Example 2 with 
n = 6. The four blocks labeled A expand to cover 
most of the square but the blocks labeled B are 
needed to cover the rest. 

Based on the above observation, we can state the 
following theorem. 

THEOREM 1 

For n 2 5 the Qh4AT for Example 2 has 2n - 2 black 
nodes, 4n - 6 white nodes, and 2n - 3 gray nodes. 

PROOF 

See [32]. 

Observation 3: The shift sensitivity of the image 
data structures (such as quadtrees, compact quad- 
trees, and QMATs) derives from the fact that the 
positions of the maximal blocks are not explicitly 
represented in the data structure. Instead, these po- 
sitions are determined by the paths leading to them 
from the root of the tree. Thus, when the image is 
shifted, the maximal blocks are formed in a different 
way. 

Sensitivity to the placement of the origin is partic- 
ularly annoying when translating images (e.g., when 
several images are combined). As the example above 
shows, even small translations can make enormous 
changes in the underlying representation. The possi- 
bility for black nodes to overlap the boundary in 
QMATs creates a further obstacle to correctly com- 
bining several QMATs. In the next section we intro- 
duce a new data structure for storing images that is 
translation invariant. 

3. TID-A TRANSLATION INVARIANT 
DATA STRUCTURE 

3.1 The Medial Axis Transform 
The maxnorm (or infinity norm) of a point (a, b) is 
max( ]( a (1, (( b (( ). The distance between two points 
(a, b) and (c, d) is 

W, bl, k 4) = max(lla - cll, Ilb - 4). 
The set of all points B which are a distance 01 from a 
fixed point A is a square of size 2a centered on A. 

In any image, a maximal black square is any 
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square of black pixels that is not contained in any 
larger square of black pixels. The medial axis trans- 
form with respect to the maxnorm is the set of all 
maximal black squares contained in the image. This 
concept was exploited by Samet in deriving QMATs. 
The medial axis transform (MAT) of an image is 
clearly translation invariant since it only depends on 
the intrinsic geometry of the image. In this section 
we will investigate various aspects of MATS. In par- 
ticular, Section 3.4 discusses the desirability of elim- 
inating redundant squares. 

3.2 Computing Distances 
Before determining the maximal squares in an 
image, it is first necessary to compute the distance 
from each black pixel to the nearest white pixel 
(or boundary). D can be computed in linear time 
(in the number of pixels) using the algorithm given 
by Borgefors [3]. 

3.3 Locating Maximal Squares 
Definition of a Maximal Black Square: A maximal 

square is a black square of pixels that is not con- 
tained in any large square. 

Let D(i, j) be the distance from (i, j] to the nearest 
white pixel. A maximal square is a black square of 
pixels that is not contained in any larger black 
square. The square centered on (i, j) will be the 
largest black square centered on (i, j) (which will 
always be of odd order with side s = (2 * D(i, j) - I]). 
A constant 2-square will be a 2 x 2 square of pixels 
that all have the same D value. The square centered 
on a constant 2-square will be the largest black 
square centered on the P-square (which will have 
even order with side equal to twice the constant D 
value). Two pixels will be considered adjacent if 
they share a common side or corner. Two adjacent 
pixels will be called neighbors. The key result for 
locating maximal squares is stated in the following 
theorem. 

THEOREM 2 

A black square is maximal if and only if either: (1) It is 
centered on a constant 2-square or (2) It is centered on 
(i, j) and both (a) D(i, j) is a local maximum of D and (b) 
(i, j) is not part of a constant 2-square. 

PROOF 

(-) Let Q be a maximal square. Suppose Q has even 
order and let T be the l-square on which Q is cen- 
tered. Suppose T is not constant. Let D(i, j] >D(k, m) 
for two pixels in T. Then the odd ordered square 
centered on (i, j) strictly contains Q which is a con- 
tradiction. So T must be a constant. This completes 
Part 1 of the theorem. 

Suppose Q has odd order with center (i, j). Sup- 

pose (k, m) is adjacent to (i, j) with D(k, m) > D(i, j). 
Then the square centered on (k, m) will strictly con- 
tain Q, which is a contradiction. This is Part 2a of 
the theorem. Suppose (i, j) is part of the constant 2- 
square T. Then the square centered on T strictly 
contains Q, which is a contradiction. This is Part 2b 
of the theorem. This completes (+). 

