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Abstract—With the rapid development of next generation sequencing technology, the amount of biological sequence data of the

cancer genome increases exponentially, which calls for efficient and effective algorithms that may identify patterns hidden underneath

the raw data that may distinguish cancer Achilles’ heels. From a signal processing point of view, biological units of information,

including DNA and protein sequences, have been viewed as one-dimensional signals. Therefore, researchers have been applying

signal processing techniques to mine the potentially significant patterns within these sequences. More specifically, in recent years,

wavelet transforms have become an important mathematical analysis tool, with a wide and ever increasing range of applications. The

versatility of wavelet analytic techniques has forged new interdisciplinary bounds by offering common solutions to apparently diverse

problems and providing a new unifying perspective on problems of cancer genome research. In this paper, we provide a survey of how

wavelet analysis has been applied to cancer bioinformatics questions. Specifically, we discuss several approaches of representing the

biological sequence data numerically and methods of using wavelet analysis on the numerical sequences.

Index Terms—Cancer genome, wavelet analysis, driver mutation, passenger mutation

Ç

1 INTRODUCTION

CANCER represents one of the greatest medical causes of
mortality. It is responsible for one in eight deaths

worldwide. Critical strides in developing systemic and local
therapies for cancer have been made utilizing the increasing
knowledge of the human genome and the relevant genetic
changes found in tumors. A thorough understanding of
cancer genome is a requirement for better treatment but poses
a fundamental challenge due to the depth and sheer volume
of data collected that must be evaluated and interpreted.

The early work which identified the role of the genome in
the development of cancer dates back to the late 19th and
early 20th century. David von Hansemann and Theodor
Boveri examined dividing cancer cells under a microscope
and observed the presence of strange chromosomal aberra-
tions [1]. These findings suggested that cancers could be
related to abnormalities in chromosomes, only found to be
the relevant hereditary material half a century later.
Following the discovery of DNA as the molecular substrate
of inheritance, significant research has ensued to understand
the mechanisms of cancer on a molecular level and to show

that specific and recurrent genomic abnormalities are
associated with cancers. For example, as early as 1981,
Reddy et al. [2] found that the single base G > T substitution
of the HRAS gene leads to the activation of that specific
oncogene function in T24 human bladder carcinoma cells.

Currently, a generalizable concept of cancer states that
malignancies result from accumulated mutations in genes
that increase the “fitness” of a transformed cell over the
cells surrounding it. The transformed cells sometimes
acquire a set of sufficiently advantageous mutations that
allow for unlimited proliferation and these cells, thus,
become transformed, leading to malignancy. In addition,
some cancer cells acquire the capability to spread to distant
sites, presumably through the development of mutations,
leading to metastases and increased patient mortality.

Mutations often occur in genes encoding proteins, the
natural building blocks of all the components of the human
body. Genes are determined by four subunits of DNA that
are oriented in unique sequences, as are the resulting
proteins. Current efforts to understand how mutations in
DNA lead to the development of cancers have been partly
limited by the general inability to sift through the vast
quantities of data generated by cancer genome sequencing
projects and the studies of individual investigators. As a
consequence, there is a need for tools to parse through this
large sum of data to present relevant gene changes that may
be critical for either understanding how cancers develop
or/and determining how they could ultimately be treated.
From signal processing point of view, biological sequences,
consisting of DNA and protein encoded data, could be
viewed as one-dimensional signals. As a result, signal
processing approaches have been applied to perform
analysis on these types of data. The characteristics of
most real-world signals are that they vary in both time and
frequency domains. The Fourier transform (FT) is one way
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to find the frequency content and measure signal composi-
tion in frequency. However, the classic Fourier transform
does not give access to the signals’ spectral variations
during this time interval. In other words, the time and
frequency information cannot be seen at the same time, and
thus, a time-frequency representation of the signal is
needed. With the help of better signal processing techniques
and methods to represent genomic data, there may be ways
to identify the critical changes within cancer genomes that
contribute to progression, therapeutic resistance, desire for
metastases, and so on.

Wavelet analysis, unlike traditional FT, is able to
decompose time series into time-frequency space and has,
thus, been getting more attention as a potential tool to study
cancer genomic data. In this paper, we thoroughly survey
the existing work and efforts that apply wavelet analysis in
cancer genome bioinformatics. Rather than delving into
details immediately, we first present an overview of a
paradigm of applying wavelet transform techniques in
biological sequences analysis relevant to cancer in Fig. 1 to
provide the readers with a broad overview. Generally
speaking, there are three main steps in this framework.
First, to apply wavelet analysis, the original data need to be
converted to a one dimensional (1D) signal. This step is
critical to ensure the success of the analysis for the protein
and DNA sequence data because a proper representation of
the biological sequences retains their important character-
istics. In contrast, some biological assays generate numerical
values naturally, such as the DNA expression values in
microarray analysis. In this case, the numerical representa-
tion step becomes trivial. Second, different wavelet trans-
form techniques are applied to converted signals so a set of
wavelet coefficients are obtained. An important research
question in this step is: Which wavelet transform is the best
to use? This is an open question and requires a case-by-case
analysis. Third, the coefficients gained from the wavelet
analysis step serve as features that are utilized further in
many applications, among which are cancer driver muta-
tion classification, cancer related protein structure analysis,
and cancer diagnosis.

Following this guideline, we give a detailed review of the
state-of-the-art techniques in the following sections. Since

the numerical representation is an important and nontrivial
task for DNA and protein sequence analysis, different
approaches are reviewed in Section 2. In Section 3, current
state-of-the-art wavelet transform techniques are intro-
duced to provide background to readers. In addition,
applications utilizing wavelet techniques in general biolo-
gical sequence analysis are reviewed to give readers further
background and context and a more intuitive understand-
ing. Based on Section 3, in Section 4 we summarize current
progress in applying wavelet analysis to an important
research topic in the bioinformatics domain, namely cancer
genome analysis. In Section 5, we demonstrate an initial
study applying wavelet analysis in distinguishing muta-
tions that are at the heart of driving cancer development
and progression, also known as driver mutations, and
segregate these driver mutations from mutations that may
be secondary to the actual tumor transformation process,
i.e., passenger mutations. Experimental results are given
and some observed insights are discussed. Section 6
concludes this review and proposes some future directions
that deserve further exploration.

2 NUMERICAL REPRESENTATION OF BIOLOGICAL

SEQUENCES

To process biological sequences as signals, the biological
sequences need to be encoded in a suitable format that can
be used by data analysis and data mining tools. This is
usually achieved by assigning a numeral to each symbol
that forms the biological sequence. There are two funda-
mental kinds of biological sequences relevant to cancer
genomic/proteomic evaluation, namely DNA nucleotide
sequences and protein amino acid sequences.

2.1 Numerical Representation of the DNA
Sequences

The DNA sequences consist of four nucleotides—A, T , C,
and G. There are various approaches to represent the DNA
sequences as numerical sequences, which are introduced
as follows:

2.1.1 Voss Mapping and Z-Curve

Voss mapping [3] is the most widely used approach for
converting the DNA sequence to a sequence of numerals. It
represents one DNA sequence using four binary indicator
sequences for each nucleotide (A, T , C, and G). For example,
Fig. 2 shows the DNA sequence segment of human Homo
Sapiens Hexosaminidase A (HEXA) gene. One original
sequence is converted to four binary sequences correspond-
ing to four nucleotides, where “1” indicates the nucleotide
appears in the sequence and “0” otherwise. In other words,
each nucleotide is represented by a four-dimensional vector
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Fig. 1. A sample procedure of applying wavelet transform in cancer
genome analysis.

Fig. 2. Voss mapping.



of three “0”s and one “1.” The advantages of this approach
are its simplicity and its efficiency in spectral analysis of
DNA sequences. The problem with this representation is that
it does not capture the relationship between the four
sequences. This representation has been used in predicting
the coding regions (exons) in genes. Genes in eukaryotic cells
have two subregions, exons and introns. The exons contain
DNA sequences that will be transcribed and translated to
protein sequences. Exons exhibit a period-3 property
because of the codon structure involved in the translation
of base sequences into amino acids. Based on this observa-
tion, the Fourier transform on the Voss mapping sequences
was used to efficiently classify exons identified by a peak at
frequency 1/3 and introns identified by no peaks [4].

