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Abstract

Literature search is a vital step of every research project.
Semantic literature search is an approach to article re-
trieval and ranking using concepts rather than keywords,
in an attempt to address the well-known deficiencies of
keyword-based search, namely, (1) retrieval of an over-
whelming number of results, (2) rankings that do not pre-
cisely reflect true relevance, and (3) the omission of rele-
vant results because they do not contain the idiosyncratic
keywords of the query. The difficulty of semantic search,
however, is that it requires significant knowledge engineer-
ing, often in the form of conceptual ontologies tailored to
a particular scientific domain. It also requires non-trivial
tuning, in the form of domain-specific term and concepts
weights. Here we present preliminary, work-in-progress re-
sults in the development of a semantic search system for the
biogeochemical scientific literature. We report the following
initial steps: first, one of the co-authors—a biogeochem-
istry expert—wrote a sample search query, and ranked the
five most relevant articles that were returned for that query
from a popular keyword-based search engine. We then hand
annotated the five articles and the query with the Environ-
mental Ontology (ENVO), an existing ontology for the do-
main. Critically, this pilot annotation revealed a number of
missing concepts that we will add in future work. We then
showed that a straightforward ontology distance metric be-
tween concepts in the search query and the five articles was
sufficient to produce the expected ranking. We discuss the
implications of these results, and outline next steps required
produce a full-fledged semantic search system for the bio-
geochemistry scientific literature.

Keywords: Natural Language Processing, Semantic

Search, Ontologies

1. Introduction

We all have had the experience of searching the scien-

tific literature using a keyword-based search engine. You

probably started with a general query, which returned thou-

sands of articles that only tangentially related to your inter-

ests. Because no researcher would have time to even skim

all the results, you returned to the original query, rewording

it multiple times in different ways until highly relevant ar-

ticles were ranked at the top of the search. These are long-

known deficiencies of keyword-based search, namely: (1)

retrieval of an overwhelming number of results, (2) rank-

ings that do not precisely reflect true relevance, and (3) the

omission of relevant results because they do not contain the

idiosyncratic keywords of the query [26].

A long-proposed solution to this problem is semantic
search, which uses concepts in the query rather than just

keywords to drive document retrieval and ranking. Se-

mantic search often leverages domain-specific knowledge,

usually encoded in ontologies, to help rank the relevance

of documents relative to a search query. Semantic search

is difficult, however, because the required knowledge en-

tails significant knowledge engineering or sophisticated nat-

ural language processing (NLP). Despite these problems,

search engines today do boast high performance compared

to prior decades precisely because they include minor se-

mantic knowledge in their search algorithms; one approach,

for example, is Latent Semantic Indexing (LSI), which uses

synonyms and relationships between page headers, docu-

ment titles, and content to assist ranking [16]. Neverthe-

less, we are still far from the full realization of true se-

mantic search that uses deep semantic techniques fully inte-
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grated into back-end algorithms. For these reasons seman-

tic search research is experiencing a rise in interest among

various groups [4, 14, 16].

Here we present the first steps of work in progress aimed

at implementing semantic search in a specialized domain—

biogeochemistry—by reusing and integrating prior work on

ontologies, semantic search, and NLP. The goal of this

preliminary study is to show that, in principle, it is fea-

sible to use an existing ontology, the Environment Ontol-

ogy (ENVO) [6], to accurately encode domain-relevant con-

cepts present in search queries and scientific articles and

then use those concepts to correctly rank articles relative to

the search query. We performed a pilot annotation of a test

query and its five most relevant articles (as identified by our

co-author, a biogeochemistry expert) which achieved high

inter-rater reliability. We then devised a simple method for

scoring articles relative to the query, based on the annotated

concepts and their graph distances in ENVO, and showed

that this method can reproduce the correct ranking, in con-

trast to keyword-based search engines as well as other base-

lines. The remainder of this paper is organized as follows:

We first review related work on semantic search (§2). We

next describe ENVO and the proposed complete system we

seek to build, along with what we actually implemented for

this work-in-progress report (§3). We then outline and dis-

cuss the pilot annotation study, the proposed ranking algo-

rithm, and the results (§4). Finally, we discuss future direc-

tions (§5) and specify this work’s contributions (§6).

2. Related Work

Concentrated work on semantic search started around

2000, when Heflin et al. built the Simple HTML Ontol-

ogy Extensions (SHOE) search engine [12]. This search

engine relied on manual tagging, via a markup language,

of web pages with categories, relationships, and attributes

drawn from an ontology. At the time of SHOE’s release,

NLP tools were unable to reliably extract ontology concepts

from text and therefore the tagging process for documents

was performed manually. Users queried the search engine

by selecting concepts or other ontology features from a drop

down menu. SHOE was the first example of the dominant

idea of the 2000s, namely, that ontologies should be used to

mark up web pages and create a semantic web to improve

the performance of search algorithms [20].