(c) Let Q be the square centered on the constant 
P-square T and suppose Q is strictly contained in 
some larger square S. Let (i, j) E T and (k, m) E T be 
such that (i, j) is closer to the center of S than (k, m). 
Then the square centered on (i, j) is contained in S 
and contains no boundary squares of S, which con- 
tradicts the definition of D(i, j). Thus Q must be 
maximal. Suppose Q is centered on (i, j) and both 
Parts 2a and 2b hold and suppose Q is strictly con- 
tained in a larger black square S. 

Suppose S is of odd order centered on (k, m). By 
symmetry we may assume either (a) i = k and j < m 
or (b) i < k and j < m. In Case (a) D(i, j + 1) = D(i, j) 
+ 1. In Case (b) D(i + 1, j + 1) = D(i, j) + 1. Both 
possibilities contradict Part 2a and so S may not be 
of odd order. 

Suppose S is of even order with central 2-square T. 
Let (k, m) be the pixel in T closest to (i, j). If (i, j) # 
(k, m), then the odd square centered on (k, m) strictly 
contains Q. This is the previous case which contra- 
dicts Part 2a. 

Finally suppose (i, j) = (k, m). If (n, p) is some pixel 
in T, then D(n, p) cannot be greater than D(i, j) by 
Part 2a and if D(n, p) is less than D(i, j), then Q is not 
contained in S. Thus T is a constant 2-square, which 
contradicts Part 2b. Hence Q is maximal. cl 

The characterization of maximal squares in Theo- 
rem 2 is purely local and all maximal squares can be 
identified in one pass through the pixels. Thus the 
maximal squares can be located in linear time. In 
fact, the squares can be identified during the second 
pass of the Borgefors algorithm [3] and so no addi- 
tional pass is needed. 

3.4 Eliminating Redundant Maximal Squares 
Not all maximal squares may be needed to cover an 
image. Figure 4 displays a black rectangle that is the 
union of two squares. However, the image contains 
six maximal squares (each centered on a 3). It is 
clearly desirable to eliminate unnecessary maximal 
squares. The squares at the ends are needed and all 
of the others are not. In this case, a unique pair of 
maximal squares covers the image. If we make the 
rectangle 11 wide instead of 10, then one additional 
square is needed. Both ends are still required but 
any one of the five interior squares could be used. 
(See Figure 5.) 
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FIGURE 4. A Black Rectangle That is the Union of Two Squares 

FIGURE 5. Expansion of the Rectangle in Figure 4 

Ilnfortunately, there appears to be no fast (local) 
way of determining whether a particular maximal 
square is covered by three or four maximal squares. 
Figure 6a-c gives s;ome examples illustrating this 
point. In each case, the maximal square centered on 
the circled pixel is covered by the maximal squares 
centered on the darkened pixels. 

In general, there are complex dependencies among 
the maximal squares that are expensive to compute 
and difficult to ana.lyze, which makes it difficult to 
determine an optimal subset to delete. 

For these reasons we will only consider eliminat- 
ing maximal squares that are covered by only two 
other maximal squares. These seem by far to be the 
most common kind. of dependency and more impor- 
tantly, such a dependency has a local characteriza- 
tion. Namely, let Q be a maximal square centered on 
(i, j]. Q can be covered by two other squares if and 
only if one of the following holds: (a) D(i, j - 1) = 
D(i, j) = D(i, j + I) > 1, (b) D(i - 1, j) = D(i, j) = 
D(i+l,j)>l. 

This means that such redundant squares are al- 
ways signaled by a consecutive sequence of pixels 
(either horizontally or vertically) with constant D 
value. Only local maxima of I~ need be considered 
for elimination, so we assume all of the pixels are 
local maxima except possibly the ends. Let the D 
value be k and let n be the maximum number of 
consecutive pixels with constant D value. 

n pixels 

m . . . . . . . . . . . . . . . . . . . . . Ikl 

How many of the squares are redundant? Two 
squares cover everything in between provided that 
at most 2k - 2 centers lie in between. Thus, to deter- 
mine which squares, to include, start at one end, 

FIGURE 6. Examples to Show That There is No Fast Way of 
Determining Whether a Particular Maximal Square is Covered by 

Three or Four Maximal Squares 

include the end square, delete the 2k - 2 square, 
include the next, delete the next 2k - 2, include the 
next, and so on until the end is reached. Always 
include the other end. If the endpoints are not local 
maxima, then they are “included” in whatever large 
square contains them. 