Abo-Zahhad et al. [5] illustrated the efficiency of
applying short time discrete fourier transform (STDFT)
and Voss Mapping to identify coding regions of the gene
F56F11.5 of C. elegans. An extended version based on Voss
Mapping is the Z-curve method [6]. The Z-curve is a three-
dimensional curve that uniquely represents any given DNA
sequence. The Z-curve is constructed from a set of 3d nodes,
Pi. The number of nodes equals the size of a DNA sequence.
For a DNA sequence of length T , i ¼ 1; . . . ; T and
Pi ¼ ðxi; yi; ziÞ, where

xi ¼ ðAi þGiÞ � ðCi þ TiÞ; ð1Þ

yi ¼ ðAi þ CiÞ � ðGi þ TiÞ; ð2Þ

zi ¼ ðAi þ TiÞ � ðCi þGiÞ: ð3Þ

Here, Ai, Gi, Ci, and Ti are the cumulative occurrences of A,
G, C, and T from the start of the sequence to the ith base. It
is worth noting that the DNA sequence can be recon-
structed from the representative Z-curve. It is one of the
tools used to visualize genomes [7] and it is also used for
gene identification [8].

2.1.2 Tetrahedron

The tetrahedron representation [9] reduces the number of
indicator sequences from four to three in a manner
symmetric to all four components. In this method, each of
the four DNA nucleotides is assigned to a vertex of a regular
tetrahedron in space. Each DNA nucleotide can be repre-
sented by a three-dimensional (R, G, B) vector as follows:

A ¼ ð0; 0; 1Þ;C ¼ �
ffiffiffi
2
p

3
;

ffiffiffi
6
p

3
;� 1

3

� �
;

G ¼ �
ffiffiffi
2
p

3
;�

ffiffiffi
6
p

3
;� 1

3

� �
;T ¼ 2

ffiffiffi
2
p

3
; 0;� 1

3

� �
:

ð4Þ

It is noticed that the representation strategy is similar to
the quaternion representation used in [10] but is from a
different perspective.

2.1.3 Complex Number Representation

One disadvantage of using the Voss mapping is that the
relative weight of absence is not detected. Therefore,
Cattani [11] represented the DNA sequence as the complex
number. Assume the numbers a, t, c, and g are assigned to
the nucleotides A, T , C, and G, respectively. The complex
conjugate pairs t ¼ a� and g ¼ c� are chosen to represent the

pairing structures of A and T , C, and G, respectively. One of
the examples is shown in

A ¼ 1þ j; T ¼ 1� j; C ¼ �1� j; G ¼ �1þ j: ð5Þ

In this case, all palindromes yield conjugate and
symmetric numerical sequences that have interesting
mathematical properties, including the generalized linear
phase. Abo-Zahhad et al. [5] demonstrated that the pairs of
bases A-T and G-C are expressed by the fact that their
representations are complex conjugates, while purines and
pyrimidines have equal imaginary parts and real parts of
opposite signs by using a slightly different complex
representation as shown in (6) resulting in the expression
of the two complementary strands of a DNA molecule by
digital signals with the sum of zero:

A ¼ �1þ j; T ¼ 1� j; C ¼ �1� j; G ¼ 1þ j: ð6Þ

Bergen and Antoniou [12] proposed a method based on a
complex representation, parametric windows function, and
STDFT to maximize SNR to identify the coding regions
for the gene F56F11.4 (as given in (7)). Anastassiou [13] used
the scheme in (8), and the sequence was then represented as
the random walk on the DNA sequence:

A ¼ 0:10þ 0:12j; T ¼ �0:30� 0:20j;

C ¼ 0; G ¼ 0:45� 0:19j;
ð7Þ

A ¼ 1; T ¼ j; C ¼ �j; G ¼ �1: ð8Þ

2.1.4 Integer Representation

In [14], the DNA nucleotides were mapped to numerals
f0; 1; 2; 3g using the scheme that T ¼ 0, C ¼ 1, A ¼ 2, and
G ¼ 3. However, this method implies that a structure on the
nucleotides, such as purine (A, G) > pyrimidine (C, T), will
introduce bias in the DNA sequence analysis. Also, Zhou
and Yan [15] used an integer representation in their
proposed approach to analyze short tandem repeats in the
DNA sequences.

2.1.5 Physicochemical Property-Based Representation

This kind of representation takes into account of the
biochemical properties of the DNA biomolecules. Such a
representation carries the characters of the chemicals
themselves and is relatively robust and biologically mean-
ingful. In [16], the electron-ion interaction potential (EIIP)
indicator was utilized to map the four DNA nucleotides.
EIIP was defined as the average energy of delocalized
electrons of the nucleotide. By assigning the EIIP values to
the nucleotides, a numerical sequence was obtained to
represent the distribution of the free electrons’ energies
along the DNA sequence. This approach has been success-
fully used to identify coding regions.

In summary, there are many numerical representation
techniques proposed to map DNA sequences. Each techni-
que has advantages and disadvantages. Voss Mapping is
the most widely used approach. It indicates the frequencies
of the bases but it does not capture any mathematical
relation between them. It is efficient for spectral analysis of
DNA sequences and identification of coding and noncoding
regions in DNA sequences. Z-Curve offers numerical and

1444 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013



graphical representations but it is not suitable for long
sequences. Tetrahedron representation reduces the number
of indicator sequences from four to three and results in
DNA color spectogram that can be used to locate repeating
DNA sections visually and to identify CG rich regions (CpG
islands). Complex representation projects the tetrahedron
components on two planes to reduce the dimensionality to
two and it can capture the relations between the four bases
and the mathematical properties. Therefore, it is suitable for
the detection of exon regions and gene prediction. Integer
representation is simple and computationally efficient. It
may be capable of mapping some of the nucleotide bases’
relations into mathematical properties, on the expense of
introducing additional mathematical properties that are not
present in the DNA sequence. It is not as efficient as
other techniques when applied to gene prediction. Physi-
cochemical property-based representation is a robust and
biologically meaningful method to represent the DNA
sequence and has been successfully used in detecting
coding regions. Physicochemical property-based represen-
tation is a robust and biologically meaningful method to
represent the DNA sequence and has been successfully
used in detecting coding regions.

2.2 Numerical Representation of the Protein
Sequences

The protein sequence is more complicated than the DNA
sequence since there are 20 amino acids. The left two
columns of Table 1 show the amino acids with their symbols.

2.2.1 Orthonormal Representation

The most frequently used encoding strategy is the ortho-
normal strategy [17]. In this strategy, the 20 amino acids are
represented by the 20 orthogonal unit vectors in a 20-
dimensional space. Specifically, assume each letter lið1 � i �
20Þ of the amino acid alphabetA ¼ l1; l2; . . . ; l20 ¼ A;R; . . . ; V
is replaced by an orthonormal vector as shown in

li ¼ ð�i;1; �i;2; . . . ; �i;j; . . . �i;20Þ; ð9Þ

where i, j 2 1; . . . ; 20 and �i;j is the Kronecker delta symbol.
This representation is relatively simple but it has several
drawbacks. First, the dimension of the feature space is
20 times the sequence length. Second, the distance between
two amino acids is always the same and information
regarding the similarity of two amino acids is lost. To
overcome this disadvantage, researchers group similar
amino acids together. In [18], a solution of grouping the
amino acids into six groups was proposed (as shown in
(10)). Correspondingly, the encoding strategy is changed as
in (11), where N is the number of groups. This model is still
relatively coarse because it treats all the amino acids in the
same group in the same way:

G ¼ ðfH;R;Kg; fD;E;N;Qg; fCg;
fS; T ; P ; A;Gg; fM; I; L; V g; fF; Y ;WgÞ

ð10Þ

l 2 Gi ¼ ð�i;1; �i;2; . . . ; �i;NÞ: ð11Þ

2.2.2 Physicochemical Property Representation

This type of approaches accounts for most of the repre-
sentation methods. Many previous studies utilized the
physicochemical property of the amino acid to represent
each amino acid numerically. The amino acid indices
database [19] contains 544 different kinds of properties of
each amino acid. These different indices cover a broad
range of amino acid properties including hydrophobicity,
residue volume, steric parameter, and so on. In addition, to
apply machine learning techniques, some researchers
utilized the pseudo amino acid composition (PAAC) [20],
[21] as the features to represent each protein sequence. To
compute the PAAC features, each amino acid was repre-
sented using hydrophobicity, hydrophilicity, mass, PK1,
PK2, and PI. Based on these representations, the high-level
sequence information was coded as the feature. The
advantage of using the physico-chemical property to
represent the amino acid is that the number has some
physical meanings. The authors of [22] used the hydro-
pathy, flexibility, electronic charge concentration, isotropic
surface area, and solvent accessibility area to represent each
amino acid and used the wavelet analysis to perform the
decoy discrimination. In [23], an EIIP scheme was proposed
to represent each amino acid as electron-ion interaction
potential. This representation has the similar idea to the one
introduced in Section 2.1.5 but for amino acids. However,
the property used often depends on the specific application
and requires a case-by-case analysis.