This approach to semantic search sets the stage for our

work, as we seek to build a system equivalent to a fully
automated SHOE search engine for biogeochemical litera-

ture. In particular, because NLP methods and tools have ad-

vanced significantly since the release of SHOE, we also aim

to go beyond earlier approaches by automatically extracting

concepts and the underlying relationships from articles and

queries. We will work on automating the extraction of onto-

logical features from natural text found in articles from the

biogeochemical domain.

Others working on semantic search in different domains

have also leveraged advances in NLP in recent years. In

2012, Thomas et al. released GeneView, a semantic search

system over PubMed articles [25], which provides en-

tity specific search over 270,000 articles. GeneView uses

specialized named entity recognizers (NERs) for different

types of entities including genes, chemicals, and generic

drug names. GeneView automatically tags each article or

document with the entities it contains, resulting in the ex-

traction of 194 million entities from PubMed.

Similarly, in 2015 the GATE Group at Sheffield Univer-

sity released Mimir: Multiparadigm Indexing and Retrieval,
a semantic search system that scales to large data sets. The

Mimir framework indexes documents using knowledge ex-

pressed in an ontology chosen by the user, and uses NLP

tools that perform NER, entity linking, and semantic an-

notation. The system allows search over document struc-

ture, text, linguistic annotation, and semantic or ontological

knowledge. As of 2015, Mimir was the only open source

semantic search framework available, and we plan to lever-

age this project in our proposed system.

Closer to the biogeochemical domain, Hu et al. built a se-

mantic search system for geospatial data in 2015 [13] which

also uses automatic concept extraction: NERs trained on

DBpedia [3] are used to tag geographic concepts and en-

tities. Interestingly, that system also uses Labeled Latent

Dirichlet Allocation (LLDA) to rank the metadata of dif-

ferent resources and harmonize different metadata formats.

The ranking algorithm uses vector similarity for the query

and the search domain of articles.

Finally, a key inspiration for our semantic search ap-

proach is BabelNet [18]. BabelNet includes a seman-

tic search system that uses structured knowledge from

Wikipedia and WordNet [8], in addition to the information

gleaned from standard keyword search. Most novel to Ba-

belNet’s approach is that they created their own ontology,

where WordNet senses and Wikipedia pages are used as on-

tology concepts. BabelNet starts by creating two graphs,

one for Wikipedia and one for WordNet: hyperlinks be-

tween Wikipedia pages are used to instantiate links between

concepts representing those pages, while semantic and lex-

ical pointers are used to link WordNet senses. They then

merge the two graphs to form one final ontology with over

five million concepts and over 50 million links.

Stimulated by new semantic search engines entering

the market, well-known search companies have also re-

cently devoted attention to incorporating semantics into

their search and ranking algorithms. Google, for example,

introduced their Hummingbird search algorithm (or “con-

versational searches”) in 2013, which emphasizes seman-

tics, query context, document content, and page content
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more than earlier approaches [26]. Yahoo and Microsoft’s

Bing have employed similar measures to improve precision

in their systems [24, 29].

3. System Design

Our proposed semantic search system for the biogeo-

chemical literature will have several components, not all of

which have been implemented for this paper. As mentioned

previously, here we focus on (1) demonstrating the feasi-

bility of encoding concepts in search queries and scientific

articles using ENVO, our chosen domain-specific ontology,

and (2) testing that, in principle, ENVO concepts can be

used to correctly rank articles relative to a query. In this

section we describe the ENVO ontology in detail, as well

as outline the overall structure of the proposed system, in-

dicating which components we have implemented for this

paper.

3.1. The Environment Ontology

After a review of available domain-relevant ontologies,

we determined that the most useful one for our purposes

was the Environment Ontology (ENVO), a community-led,

open ontology for various life science disciplines [6]. Ac-

cording to its creators, ENVO is an attempt at establish-

ing a standard annotation scheme for several co-dependent

or related disciplines, including, but not limited to, ecol-

ogy, hydrology, environmental biology, and the geospa-

tial sciences. ENVO contains concepts corresponding to

a wide range of natural environments and environmental

conditions. It is encoded in the Open Biomedical Ontolo-

gies (OBO) syntax, which is a subset of the Web Ontology

Language (OWL). ENVO can be populated, managed, and

maintained using the OBO-Edit ontology development tool.