Figure 7 shows an example with k = 2 and n = 8. 

Note that both endpoints are not local maxima. If 
the algorithm starts at the left, and the circled cen- 
ters are kept, then two squares are deleted for each 
one kept because 2k - 2 equals 2. The endpoints are 
covered by the circled 3s. Obviously the squares that 
are kept may depend on whether the algorithm 
starts at the left or right end but the number of 
squares deleted may be the same. 

Assuming that the algorithm always goes left to 
right (and top to bottom), the results of the algorithm 
on one sequence are fixed. The only remaining 
question is what happens when a horizontal and a 
vertical sequence intersect. Does it matter which 
sequence is processed first? The answer is yes. Pro- 
cessing in the wrong order may cause retention of 
one more square than necessary. In Figure 8, if the 
row is processed first, then the six circled centers 
are kept. If the column is processed first, then the 
central square is deleted before the row is processed. 
This breaks the row into two separate pieces which 
are processed separately. This results in the marked 
square being deleted. 

This phenomenon has nothing to do with which 
sequence is longer. It can occur only when the cen- 
tral square would be deleted in both directions. This 
problem has a simple solution. Process all horizontal 
sequences first. Whenever a square is about to be 
deleted check to see if the center of the square is 
part of a vertical sequence. If it is, then do not delete 
the sequence and start the delete count over (i.e., 
delete to the next 2k - 2 squares). The vertical pass 
is unaffected. 
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The question of even order maximal squares re- 
mains. As shown in Theorem 2, an even order maxi- 
mal square is characterized as centered on a con- 
stant 2 square. As for the odd order maximal 
squares, there are a variety of ways an even order 
maximal square might be redundant. We will only 
consider two of them. 

THEOREM 3 

Lef T be a constant 2-square. The maximal square Q 
centered on T is redundant if either (1) or (2) holds: 
(1) None of the four pixels in T are local maxima of D. 
(2) There exist two other constant a-squares R and S 
such that R # T # S and T C_ R U S. 

PROOF 

If a pixel P is not a local maxima of D, then the 
square centerd on P is contained in some larger odd 
order square. If all four of the pixels in Tare not 
local maxima, then Q can be covered with four 
larger odd order squares. Hence Q is redundant. 

The only way 2 can hold is if there is a 2 x 8 
rectangle of constant D values with T being the cen- 
tral square. Then Q is covered by the squares cen- 
tered on R and S, so Q is redundant. 

Theorems 2 and 3 together indicate that we need 
only concern ourselves with pixels that are local 
maxima of D. Redundant squares in sequences of 
equal a-squares can be handled in the same way as 
for odd order sequences. 

The algorithms are given in the Appendix. 
Facf 2: The TID of an image is a subset of the MAT 

of the image. In particular, most of the redundant 
maximal squares (all the maximal squares that are 
covered by two others) can be computed in time 
which is linear in the number of pixels. Proof of this 
fact is given in [32]. 

FIGURE 7. An Example with k = 2 and n = 8 

FIGURE 8. An Example of Row Processing 

4. STORING AND SEARCHING A TID 
Each maximal square in a TID is characterized by 
three numbers (two to specify a location and one to 
specify size). Using the center of the square for loca- 
tion does not work well for even order squares, so 
we will use the coordinates of the upper left corner 
of the square and its size as the three parameters. 
Thus each square in a TID has the representation 
(i, j, s). 