In addition to the single-value representation, there are
some studies that represent each amino acid as vectors or
complex numbers. Swanson [24] represented each amino
acid as a two-dimensional vector. The two dimensions of
the plane are the size and hydrophobicity of amino acids.
This showed that the vector representation could bring four
advantages in protein sequence analysis. First, the “simi-
larity” can be explicitly modeled. Second, some new
mathematical properties can be attributed to the sequence.
For example, the numerical value for the conservativeness
of a site could be defined. Third, the protein sequence can
be pictured, which helps visualize the sequence informa-
tion. Fourth, it helps the detection of homology of different
proteins, and demonstrated additional applications of the
vector representation of amino acid.
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Based on similar ideas, some researchers adopted similar
strategies to represent each amino acid using the complex
number representation with the real part and imaginary
part representing different properties of the amino acid. For
example, a complex number representation approach was
proposed in [25], where the hydrophobicity is the real part
and the residue volume is the imaginary part. Such a
representation is shown in Table 1.

2.2.3 Two-Dimensional and Three-Dimensional

Representations of Amino Acids

In recent years, the geometric representation of the protein
sequence has become increasingly popular in sequence
comparison. The authors of [26] represented the proteins
based on the concepts of virtual genetic code and a four-
color map, which help the researchers visualize the
similarity/dissimilarity between proteins. In their study,
they also developed a novel protein descriptor, which is a
10-dimensional vector derived by the structure matrix
associated with the map. There are other approaches that
represent each amino acid using an N-dimensional vector
and represent the overall sequence as the curve connecting
the vertices, which are the summation of the amino acid
vectors, and so on. In [27], each amino acid was represented
using a three-dimensional vector. The three dimensions
correspond to three physicochemical properties, namely
Hydrophilicity, pK1, and pI. Specifically, given a protein
sequence S ¼ s1s2 . . . sn, the 3D space point Piðxi; yi; ziÞ, 1 �
i � n is computed using

xi ¼
Xi
k¼1

S1
k ; yi ¼

Xi
k¼1

S2
k ; zi ¼

Xi
k¼1

S3
k: ð12Þ

Here, Sjkðj ¼ 1; 2; 3Þ represents the jth component of vector
corresponding to sk. p0 is set to ð0; 0; 0Þ. When i runs from 1
to n, Pi becomes the vertices and the curve connecting the
vertices forms the protein curve in 3D space.

The authors of [28] proposed a scheme to represent all
the amino acids as the vertices of a dodecahedron. In this
way, a protein sequence is represented as a 3D curve. The
authors showed that such a representation could help
compare different sequences. The problem of this repre-
sentation is that the protein sequence information could not
be reflected at the node.

2.2.4 Subalphabets-Based Representation

The property of the amino acid is just one factor that
determines the structure of the proteins [29], [30]. The
context information of the amino acid is also important.
Accordingly, instead of representing each amino acid
individually, there is research trying to represent a pair of
amino acids or a triplet of amino acids together. The authors
of [31] evaluated the subalphabets by searching directly for
the sequence codings that improve protein secondary-
structure prediction. They discovered that protein alphabets
composed of 13 to 19 groups could increase the predict-
ability of the secondary structure from sequences.

In summary, a proper numerical representation of protein
sequences serves as the foundation for the following wavelet
analysis on sequences. Each representation strategy has its
pros and cons, so the choice of the proper strategy is at the
discretion of the researcher and needs a case-by-case

analysis. Generally speaking, the orthonormal representa-
tion is more suitable for local sequence alignment or
comparison as it carries no extra amino acid properties.
The physiochemical property-based representation is ap-
plicable under the scenario that the global comparison of two
sequences, or the functional analysis, needs to be carried out,
since the properties of the amino acid with the sequence
together determine the properties of the overall protein. The
geometric representation, which becomes increasingly pop-
ular, incorporates the advantages from the aforementioned
two approaches. However, it requires some sophisticated
geometric expertise to carry out the analysis and also
increases computational complexity. Finally, subalphabets
that include the context information of one amino acid play
an important role in protein structure analysis.

3 REVIEW OF WAVELET ANALYSIS AND ITS

APPLICATIONS IN BIOLOGICAL SEQUENCE

ANALYSIS

This section provides a brief overview of wavelet analysis
including background, evolution, and possible applications.
Finally, it concludes with a summary of the wavelet
applications in the analysis of gene and protein sequences.

3.1 Review of Wavelet Analysis

In this section, we present an overview of the evolution of
wavelet analysis techniques, introduce the transition from
Fourier transformation to wavelet analysis, give an example
of applying wavelet analysis on biological sequences, and
finally provide a list of commonly used wavelets families in
biological sequence analysis.

3.1.1 Background

The origin of the wavelets theory can be traced back to the
harmonic analysis developed by a French mathematician,
Jean Baptiste Joseph Fourier (1768-1830) [32]. He was the
first to develop a method of expressing any periodic
function in terms of a weighted sum of cosine and sine
functions, i.e., Fourier Trigonometric series. In 1909, Alfred
Haar developed Haar Wavelets family [33]. It is the
simplest wavelets set and can be used to analyze a given
signal in terms of functions that are more finite in time than
the harmonic functions used in the Fourier analysis. The
Haar Wavelets family was later proven to be more accurate
in modeling functions because of its scaling property. In
1980s, Jean Morlet replaced the Gabor window used in
STFT [34] by the stretched and compressed versions of
unique oscillating windows, which get more reliable and
accurate analyses and are known as the Morlet Wavelets. In
1989, the idea of multiresolution, which is the base theory of
versatile wavelets families, was proposed [35]. Based on the
multiresolution concept, Daubechies [36] created the well-
known and frequently used Daubechies wavelets family.

As can be inferred from the evaluation of wavelet
analysis, it originated from FT. The characteristics of most
real-world signals vary in both time and frequency domains.
They are nonstationary signals.1 FT is one way to find such
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frequency content and measure the signal composition
in frequency. The FT is calculated using (13), where F is
the frequency in Hertz and �t is the phase in radians:

FTfxðtÞg ¼ Xð�Þ ¼
Z 1
�1

xðtÞe�j�tdt; � ¼ 2�F: ð13Þ

The FT defines the global representation of the frequency
content of a signal over a total period of time. However, it
does not give access to the signal’s spectral variations during
this interval of time. In other words, the time and frequency
information cannot be seen at the same time, and thus, a
time-frequency representation of the signal is needed.