ENVO, like many ontologies, is hierarchical in de-

sign. Three of its top-level, most developed branches

are environmental system, environmental feature, and

environmental material. It’s hierarchical structure

allows for it to include not only entities, but also

higher-level relationships between various concepts, in-

cluding many standard ontological relationships such as

is-a, part-of, contained-in, connects, and

has-condition. ENVO also contains scientific and

domain-specific relationships such as derives-from,

input-of, output-of, has-habitat, and

biomechanically-related-to. Furthermore,

the ontology boasts a well-connected graph of syn-

onymy relationships, encoded using different granularities

including broad, exact, and narrow.

ENVO has seen quite a bit of success in adoption and

use. It has served as the foundation for the creation and

Figure 1. Architecture of the proposed seman-
tic search system.

expansion of a number of other ontologies, as well as ap-

plied in several annotation projects such as the International

Census of Marine Microbes (ICOMM) and the International

Nucleotide Sequence Database Collaboration (INSDC) [9].

Additionally, ENVO has been used in data retrieval and

query-based systems such as the Genomic Metadata for In-

fectious Agents Database (GEMINA) [23], while the Na-

tional Institute for Allergy and Infectious Diseases Bioin-

formatics Resource Centers (NIAID BRCs) employ ENVO

in metadata formulation and manipulation [19].

3.2. Overview of the Proposed System

In the work described here, we test the feasibility of two

of the most important steps of the proposed semantic search

system; however, there are four components in the full final

system, as shown in Figure 1, and described below.

The first component will be query preprocessing. This

component tokenizes the query and detects multiword ex-

pressions [15]. For example, the term water in isolation has

one meaning, which is different from its meaning when em-

bedded in the phrase brackish water, which is a multiword

expression.

The second component will extract concepts from the

query. In the work described here we had human annota-

tors extract the concepts manually. In the proposed system,
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we will build NLP-based concept detectors that associate

spans of texts with ontology concepts. This is a similar task

to word sense disambiguation [1], except the system will

decide between ontology concepts, not word senses.

The third component will perform the actual semantic

search. The concepts found in the query are used to find rel-

evant articles from a database of biogeochemical research

articles. In the work described here our human annotators

manually extracted the concepts from the five sample re-

search articles under study (Table 1). In the proposed sys-

tem, the ontology concept detectors will be used to index

articles for the concepts they contain.

The fourth and final component will rank the articles re-

trieved during semantic search. The ranking algorithm used

in this preliminary work is discussed in §4.2, and will serve

as a starting point for developing a ranking algorithm ro-

bust enough for a larger corpus of research articles. While

we anticipate that the final ranking algorithm will be more

sophisticated than the one described here, we do expect that

they will still share key similarities.

4. Feasibility Studies

The preliminary work described here consists of two

parts: a pilot annotation study and tests of several possible

ranking algorithms. For the pilot annotation, we manually

applied concepts from the ENVO ontology to spans of text

in a test query and the five most relevant scientific articles

for that query (the test set). To identify a viable approach

to ranking, we built a set of ranking algorithms that used

the annotated concepts to produce a ranking on the test set.

These two steps are discussed in turn below.

4.1. Annotation Study

The purpose of manually annotating concepts from the

ontology is twofold: first, to show that the ontological con-

cepts appear in the target texts, and, second, to show that it

is possible to automatically rank articles when the concepts

that appear in them are known. As noted, because devel-

oping NLP-based concept detectors is a non-trivial task, we

wanted to test the utility of the ontology beforehand, as well

as verifying that it is feasible to obtain a correct ranking for

a small set of articles using those concepts.

One member of the team (KU) wrote a search query of

interest to a current research problem in her lab:

Methyl-Mercury concentrations in Everglades
water and sediment

We ran this query through Google Scholar and she then

identified, retrieved, and ranked the five most relevant ar-

ticles from the search, extracted from the several hundred

More than 20 years ago, Andren & Har-
riss (1973) measured relatively high %
MeHg (MeHg as a percent of total Hg) in
Everglades sediments, noting that samples
from the Everglades were comparable to Hg-
contaminated Mobile Bay sediments. [11, p.
328]

Text Span Concept ID
Everglades sediments sediment 2007

Everglades peat swamp 189

Mobile Bay sediments sediment 2007

Figure 2. Example sentence from article [11],
page 328. Underlined portions of the text in-
dicate spans that were associated with an
ENVO concept; the table shows the associ-
ated ENVO concept ID.

results returned. Importantly, several of the articles were

not ranked near the top of Google’s results, and were rather

found many pages deep.

The first four authors then annotated the query and the

articles for concepts from ENVO. The query contained the

following concepts: (1) peat swamp, (2) sediment, and (3)

water. For each article, annotations were collected at the

sentence level: we separated each article into a list of sen-

tences where spans of text were tagged with ENVO con-

cepts where they appeared.