Unfortunately, unlike linear quadtrees, such tri- 
ples of numbers do not have a natural linear order- 
ing. The best thing that can be done is to choose 
some priority order for the coordinates and then 
order them lexicographically. We will assume that 
i and j are sorted in increasing order but for reasons 
which will become clear shortly, we will assume 
that s is sorted in decreasing order. By symmetry we 
may assume that i is ordered before j. Thus the 
question is which of the three possible ordering 
plans: (a) (i, j, s), (b) (i, s, j), or (c) (s, i, j), is the best. 
There is no definitive answer to this question. It 
depends on whether storage or access is of primary 
concern. 

Storage is conserved when the primary subdivi- 
sions are large since the value of the primary vari- 
able will only be stored once. On this grounds, Plan 
(a) can be eliminated since there can be at most one 
maximal square with corner (i, j) and so no savings 
can be obtained at the second division compared to 
Plan (b) or Plan (c). Plan (b) may be better since 
there may be several squares of the same size with 
the same i value. 

For storage purposes the competition is between 
Plan (b) and Plan (c). For most images Plan (c) is 
superior since there will be many small squares 
around and so the subsets of size 1, 2, and 3 will be 
quite large allowing for a much greater space savings 
than can be obtained by Plan (b). 

For searching it is important to shorten the length 
of the search whenever possible by skipping to the 
beginning of the next primary or secondary classifi- 
cation. The following discussion assumes that the 
purpose of the search is to decide whether pixe1 
(k, m) is black, that is, whether (k, m) is contained 
in some square in the TID. 

On this basis Plan (c) can be ruled out since it is 
impossible to determine anything given just s. On 
the other hand with Plan (a) or Plan (b) we can stop 
the search as soon as k < i. The question of whether 
Plan (a) or Plan (b) allows more skipping of squares 
remains. For fixed i, Plan (a) skips all squares with 
j > m. Plan (b) skips all squares with s < k - i. 
Which set is larger? This obviously depends on the 
image. For the purpose of analysis we make the fol- 
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lowing assumptions: (1) Every value of j is equally 
likely. (2) All possible valu’es of s (i.e., 1 to number-i 
+ 1) are equally likely. 

Assumption 1 is true only for “random” squares 
only if they have size 1. For larger squares the dis- 
tribution is skewed, favoring smaller values of j. 
Assumption 2 is even less reasonable. In most 
images there will be many more small squares 
than large squares. 

For fixed i, Plan (a) skips all squares (1, j, s) with 
1 = i and j > nt. By Assumption 1 this will be about 
half the squares with 1 = i for a random (k, m). 
Plan (b) will skip all squares (1, j, s) with 1 = i and 
1 + s < k. By Assumption 2 this will be about half 
the squares with 1 = i. Thus by analysis the two 
plans are about the same. However, both biases in 
the assumption favor Plan (b), particularly the sec- 
ond one. Thus Plan (b) is better. 

Unfortunately, only some constant fraction of the 
squares can be skipped and so the search time is still 
linear in the number of squares. 

4.1 Translation, IRotation, and Union of TIDs 
A TID is made up of maximal squares. Each square 
is represented as a triple (i, j, s), where (i, j) is the 
northwest corner of the square and s is the length of 
the side. Thus a TID is just a list of such tuples. 
Translations and rotations applied to the image are 
just simple functions of these tuples. To translate a 
triple (i, j, s) by I units right and 1 units up yields 

T,(i, j, s) = (i i- I, j + 1, s). 

Rotation by a/2 is only slightly more complicated 
due to the fact that the NW corner of the square 
changes upon rota.tion. The lr/2 rotation around the 
origin is 

R(i, j, s) = (-j, i + s, s) 

Rotations around other coordinates can be obtained 
by composing R with the appropriate translations. 

Union of TIDs is straightforward-simply take the 
union of the two lists. The resulting list will be the 
TID of the combined images whenever the images 
do not overlap. Two problems can occur when the 
two images overlap. A square in one TID may be 
contained in a square from tbe other TID and thus 
be redundant, or several squares from both TIDs 
could be combinecl to form a larger square. The first 
problem can be ea,sily checked for. The second prob- 
lem is harder-there appears to be no better solution 
for reforming the array of pixels and recomputing 
the TID. On the other hand the combined lists are 
unlikely to contain many such larger squares (if any) 
and thus should be an adequate representation of 
tile image. 