To circumvent this localization problem, Gabor [37]
proposed the STFT to analyze only a small section of the
signal at a time by using a technique called windowing
the signal. This obtains the specific contents of each of the
analyzed sections separately. The segment of signals in
each section is assumed stationary. Let gðtÞ be the sliding
window of a fixed size. STFT is defined in (14), where
gðt� bÞe�j�t ¼  ��;bðtÞ is the complex conjugate of  �;bðtÞ:

STFTgð�;bÞfxðtÞg ¼
Z 1
�1

xðtÞgðt� bÞe�j�tdt

¼ Xgð�; bÞ:
ð14Þ

However, STFT has its own limitations due to the fixed
window. That is, a narrow window results in a poor
frequency resolution, whereas a wide window leads to poor
time resolution. In addition, one cannot determine the time
intervals where a certain frequency exists. Therefore, the
wavelet transform was proposed as an alternative approach
to STFT to overcome the resolution problem. The definition
of continuous wavelet transform is as follows:

CWT x ða; bÞ ¼ X ða; bÞ

¼ 1ffiffiffi
a
p
Z 1
�1

xðtÞ  � t� b
a

� �� �
dt

¼ hxðtÞ;  �a;bðtÞi;

ð15Þ

where a and b are the scaling and translation parameters,
respectively, and  �a;bðtÞ ¼ 1ffiffi

a
p  �ðt�ba Þ is the mother wavelet

(base function), a prototype for generating the other
window functions. All the windows are the dilated,
compressed, and shifted versions of the mother wavelet.
There are various wavelet basis functions, which will be
introduced later.

In summary, wavelet analysis techniques outperform the
traditional FT in the following perspectives [38]:

1. wavelets are suitable for analysis on both stationary
and nonstationary signals, while FT is less useful in
analyzing nonstationary signals;

2. wavelets are well localized in both time and
frequency domains, whereas the standard FT is only
localized in frequency domain;

3. the base functions of wavelets can both be scaled and
shifted, while the FT can only be scaled; and

4. wavelets have solid mathematics foundation and a
wider range of applications than FT, for example,
nonlinear regression and compression.

A brief summary of the comparison is shown in Table 2.

3.1.2 An Example of Applying Wavelet Analysis on

Biological Sequence

Over the past few decades, tremendous research effort has
been dedicated to decipher the entire human genome
sequence, which has become one of the most exciting
challenges facing scientists today [39]. Taking DNA se-
quences as an example, an organism’s entire genome is
usually represented by a large size of DNA sequences. It is
desirable to transform this long sequence into a more
manageable data set. To be more specific, a DNA sequence
can be regarded as a discrete signal composed of a
finite number of nucleotides. This observation suggests the
potential to use standard digital signal processing techniques
to analyze the DNA sequence as a discrete-time sequence.
However, a prerequisite step is needed for interpreting the
original symbolic signals to proper numerical representa-
tions (as discussed in Section 2).

Compared with traditional Fourier-based techniques for
signal processing, wavelet-based techniques are more
appealing due to their attractive properties, such as time-
frequency domain representation, local feature identifica-
tion, and multi-resolution scalability as introduced in
Section 3.1.1.

As an initial example of the effect of wavelet transforms
on biological sequences, we apply the Daubechies wavelets
function to visualize mutations of a segment of p53 (TP53)
gene. Figs. 3a and 3b visualize the wavelets coefficients
before and after the mutations of a segment in the gene.
Specifically, the following steps were carried out:

1. Extract the first 1,000 nucleotides from the original
DNA sequence (TP53).

2. Map the sequence segment to complex numbers
using (5).

3. Apply Daubechies transform to the complex num-
bers in scales 2 to 400 at a step length of 2 to obtain a
coefficients matrix (visualized in Fig. 3a).
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Fig. 3. Visualization of wavelet transform coefficients on a segment of
homo sapiens gene p53 (TP53). The x-axis and y-axis represent the
nucleotides indices and the scale numbers, respectively. The green
rectangles in the figures indicate the mutation spots. The green bar
highlights a visualized regional difference in wavelet coefficients based
on a mutation in the DNA sequence (see text for details).



4. Manually mutate 50 base pairs (bp) from the
segmented sequence with nucleotides indices from
401 to 450.

5. Perform Daubechies transform again on the artifi-
cially mutated sequence segment to obtain a new
coefficients matrix (visualized in Fig. 3b).

As illustrated in Fig. 3, the ability of wavelet transform to
capture the variations in a DNA sequence due to mutation
at different scales is visually obvious. This initial analysis
sheds lights on the possibility of utilizing wavelet techni-
ques for DNA and protein sequence analysis.

3.1.3 Wavelet Families for Biological Sequences

This section illustrates some of the wavelet families
commonly used in biological sequence analysis. Wavelet
families generally belong to one of the following types.
Table 3 summarizes some of the wavelet families commonly
used in biological sequence analysis applications:

. Orthogonal wavelets with scaling finite impulse responses
(FIR) filters. These wavelets are defined through a low-
pass scaling filter. Predefined families of such wave-
lets include: Haar, Daubechies, Coiflets, and Symlets.

. Biorthogonal wavelets with scaling finite impulse re-
sponses filters. These wavelets are defined through
two scaling filters, for reconstruction and decomposi-
tion, respectively. The BiorSplines wavelet family is
an example of a predefined family of this type.

. Wavelets with scaling function. These wavelets are
defined using a wavelet function, the mother
wavelet, and a scaling function, the father wavelet,
in the time domain. The Meyer wavelet family is a
predefined family of this type.

. Wavelets without scaling filters and without scaling
function. These wavelets are defined through the
definition of the wavelet function. The wavelet has a
time-domain representation only. Predefined families
of such wavelets include Morlet and Mexican_hat.

3.2 Wavelet Analysis Application in Gene Sequence
Analysis

This section summarizes previous applications of wavelets

in DNA analysis. Generally, wavelet approaches have been

applied in gene finding and gene sequence analysis.

3.2.1 Gene Finding

A major goal of genomic research is to understand the

functions of each individual gene and their interactions. The

eukaryotic DNA strand is divided into genes and intergenic

spaces. Genes are further divided into exons and introns. The

exons carry the code for the synthesis of proteins, and are

called the protein-coding regions. Nowadays, a very

important task in genomic research is to find the locations

of the genes in the genome and, in a deeper sense, the

protein-coding regions in the DNA strand. Mena-Chalco

et al. [51] utilized a modified Gabor wavelet transform of the

DNA sequence to identify the protein coding regions on the

DNA strand. Given the three base periodicity (TBP) patterns

of the protein coding regions and the different scales of

protein coding regions, a modified Gabor wavelet transform

was utilized to decompose the DNA sequence and the

threshold values were computed for the projection coeffi-

cients to make the decision. The Gabor wavelet was modified

using the scale parameter to keep the complex exponential

frequency constant while varying the Gaussian standard

deviation. The resulting modified Gabor wavelet enables

analyzing a signal in a specific frequency and multiple scales.

The proposed approach consists of the following four steps:

1. mapping the DNA sequence to four binary se-
quences,

2. applying Modified Gabor Wavelet Transform
(MGWT) to each binary sequence,

3. projecting the sequence spectra onto the position
axis, and
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4. thresholding the projection coefficients to identify
the edges among coding regions.

A parallel implementation of the MGWT-based approach
[51] on multicore systems was proposed in [52], which used
the single program multiple data (SPMD) parallel paradigm.

In [44], Daubechies discrete wavelet transform was used
for DNA signal denoising by setting the appropriate
frequency component thresholds for approximate and de-
tails coefficients corresponding to the low- and high-scale
frequency components. First, the DNA sequence was
mapped to a DNA signal using XðAÞ ¼ 0:260; XðT Þ ¼
0:375; XðGÞ ¼ 0:125, and XðCÞ ¼ 0:370. Then, a three level
noise reduction technique based on Daubechies discrete
wavelet transform of order three was applied to the DNA
signal. In the first level, the DNA signal was decomposed
using a high- and low-pass filters to approximate (A1) and
detail (D1) coefficients and downsampled by 2. The first level
approximate signal was decomposed and downsampled
again using high- and low pass filters to approximate (A2)
and detail (D2) coefficients. The same process was applied to
the second level approximate signal (D2) resulting inA3 and
D3. Finally, the DNA signal was reconstructed again by the
mirror reconstruction filters using D1, D2, D3, and A3 after
setting the appropriate frequency components thresholds. A
similar technique for noise suppression was proposed by
using the Dmey mother wavelet, also known as Discrete
meyer wavelet, to decompose the DNA signal into detail and
approximation signals, and then to filter out the detail signals
[47], [48]. By removing the detail signals and considering only
the approximation signal, the output power signal was
smoothed and extra frequencies were removed. Decreasing
the noise effect enhanced the accuracy of exonic region
identification. In [40], an approach based on discrete wavelet
transform and support vector machines (SVMs) was pro-
posed to identify splice sites in the human genome. It
employed one-dimensional and two-dimensional Haar
wavelet transforms to transform the binary coded DNA
sequence into wavelet coefficients. Wavelet coefficients form
the SVM’s input feature vector. The binary coded DNA
sequence was generated by mapping A, G, C, and T to
column vectors ½0001�, ½0010�, ½0100�, and ½1000�. DasGupta
et al. [46] considered an approach based on wavelet analysis
and Hidden Markov Tree (HMT) to identify CpG island,
regions characterized by a higher concentration of C-G
nucleotides than elsewhere, locations in the human genome.
The numerical representation of the DNA sequence was
subject to a multilevel wavelet decomposition, to generate a
sequence of wavelet trees. A single HMT was used to model
the wavelet trees sequence. Also, genetic algorithms and
lifting algorithm were used to design adaptive wavelets
matching the CpG islands. The results indicated that the
performance based on the Daubechies wavelet is comparable
to performance based on adaptive wavelets. This suggests
that the CpG islands might be too heterogeneous to be
characterized by a single wavelet and HMT was able to adjust
its parameters to suite the wavelet under consideration.

Gupta et al. [45] proposed a SVM classifier to identify the
exons and introns. The classifier was based on a novel
wavelet variance coefficient feature vector, where features
were extracted using the maximal overlap discrete wavelet

transform (MODWT). The DNA sequence was represented
using the Z-curve and then MODWT was applied to the
information extracted from the Z-curve to generate the
exons and introns features vector. Daubechies wavelet
function and a maximum level of decomposition of 6 were
used in MODWT. Despite the lack of comparison with other
feature extraction techniques, the demonstrated results
seemed promising. Deng et al. [49] introduced a method
to predict protein coding regions in DNA sequences using
Fourier and Wavelet transforms. A continuous wavelet
transform using a Mexican hat wavelet function was used
to eliminate the high-frequency noise in the Fourier
spectrum representing the DNA sequence. The proposed
method is not valid if the DNA sequences lack the three-
base periodicity characteristics.

3.2.2 Gene Sequence Analysis

This area of research is the main impetus for using wavelets
in DNA sequence analysis. For example, Jiang and Yan [55]
used the Hilbert-Huang transform to study the properties of
short genes which are genes whose exons sequence length is
below 70 base pairs. In their paper, a wavelet subspace
algorithm combined with the empirical mode decomposi-
tion (EMD) was proposed to create subdivided intrinsic
mode functions (IMF) and a cross-correlation analysis was
applied to remove pseudo spectral components. In [41] and
[42], the symmetrical shapes in the wavelet coefficients of
DNA sequences appear when the short wavelet transform
mapped the numerical representation of the DNA sequence
into the space of wavelet coefficients. The short wavelet
transform was achieved by the subdivision of the DNA
sequence into four-length segments and then the Haar
wavelet transform was applied to each segment.

In [56], the nucleotide sequences were mapped onto a
DNA walk to produce the fractal landscapes. This method
determines the singularity spectrum of the considered DNA
sequence, and provides a complete multifractal analysis.
The wavelet transform is also used in characterization and
detection of repeating motifs,2 small conserved regions that
usually carry specific structural or functional significance,
in DNA sequences. Repeating motifs are thought to be the
modular building blocks, allowing for an economic way of
constructing complex proteins. Murray et al. [50] employed
techniques based on the Mexican hat wavelet transform, a
method of continuous wavelet transform, to classify the
TIM barrels motif, propeller blades motif, coiled coils motif,
and leucine-rich motifs. El-Zanaty et al. [57] applied the
Haar Wavelet transform to the binary representations of the
DNA sequence and claimed that their proposed method
improves the search performance and reduces the storage
requirements. In [53], six wavelet approaches including
Haar, Ricker (also called the Mexican hat), Shannon,
Hermitian hat, Shannon complex, and Morlet wavelets
were compared for their performances on analyzing the
human genome. It showed that applying the six different
wavelets would yield different results, and indicated that
the Shannon real wavelet is more promising in terms of
discovering hidden patterns in the human DNA sequences.
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Lin and Linton [58] used wavelet packet decomposi-
tion, which was represented by a subtree of the complete
decomposition tree given by all possible dyadic decom-
positions of a signal with two filters fulfilling the power
complementarity condition to analyze the sequence
Colacium elongatum MI-11. Chandra and Rizvi [59] used
Morlet and Haar wavelets to analyze the HIV-1 genome.
Their results demonstrated the significance of using
Morlet wavelets for lower scales analysis and Haar
wavelets for higher scale analysis. Similar work in this
direction includes [60], [61], [62], [63], [64], [65].

3.3 Wavelet Analysis Application in Protein
Sequence Analysis

Wavelet analysis has also been applied in protein sequence
analysis including motif searching, sequence comparison,
and so on. In this section, we summarize the applications of
wavelet in protein sequence analysis and give some
examples in each application.

3.3.1 Protein Motif Searching

Protein motifs are small conserved regions within the
protein sequences carrying specific structural or functional
significance. The detection of a common protein motif
serves as an indicator for the function of the protein and is a
good feature for protein classification. Since the wavelet
analysis can not only capture the global information as the
spectral analysis in discrete Fourier transform but is also
able to capture the location features, it is a useful approach
to detect local repeating motifs on the sequences. An
exemplar study was carried out in [66]. In this study, the
researchers utilized the hydrophobicity and relative acces-
sible surface area values, which belong to the physicochem-
ical property representation introduced in Section 2.2.2, to
represent each amino acid and converted the protein
sequences into 1D signals. The reason for choosing these
two properties of amino acids was that they give a strong
indication of the protein’s overall geometry as shown in
previous studies [67]. Next, the Mexican hat wavelet
analysis was applied to the series because it is good at
highlighting periodic structures. The authors then plotted
the coefficients using scalogram. They successfully identi-
fied six different protein motifs: seven bladed � propellor,
domain repeat and eightfold �� motif repeat, �� Leucine-
rich repeat, �� Heat repeats, four repeating � sandwich
domains, and coiled coil heptad repeat. In a recent study
[43], the authors utilized another physicochemical property-
based representation, where each amino acid was mapped
using 10 bits with each bit representing the presence or the
absence of a certain property like positive charge, polarity,

and so on. The authors showed that Haar wavelet and
Daubechies wavelet are suitable for protein sequence signal
analysis based on physico-chemical properties. Therefore,
they were used to analyze the converted amino acid string.
The converted region was found by picking up the peak of
the transformed curve. The authors successfully identified
several conservative protein motifs on the sequences. The
general framework of using wavelet analysis in protein
motif search is shown in Fig. 4.

3.3.2 Sequence Comparison

Protein sequence comparison is one of the most important
areas in bioinformatics research. The conventional BLAST-
based approach focuses on the local pairwise amino acid
match. However, two protein sequences with low sequen-
tial identity may show similarities in physiochemical
properties and tertiary structure, which indicates a func-
tional correlation between the two proteins. The conven-
tional sequence-based comparison is challenged in
identifying this kind of similarity. In this case, wavelet
analysis becomes an useful alternative as it is able to
capture the multiscale information that enables the compar-
ison of protein sequences at different resolutions. An
example framework is presented in [68]. Their proposed
framework is shown in Fig. 5. First, the protein sequences
are converted to numerical sequences using the EIIP
representation introduced in Section 2.2.2. Then, the
numerical series are normalized to zero mean and unit
standard deviation and zero-padded to have an identical
sequence length. Next, M level Bior3.3 biorthogonal
wavelet analysis, which allows more flexibility compared
with the orthogonal wavelet, is applied to each sequence to
generate a set of coefficients at each level. Finally, a
similarity vector is computed according to the coefficients
and used to compare different sequences. Using this
approach, the authors successfully identified the function-
ally correlated proteins even though they show little
similarity at the sequence level. For example, the sperm
wale myoglobin and lupine leghemoglobin only have
15 percent identical residues. However, they both contain
a heme group and have similar secondary and tertiary
structures. Their work indicated that the wavelet-based
sequence comparison could discover information missed by
the sequence alignment-based approach. A similar frame-
work was proposed in [69].