We analyze the union of two regions arising (or 
suitably projected) from the superpositioning of the 
images using TID as described in our other paper 
[33]. The reader is referred to [33] for the basic idea 
behind manipulation algorithms on TID and its rela- 
tion to other representations. 

5. THEORETICAL AND COMPUTATIONAL 
COMPARISONS OF TIDs WITH OTHER 
DATA STRUCTURES 
The purpose of this section is to compare the storage 
requirements and preprocessing costs of TIDs with 
those of quadtrees, linear quadtrees, forests of quad- 
trees, and QMATs. 

(4 

011111 011111 
122211 112111 
022300 012100 
011310 011110 
000210 000110 
000100 000100 

(b) (c) 

x00011 
101011 
x010xx 
x0001x 
XXXllX 
XXXlXX 

(4 

X00032 
101022 
x010xx 
X0032X 
xxx22x 
XXXlXX 

(4 

011111 
n cl 111111 
011100 
0 

a 
0 

000110 
ooopJoo 

(f 1 

FIGURE 9. Sample Region and Its Corresponding TID 
Representation 
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It is well known that the storage requirements 
for these modified quadtree data structures are 
very shift sensitive. A rigorous analysis is given by 
Iyengar and Lewis [14]. For the present discussion, 
consider the image in Figure 9a. This region must be 
embedded in a square of size 23 x 23. There are nine 
possible locations (shown in Figure lOa-i) for the 
embedded region within the square. Maximal square 
characterization of Figure 9a using TID structure is 
described in Table I. Table II summarizes the best, 
worst, and average performance for the various 
locations. 

On the average, TID provided a 56 percent space 
reduction over linear quadtrees and an 86 per- 
cent reduction when compared to other data 
structures. Reductions may not always be this 
spectacular. 

THEOREM 4 
The number of nodes required to store a TlD does not 
exceed the minimum tzumber required by optimally 
locafed quadtrees, linear quadtrees, forests of quadtrees, 
or Qh4ATs. 

PROOF 
The number of black nodes are identical for quad- 
trees, linear quadtrees, and forests of quadtrees. 
Each such black node is a subset of a maximal block. 
This also holds for QMATs, since there are restric- 
tions on the merging allowable under QMATs. 
Therefore, at worst, there is one-to-one correspond- 
ence between black nodes and TID nodes. (Notice 
that quadtrees, forests of quadtrees, and QMATs 
must also store white nodes.) 

This space savings is not without costs. Scott and 
Iyengar [ZO] note that the time required to construct 
a TID is O(rc log(min(r, c))), where r and c are the 
number of rows and columns in the embedded 
region. 

Suppose 2’-’ < max(r, c) I 2’ and let s = 2’. The 
time complexity to construct a TID is at worst 
O(s’log s), and may be much less since the embed- 
ded region may not fill the s x s square. By compari- 

TABLE II. Maximal Square Characterization of Figure 9a 
Using TID Structure 

ROW Column Size 

1 2 3 
1 5 2 
2 1 1 
2 2 3 
4 4 2 
6 4 1 

(4 (b) (cl 

(4 (4 

(9) (h) 0) 

FIGURE 10. Possible Placements of the Sample Region of 
Figure 9 Inside a Square of Size 23 x 23 

son, the time complexity to construct a modified 
quadtree is O(s*). This slight reduction in time may 
be more than offset by the complexity of the result- 
ing tree if a poor location is chosen. 

Is TID still advantageous if a search is made for a 
good location? The costs associated with such a 
search must be considered. Grosky and Jain [lo] de- 
fine the normalized quadtree of an image as its 
quadtree constructed for the location that results in 
the minimum number of nodes. If the number of 
nodes are minimized at more than one location, 
Grosky and Jain [lo] use the northern- and western- 
most of these locations. The extension of their defi- 
nition to normalize linear quadtrees, forests, and 
QMATs is obvious, 

Grosky and Jain notice that the normalized quad- 
tree may require a 2k+’ X 2k+’ square. We now ex- 
tend their result to other data structures. 