3.3.3 Prediction of the Secondary Structure

The secondary structure of the proteins includes �-helix, �-
sheets, and the short peptides connecting them. The
prediction of this secondary structure is a classic research
problem. Since the wavelet analysis is able to capture both
the spectral and temporal information of a sequence, it can
provide significant features for a sequence. These features
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could be utilized in state-of-the-art machine learning
frameworks to annotate secondary structures automatically.
Based on this thinking, Qiu et al. [70] proposed a framework
for classifying the protein sequence into four classes
according to four secondary structures: �=�, �þ �, all-�,
and all-�. Because hydrophobic property plays a crucial role
in the process of forming secondary structures and folding
into tertiary structures [54], the amino acid was represented
using hydrophobicity, which is introduced in Section 2.2.2.
Next, Morlet wavelet transform was applied to the
numerical series because it is suitable for protein high-order
structure analysis. Four kinds of features, which are the
maximum, mean, minimum, and standard deviation of the
wavelet coefficients, were extracted in each sub-band to
form a feature vector, and SVM classifier was adopted to
annotate four different classes. Other similar studies include
[54] and [71].

In summary, wavelets techniques are able to extract both
spectral and local information and perform multiscale
analysis on DNA/protein sequences. Using the proper
numerical representation strategy introduced in Section 2
according to different applications (such as hydrophobicity
in the protein structural analysis), the wavelet-based frame-
work could provide extra information, which is difficult to
mine from the traditional alignment-based approaches.

4 WAVELET AND CANCER GENOME RESEARCH

The elucidation of the mechanisms of cancer development
on the molecular level is one of the preeminent questions in
molecular and cell biology and is an essential part of any
plan to fight cancer. As the development and commercia-
lization of massively parallel DNA sequencing lowers the
cost per sequenced nucleotide by several orders of
magnitude, a multitude of DNA sequences or protein
sequences have been collected from tumor cells. This rapid
growth of sequence data calls for more advanced engineer-
ing approaches to gain insight into the development of
malignancies. Among a plurality of analysis approaches,
wavelet analysis holds a place on this stage for its
advantages in simultaneous localization in time and
frequency domains and multiscale analysis. In this section,
based on the description of the general discussion of
wavelet analysis in biological sequence in the previous
section, we focus on reviewing existing work applying
wavelet analysis in cancer genome research. In Section 4.1, a
brief summary of common understandings regarding the
cancer genome is given. We then introduce the state-of-the-
art work that capitalizes wavelet analysis in cancer genome
research and provide suggestions for researchers in this
domain. It is important to point out that there is a large
body of work utilizing wavelet techniques in analyzing
biomedical images, such as mammography images and
ultrasound images, for cancer diagnosis. This type of work
is beyond the scope of this survey. Researchers interested in
this topic are referred to [72], [73].

4.1 Cancer Genome Mutations

Nowadays, the general consensus about cancer is that it
arises due to accumulation of mutations in critical genes that
alter normal programs of cell proliferation, metabolization,
differentiation, apoptosis, and so on. Ever since Boveri [74]
proposed that cancer is caused by chormosomal derange-

ments, research into the cancer genome has centered around
identifying the gene mutations that are causally implicated
in oncogenesis and elucidating the mechanism of their
effects on the physiology of the cell. These mutations could
occur in either oncogenes or tumor suppressor genes and
render the cells capable of unlimited proliferation.

Generally speaking, there are four types of common
mutations in the cancer genome, which are substitution,
insertion or deletion (indel), copy number alterations, and
translocations. They are illustrated in Fig. 6. In substitution,
one nucleotide is substituted by another (“T” is replaced by
“A” in the example). The change of the nucleotide could
lead to the change of amino acid in the protein sequence,
which consequentially may lead to a functional change in
the proteins [2]. The second type of mutation is insertion or
deletion of nucleotides of DNA in the DNA sequence,
which is also called the Indel mutation. For example, in
Type 2 mutation illustrated in Fig. 6, one extra “T” is
inserted (insertion) or the original “G” is deleted (deletion).
Such mutations could shift the codon reading frames in
tumor-suppressor genes and cause a loss of function [75].
The third type of mutation is the copy number alteration, in
which the number of genes is increased (amplification) or
decreased (deleted), which is illustrated in the type 3
mutation in Fig. 6. Such mutations could lead to over
expression of a certain gene, which causes a change in the
physiology of normal cells and leads to pathogenesis of
cancer [76]. The fourth type of mutation is translocation,
which is illustrated in Type 4 mutation in Fig. 6. In this
example, certain sections of chromosome 1 (C1) with all the
genes in that section are relocated to chromosome 2 (C2).
This relocation could accidentally activate other genes in
chromosome 2, which may contribute to the progression of
certain types of cancer, such as myelogenous leukemia [77].

In summary, the four aforementioned fundamental
categories of mutations are identified as key factors in the
cancer genome. These mutations lead to complex modifica-
tions in processes, such as signal transduction pathways,
metabolism, histone modification, RNA splicing and pro-
tein homeostatsis, and so on. Therefore, cancer is now
understood as an intricate network, integrating variations at
the genomic, epigenetic, and transcriptomic levels. A more
detailed description about the molecular mechanisms of
cancer can be found in [1].

4.2 Wavelet Analysis in Cancer Genome Study

Dulbecco [78] argued that the complete sequence of the
human genome would be an essential tool for systematically
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discovering the genes that drive cancer. A system-level
analysis of the cancer cell genome provides significant
insights in genome mutations. Compared with the previously
prohibitive cost of sequencing, the second-generation se-
quencing technology makes the whole cell genome analysis
feasible for individual cancer. As data about the epigenome
and transcriptome on a genome-wide scale of cancer grow
exponentially [79], more advanced data analysis techniques
are adopted. In this section, the main avenues of existing work
applying wavelet analysis in cancer genome research are
reviewed to illustrate how wavelet analysis can benefit cancer
genome research.

4.2.1 Wavelet Analysis in Insertion/Deletion Mutations in

Cancer Genome

As described in previous sections, cancer is caused by
different mutations in the cancer genome. Recent studies
find that the form and rate of mutations depend on the
context and location of the mutation [80]. Wavelet analysis
finds its application in this scenario because it provides a
multiscale analysis on the sequence without predefined
knowledge or parameters. Therefore, it is suitable for
detecting spatial patterns of the sequences around the
mutation point without any prior knowledge. In a previous
study [81], the authors identified the spatial distributions of
seven types of mutation related motifs, such as deletion
hotspots, DNA pol pause/frameshift hotspots, and so on,
with respect to insertion/deletion break points. The authors
first computed the motif frequency to generate the motif
frequency profile. Because of the computational simplicity,
Haar wavelet analysis was applied to decompose the
frequency profile. The coefficients’ second raw moments
on a multiscale basis were computed and they were used to
measure the size of the difference between motifs occur-
rence patterns in insertion/deletion flanks versus control
regions. Their study identified the significant spatial
distribution patterns of mutation motifs. The identified
motifs could be utilized as targets for some cancer medicine.
In an another study presented in [82], the authors collected
1,625 spontaneous base-pair substitutions in the MutL2
strain of Escherichiacoli and analyzed the spatial distribu-
tion of these mutations across the E:coli genome. To
accommodate the total number of mutations and describe
the data clearly, the researchers generated 46 bins, each of
which contains 100-kb nucleotides, starting at the origin of
replication. A histogram was generated to show the
distribution of missense mutations. Next, the fourth-order
Daubechies wavelet transforms were applied because it is
able to remove jumpy appearance of the Haar averaged
signals. The analysis found that these mutations are not
distributed at random but, instead, fall into a wave-like
spatial pattern that is repeated almost exactly in a mirror
image in the two separately replicated halves of the
bacterial chromosome. These findings give some insight
on different mutations occurring in the cancer genome.

4.2.2 Wavelet Analysis in Copy Number Alterations

As described in Section 4.1, copy number alterations
represent a common type of structure variation in cancer
genome. In general, there are two main approaches for
detecting copy number alterations, which are the classic
array-based gene expression approach and the more recent

next generation sequencing-based approach. Wavelet analy-

sis finds its applications in both approaches. For the first

approach, the study introduced in [83] serves as a good

example. In that paper, the expression level values of each

gene is viewed as a time series along the chromosome

coordinates. The goal of detecting the copy number altera-

tions can be interpreted as extracting distinctive information

through the curve, for example, the sharp peaks and drops of

the signal in the high-noisy background. Even though the

Fourier transform is useful and important in signal proces-

sing to transform the time series to frequency domain, it loses

the information regarding the position of signal changes. In

contrast, wavelet transform can represent the signal simulta-

neously in both the frequency and time domains and is well

suited for detecting these sharp discontinuities. In this work,

they first decomposed the signal profile into a family of

multiresolution sub-bands using Haar wavelet. For each sub

band, they assigned p-values to the Haar coefficients based on

a null-distribution estimated from normal reference samples.

Further, they selected significant coefficients by setting the

threshold for false discovery rate and used the selected

coefficients to identify the copy number alterations. The Haar

wavelet was chosen here because it is good for analyzing

piecewise constant copy number signals [84]. Other similar

studies belonging to this category include [85] and [86].
The next generation sequencing-based approaches

provide an alternative way for analyzing the copy number
alterations in relatively high resolution. However, it suffers
from the concomitant relatively high-noise issue [87]. One
advantage of the wavelet analysis is decomposing the
signal into a spectrum of different frequencies and the
high-frequency components are sometimes corresponding
to noise. Therefore, the wavelet decomposition could be
adopted to perform noise reduction. The authors of [88]
proposed a CNAseg algorithm to identify the copy
number alteration from the second-generation sequencing
data. The researchers treated the count number along the
chromosome coordinates as the discrete signals and
utilized an undecimated discrete wavelet transform to
smooth the count data, shrunk the noisy wavelet coeffi-
cients, and computed the inverse transform from the
modified coefficients to reconstruct the original signal. The
Daubechies wavelet transform was used as it is better to
smooth signals. The number of decomposition levels was
determined by the length of the window counts for each
chromosome. The reconstructed signal then went through
the Hidden Markov Model (HMM) model for segmenta-
tion and the chi-square statistics-based segment merging
step. Experimental results showed that those proposed
approaches reduced the unevenness in read depth and
decreased the number of noncopy number alteration
induced HMM segments. This reduction improves the
performance of the system from two perspectives. First, it
reduces the false-positive detection in the final segmenta-
tion results. Second, it decreases the computational
complexity in the merging step. The wavelet decomposi-
tion-based noise reduction is commonly used in studies in
this research direction, such as in [85] and [87].

1452 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013



4.2.3 Wavelet in Machine Learning Research

Framework of Cancer Genome

With the rapid growth of cancer genomics and proteomics
data, more and more researchers resort to machine
learning-based approaches for cancer genome analysis.
The assumption here is that by mining the patterns from
the existing data, mathematical models can be built to learn
patterns and, therefore, make predictions in unanalyzed
data. To achieve this, the raw data first need to be converted
into a relatively compact and meaningful representation.
This process is often termed as feature extraction. Since
wavelet analysis captures the global and local character-
istics of sequence data, it could be utilized to extract
features from a series. Wavelet analysis is used as a feature
extraction approach in some applications. For example, Liu
et al. [89] proposed a framework to utilize wavelets to
extract features from hundreds of protein markers in
survival analysis in colorectal cancer. The authors utilized
the Daubechies wavelet db7 to perform the continuous
wavelet transform to extract the coefficients from the
protein marker expression data. These coefficients, which
contain information at different scales of the original
biomarker signal, were utilized as features for cancer
classification. In [90], wavelet analysis was utilized to
extract features from DNA microarray data to extract
important features for classification.

In summary, cancer is deemed to be a genetic disease
which is caused by mutations. To combat this disease, a
thorough understanding of the mechanism of mutations is
necessary. Wavelet analysis, which is able to perform
multiscale analysis as well as capture the local and global
information of a time series, has found its application in
many areas of cancer genome research, such as mutation
identifications and cancer biomarker identifications.

5 EXPERIMENTAL ANALYSIS

In this section, we introduce an empirical study in which
the wavelet analysis is applied to solve one important
problem in cancer genome research which is the identifica-
tion of “driver” mutations in the cancer genome. We
evaluate the effectiveness of the features computed using
wavelet analysis and discuss some insights based on the
experimental results.

5.1 Classifying the “Driver” and “Passenger”

As described in Section 4.1, genetic mutations are respon-
sible for the cancers. These mutations could be categorized
into “drive” mutations and “passenger” mutations. Driver
mutations confer growth advantages on the cells carrying
them and have been positively selected during the evolution
of the cancer. They usually contribute to tumorigenic
potential. On the other hand, the passenger mutations do
not confer growth advantage and happen to be present in the
ancestor of the cancer cell when it acquires one of its drivers.
Therefore, the “passenger” mutation are usually “neutral”
and are not ultimately responsible for any pathogenic
characteristics exhibited by the tumor. Since driver muta-
tions are causally implicated in oncogenesis, one of the
central goals of current cancer genome analysis is the
identification of cancer genes that carry driver mutations.
To complicate this issue, recent systematic resequencing of

the kinome of cancer cell lines has revealed that passenger
mutations are much more common compared to driver
mutations [91]. In addition, some mutational processes are
directed at specific genomic regions and, thus, generate
clusters of passenger mutations that may be mistaken for
drivers [1]. All of these experimental observations make the
differentiation a challenging research topic.

This problem could be addressed by biological experi-
ments to a certain degree, given the number of mutations
is relatively small. However, with thousands of mutations
in the cancer cell line, it would be important to prioritize
experimental work with the hope that the driver muta-
tions could be preferentially identified over passenger
mutations. Therefore, a computational algorithm for
automatically classifying the aforementioned two types
of mutations is needed.

Wavelet analysis can be applied to represent the DNA
sequence to generate the sequence-based features, since
wavelet analysis provides multiresolution information about
the sequence, which is usually missing in the primary
features generated from the sequence data. Therefore,
wavelet analysis combined with machine learning and data
mining approaches can provide promising solutions to the
problem of differentiating the genes, which harbor the driver
mutations with the genes that carry passenger mutations. In
this empirical study, we propose to apply wavelet analysis to
the DNA sequence or protein sequence. In addition, such
an analysis method does not require homology analysis.
Therefore, this approach can be applied to a high-through-
put system and applied to uncharacterized genes that do not
show any homology to known sequences.

5.2 A Unique Computational Framework

Fig. 7 shows the architecture of the framework. First, the
driver and passenger genes are collected from existing
knowledge and downloaded from GenBank [92]. Next, the
mutation samples are extracted according to the mutation
location on the corresponding protein sequences, and those
samples are represented by numerical numbers according
to a certain mapping scheme. Then, wavelet transforms are
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applied to the mutation samples to obtain original wavelet
coefficients at different scales, which are sampled and
converted to feature vectors. Finally, a classification
technique, SVM-based classifier, is applied to classify the
driver and passenger mutations. The details are discussed
as follows:

. Data collection. We collect 29 driver genes and
58 passenger genes from the published papers and
COSMIC database [92]. Based on those genes,
78 driver mutation samples and 110 passenger
mutation samples are extracted.

. Mutation sample extraction. The mutation samples are
extracted from the original protein sequence based
on the mutation location using a fixed window size.
To be specific, a window size of 100 is used to
extract the mutation sample centered at mutation
spot i. The mutation sample extraction scheme is
illustrated in Fig. 8.