THEOREM 5 
lf an image can be embedded in a 2k X 2k square, the 
maximum square needed to normalize its data structure 
is: 2k+’ x 2k+’ for quadtrees, linear quadtrees, and 
Qh4AT; and 2’+2 X 2k+2 for forests of quadtrees. 
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FIGURE 11. An Example Using al 2k” x 2k” Figure For Optimal 
Positioning 

PROOF 
Figure 11 is an example where it is necessary to use 
a 2’+’ X 2“+’ square for optimal positioning. If an 
image requires a 2k+2 x zk+’ square, the optimal po- 
sition cannot be in a principal quadrant (i.e., quad- 
rants from the root). Figure 12a-c details the possible 
cases, where A, B, C, and D represent subimages of 
arbitrary complexity. Each of these cases is worse 
for the quadtree or QMAT. and no better for a lin- 
ear quadtree than the placement of Figure 12d in 
a 2 ‘+’ X 2 k+’ square. 

Figure 12c, however, may represent a better place- 
ment for the forests of quadtrees data structure if 
two of the subimages are good black. This will be 
the case if both remaining subimages are white or if 
at least one of them has a good white gray root. q 

Fact 2: Theorem 5 defines the size of the area that 
must be searched. TIDs on the other hand need only 
the r x c enclosing rectangle (r x c 5 zk x 2”) since 
no location search is necessary. 

For the example in Figure lOa, the optimal loca- 
tions for most of the modified quadtrees occur 
within the 23 x 2” square of Figure lla-i. (See Table 
III.) The exception is the forests of quadtrees, which 
is normalized by a horizontal translation at 3 pixels. 
The performance of normalized data structures is 
compared in Table IV. 

To normalize th.e image representation, each of 
the 4” (=s’) possible locations (4k+2 for forests of 
quadtrees) must be examined to determine its suita- 
bility. The cost of constructing any of these modified 
quadtrees is O(?). If the suitability of any location is 
assessed by actually constructing the data structure, 
then the normalization cost is O(s4). 

Some reduction is possible for quadtrees and 
linear quadtrees. Grosky and Jain [lo] give an 
O(s’log s) algorithm to find the optimal location. 
This algorithm may be adopted to linear quadtrees 
with only a slight increase in the proportionality 
constant. The algorithm is based on a process of 
merging nodes from the bottom up while keeping 
track of the potential number of leaves. It does not 

(4 (4 (d) 

FIGURE 12. Subimages of Arbitrary Complexity 

extend to forests of quadtrees or QMATs. For in- 
stance, if a forest of good white gray nodes is merged 
with at least two good black nodes, all of the de- 
scendant gray nodes and white leaves would need to 
be counted. whereas most of them would otherwise 
be discarded. 

We can define the cost of preprocessing as the 
total number of operations required to construct the 
data structure. If translation invariance is achieved 
by searching for the optimal placement, then the 
cost of the search much be considered in the prepro- 
cessing costs. Table V compares the total preprocess- 
ing costs for these data structures. 

The Grosky and Jain algorithm finds the optimal 

TABLE Ill. Number of Nodes Required to Represent Figure lOa-i 

Best 33 12 26 33 6 
Worst 57 18 58 57 6 
Average case 44 13 42 44 6 

TABLE IV. Number of Nodes Required for Normalized Data 
Structures 

Normalized quadtree 33 
Normalized linear quadtree 12 
Normalized forest of quadtrees 24 
Normalized QMAT 33 
TID 6 

TABLE V. Preprocessing Costs for Normalized Data Structures 

TID 
Normalized quadtfee 
Normalized linear quadtree 
Normalized forest of quadtrees 
Normalized QMAT 
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location without actually constructing the data 
structure. Once the optimal location is found, the 
data structure must still be constructed, although 
the total time required is dominated by the search 
time. 

As was noted previously, search time to normalize 
a quadtree is less than that for a linear quadtree. TID 
requires no normalizing search, so the only cost is 
the actual construction cost. Therefore, we expect 
the TID to be slightly more cost efficient and storage 
efficient than the other structures. 