. Numerical representation. The original amino acids are
converted to numerical numbers based on the
mapping scheme in Table 1. In this experiment,
only the real component of the complex representa-
tion is used.

. Wavelet analysis. The Matlab wavelet toolbox pro-
vides a powerful tool for wavelet analysis. In the
current experiment, the continuous wavelet trans-
form based on Daubechies wavelets function is used
to extract wavelet coefficients from mutation sam-
ples. (The Daubechies wavelets are chosen due to
their successful applications in biological sequences
analysis [38], [43].) Based on the results of the
empirical study, the differences between the wavelet
coefficients before and after the mutation are
more significant at the scale levels 2 through 100.
Therefore, the scales are set to be 2:2:100, where the
second 2 represents a sampling step of 2 (similar to
the example illustrated in Section 3.1.2). The obtained
COEFS are a 50 by 100 matrix, where each row is a
coefficient sequence at a specific scale. The averages
of the rows of the coefficients in the matrix are
calculated to obtain a 100-dimensional feature vector.

. Sequence-based protein features. In addition to the
wavelet features, the amino acid index (AAindex)
features [19] that represent the physicochemical
properties of the proteins are also extracted.

. Support vector machine. The LIBSVM package [93] is
one of the most popular off-the-shelf classifiers. In
this study, the LIBSVM classifier is utilized as the
classification model.

. Evaluation. In terms of evaluation, the “Accuracy,”
“F1,” and “Matthew’s correlation coefficient” (MCC)
performance metrics are used. Here, “TP” is the total
number of true-positive instances, “TN” is the
total number of true-negative instances, “FP” is the
total number of false-positive instances, and “FN” is
the total number of false-negative instances. In
addition, MCC ranges from �1 to 1. A value of
MCC ¼ 1 indicates the best possible prediction;
while MCC ¼ �1 indicates the worst possible pre-
diction. MCC ¼ 0 is expected for a random predic-
tion scheme. The equations for different criteria are
shown below:

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN ;

F1 ¼
2 � TP

TPþFP � TP
TPþFN

TP
TPþFP þ TP

TPþFN
;

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FP ÞðTN þ FNÞðTP þ FNÞðTN þ FP Þ

p :

5.3 Experimental Results

Three experiments are conducted to evaluate the contribu-

tions and characteristics of five different groups of features.

Table 4 shows the group IDs and their corresponding

features. The LIBSVM classifier is utilized to evaluate those

different groups of features.
The fivefold cross validation is used in all experiments.

The two SVM parameters C and � are tuned using a grid

search approach to maximize one of the evaluation criteria

described in the previous section. Tables 5, 6, and 7 show
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TABLE 4
Feature Group ID and Features

Fig. 8. Mutation sample extraction.

TABLE 5
Values of Different Evaluation Criteria with Maximized F1

TABLE 6
Values of Different Evaluation Criteria with Maximized Accuracy



the best performance of the cross-validation results ob-
tained by maximizing F1, Accuracy, and MCC, respectively.

From the experimental results shown in the three figures,
it could be seen that the AAindex features (Group 1)
outperform the Daubechies wavelet features (Group 2) and
the Haar wavelet features (Group 3). The reasons are as
follows: First, the dimension of the AAindex features is 544
but both the Haar wavelet features and the Daubechies
wavelet features are only of 100 dimensions. The AAindex
features contain more information. In addition, each
dimension of the AAindex features represents one kind of
physiochemical properties, which determines the protein
structure that is related to the function based on the classic
biological assumption that the structure and property of the
protein determine its biological functions. The wavelet
transform captures relatively indirect features of the protein
sequence. In terms of the Haar wavelet features and the
Daubechies wavelet features, their performances are com-
parable and it is not clear which one outperforms the other.
However, when the AAindex features are combined with
the Haar wavelet features, the performance is improved
compared to that using AAindex, Haar wavelet, or
Daubechies wavelet features individually. It also suggests
that even though the Haar wavelet features themselves do
not give good performance, they could be utilized to
enhance the AAindex-based features. This is relatively
counterintuitive because it is easy to draw the conclusion
that if a feature set with good performance is combined
with the one with worse performance, an average perfor-
mance is achieved. The reason is that the AAindex feature,
which captures the global feature of the protein sequence,
loses all the information about the sequence position.
However, the sequence of the protein also determines the
properties of the proteins. The wavelet-based features
capture the sequence or the temporal information of the
proteins and complement the AAindex features. The
phenomenon that the sequence information enhances
the representation of the characteristics of the protein is
also observed in [94]. In that paper, the authors utilized the
so-called pseudo amino acid composition, which captures
the sequence information in the m-tier (m >¼ 1) correlation
factor. The authors showed that by adding the correlation
factors to the feature pool, the performance of the protein
cellular attribute prediction could be improved. This
suggests that the wavelet-based feature representation is
another representation of the sequence information. In
addition, combining the Daubechies wavelet and the
AAIndex feature sets does not seem to consistently enhance
the performance compared to using the AAIndex feature set
alone. Further investigation is needed to disclose the
reasons why the Haar wavelet-based features could en-
hance the AAindex features more than the Daubechies

wavelet features from the perspective of wavelet trans-
forms. An intuitive explanation is that the Haar wavelet
features capture more the high-frequency (local) informa-
tion of the original DNA sequence. However, which type of
wavelets is most suitable is not an easy question to answer.
Actually, the choice of the wavelet algorithm depends on
the application itself and more empirical studies have to be
conducted to determine the “best” wavelet function. The
complete results including the SVM model parameters, all
evaluation criteria, and the values obtained from the three
experiments are also shown in the tables.

As shown in these tables, the SVM parameters selected to
maximize the three criteria, namely F1, Accuracy, and
MCC, are the same across the three runs for feature groups
3, 4, and 5. For feature group 1, the parameters selected to
maximize F1 and Accuracy are the same; while the
parameters are different when maximizing MCC. However,
the values for the three evaluation criteria are close. Feature
group 2 shows relatively big differences in Tables 5 and 6.
It indicates that the classification performance using
Daubechies wavelet features is not stable. In summary, for
most of the feature groups, using each of the three criteria
produces relatively similar results.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we review the current progress of using
wavelets in biological sequences analysis in cancer genome.
First, an overview of the framework of applying wavelet
analysis in cancer genome research is given to familiarize
readers with a global picture. We identify three important
steps, which are numerical representations of biological
sequences, wavelet transforms, and pattern recognition
based on the wavelet coefficients. The numerical represen-
tation of DNA/protein sequences is crucial in the success of
the overall framework and is an active research area.
Different approaches are described in detail in Section 2 so
that researchers in this domain could refer to these
methods. Following that, different state-of-the-art wavelet
analysis methods are introduced and reviewed in Section 3.
The applications of wavelets in solving different biological
problems are shown in that section to exemplify the pattern
recognition step using the wavelet coefficients. Intuitions
are also provided to bridge the gap between signal
processing domain and biological research domain. Based
on the foundations built in previous sections, a detailed
description of applying wavelet analysis in cancer genome
research is given in Section 4 to illustrate its usage in Cancer
research. In Section 5, using a specific research problem,
differentiating the driver mutation from the passenger
mutation, we did an empirical study to illustrate the overall
process. These data show that a proper combination of the
wavelet coefficient-based features with protein physico-
chemical property-based features enhances the classifica-
tion performance. However, the choice of the wavelet
transform approaches could affect the performance and
should be given careful attention. In summary, the
application of wavelets to cancer research, as reviewed in
these studies, and extended by our own empirical studies,
will serve as a foundation for future wavelet research in
carcinogenesis

In the future, the most imperative task is to enhance the
numerical representation of the protein sequence and the
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scheme of applying the wavelet transform. Other wavelet
transforms, such as Morlet, Mexican Hat, and Meyer, can
be considered and the detailed comparison of the
performance of using different wavelet-based features
shouldl be conducted. As a novel approach of representing
the protein amino acid sequence information, wavelet-
based features can also be compared with the existing
sequence information representation methods such as the
well-recognized Chou’s pseudo amino acid composition
[95]. In addition, another research direction is to integrate
information gained from applying wavelet analysis on
microarray images [96].
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