APPENDIX 
6. CONCLUDING REMARKS 

(1) The greatest advantage of TIDs over other 
methods of storing images is that TIDs are transla- 
tion invariant. This is particularly important if sev- 
eral images are combined into one composite. An- 
other interesting feature of TIDs is the fact that the 
image itself need not be a square of Z-power order. A 
square of any order or even any rectangular image 
can be represented without having to embed it in a 
square of Z-power order. 

procedure deletesquare (a, numrow, 
numcol) 

(* delete unneeded local maxima and *) 
(* mark essential constant 2-squares *) 
begin 

deleterows (a, numrow, numcol); 
deletecols (a, numrow, numcol); 

end; 

For example, if a black square of order (Zk + 1) X 

(Zk + 1) needs to be stored, the TID would just be the 
black square. To store it as a quadtree requires that 
it be embedded in a z~+’ x zk+’ square. The best 
embedding would require zk+’ + 2 black leaves. 

procedure deleterows (a, numrow, 
numcol); 

(2) The second advantage of a TID is that the 
number of black squares stored may be significantly 
less than the number in the corresponding quadtree. 
This is important in such tasks as drawing the image 
where the time required will be proportional to the 
number of squares. For example, Tamminen [35] 
quotes 5168 black leaves for the quadtree encoding 
the circle inscribed in a 21° x 21° square. The corre- 
sponding TID has 601 black squares, an 83 percent 
reduction. 

(* delete unneeded local maxima by 
scanning rows *) 

(* count counts the number of 
consecutive *) , 

(* deleted squares *) 
begin 

for i := 2 to numrow-1 do 
begin 

d. .= 0; 
for k := 1 to numcol-1 do 
if a[i,k].horiz () 1 or 

(a[i-l,k].dist = a[i,k].dist 
and 

Scott and Iyengar [32] note that the time required 
to construct a TID is O(rc log(min(r, c))), where r and 
c are the number of rows and columns in the em- 
bedded region. Suppose z’-’ c max(r, c) 5 2’ and let 
s = 2. The time complexity to construct a modified 
quadtree is O(s’). This slight reduction in time may 
be more than offset by the complexity of the result- 
ing tree if a poor location is chosen. The time com- 
plexity to construct a TID is at worst O(s’ log s), and 
may be much less, since the embedded region may 
not fill the s x s square. By comparison, the time 
complexity to construct a modified quadtree is O(?). 
This slight reduction in time may be more than off- 
set by the complexity of the resulting tree if a poor 
location is chosen. (TIDSOFT-A software to manip- 
ulate different image settings implemented on a 
VAX-11/780 is available on request.) 

a[i+l,k].dist = a[i,k]:dist) 
then 

begin 
d := a[i,k].dist; 
count := 0; 
maxcount := 2 * (d-l); 

end 
else 
if a[i,k].dist () d then 
begin 

twosquare(i,k,no); 
if a[i,k].horiz (> 3 then 
twosquare(i-1,k); 
d := a[i,k].dist; 
count := 0; 
maxcount := 2 * (d-l) 

end 
else 

In principle the TID for a 2” x 2” image requires if count = maxcount then 

3n bits for each maximal square. In practice this can 
be reduced by techniques described in Section 3.4. 
But the savings is never more than a factor of 3 (the 
last parameter at least must always be stored for 
every square). Thus the circle example from Section 
4 could not be stored in less than 6010 bits. (In fact, 
this particular example would take about 15000 
bits since there are only four squares of each size, 
which is not much less than the 17,805 quoted by 
Tamminen [35].) 
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begin 
twosquare(i,k); 
if a[i,k].horiz () 3 then 

twosquare(i-1,k); 
count := 0; 

end 
else 
if a[i,k].dist = d then 
begin 

co;nt := count + 1; 
ali,k].horiz := 0; 

end 
end 

end; 

procedure deletecols (a, numrow, 
numcol); 

(* delete unneeded local maxima by 
scanning cols *) 

begin 
for i :=' 2: to numcol-1 do 
begin 

d := 0; 
for k := 1 to numrow-l do 
if a[i,kJ.horiz () 0 then 
begin 

d := a[i,k].dist; 
count := 0; 
maxcount := .2 * (d-l ) ; 

end 
else 
if a(i,kJ.dist () d the 
begin 

twosquare(i,k,no); 
if a[i,k].horiz () 3 

twosquare(i,k-1,no) 

n 

then 
I 
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