To help us decide what concepts should be chosen for

each span of text, we used Protégé [17] to search and ex-

plore ENVO. We recorded our annotations in a spreadsheet,

where each row represented a sentence of text from the arti-

cle, followed by columns representing the span of text con-

taining the ENVO concept, the ID of the identified concept,

as well as additional columns to capture text which seemed

to represent concepts not present in the ontology. The most

common missing concept we discovered during this process

was contaminant. Figure 2 gives an example sentence from

one of the test articles, along with the text spans which were

associated with an ENVO concept.

The process of annotation was non-trivial, and involved

several rounds of training, annotating, and revision of the

annotation guidelines. Even for a relatively simple sentence

as shown in Figure 2, numerous annotation decisions were

needed. Below, we walk through this process phrase by

phrase:

More than 20 years—This phrase does not need to be

annotated, as it is a temporal expression referring to time

period of the events mentioned later in the sentence.

. . . Andren & Harris (1973)—This phrase also does not

need to be annotated, because it is a reference to a relevant
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article, and referring to the scientific literature isn’t a con-

cept in ENVO.

. . . measured relatively high %—This does not need to

be annotated, as ENVO does not contain concepts related to

specific chemical concentration levels.

. . . MeHg—This is the chemical formula for methylmer-
cury, an environmental contaminant. The concepts of con-
taminant and contamination are not in ENVO. However, be-

cause this concept is relevant to the domain of interest, we

did record these text spans and their related ideas so as to

begin to build a set of concepts to expand ENVO in future

work.

. . . (MeHg as a percent of total Hg)—Again, we identi-

fied the spans MeHg and Hg as the missing concept con-
taminant.

. . . in Everglades sediments—This phrase is tricky, be-

cause Everglades and sediment appear as individual con-

cepts in ENVO, but when they appear in succession they

form a multiword expression. Everglades sediment does

not appear directly in ENVO. However, as it is presum-

ably a subclass (or multiple subclasses) of sediments gen-

erally, we queried ENVO for the entity sediment (ENVO

ID 2007), and examined its children for potential matches.

Sediment has multiple children, namely, specific subtypes

such as lake sediment or contaminated sediment. However,

because there is no concept corresponding to the specific

collection of different types of sediments that comprise the

Everglades, we tagged this with the more general entity sed-
iment.

. . . noting that samples from the Everglades—For this

span, we first looked through ENVO to find a concept for

Everglades. The closest concept is peat swamp (ENVO ID

189), which has no children, and so we tag this span using

this concept.

. . . were comparable to Hg-contaminated Mobile Bay
sediments.—For this span, we again tagged Hg as the miss-

ing concept contaminant. In the same way as above for

Everglades sediment, the phrase Mobile bay sediments was

tagged with the general concept sediment.
The first four co-authors served as the annotators for this

pilot annotation. We annotated the first 50 sentences of

the first article [27] cooperatively to develop the annotation

guidelines, while each annotator annotated the remaining

130 sentences individually so as to allow us to calculate

inter-rater reliability. This produced a Cohen’s κ of 0.57,

which is “moderate to substantial” agreement [2]. We then

assigned each of the annotators one of the four remaining

articles for annotation [11, 5, 10, 7].

In Table 1 we present statistics on the test set. The ar-

ticles have an average of 4,114 tokens, 165 sentences, 21

unique ENVO concepts. In §4.2 we discuss how our rank-

ing algorithm accounts for this variance, and we detail how

the scores are calculated.

4.2. Proposed Ranking Algorithm

The result of annotation was a list of concepts for each

article and the position of the concepts within the article.

This allowed us to calculate the number of times a concept

appears. The ranking algorithms we tested used this concept

list in comparison with the query concept list to produce a

ranking.

We were able to design an algorithm that correctly ranks

all five articles (in Table 2 we call this algorithm Graph
Search). The psuedocode for this algorithm is presented in

Algorithm 1.

Algorithm 1 Pseudocode for Graph Search Algorithm

for paper : database do
score← 0
for qc : query.concepts do

for pc : paper.concepts do
dist← distance(qc, pc)
dist← dist · tfidf(pc)
score← score+ dist

end for
end for
paper.score← score · (1 + α ·D)

end for

The idea behind this algorithm is the most highly ranked

articles should contain concepts that are closely related

to concepts in the query. The algorithm works as fol-

lows. First, we model semantic relatedness by determining

whether concepts are connected by an ancestor-descendant

chain in the ontology. We count the number of links in this

chain, and then weight this count by the tf-idf of the con-

cepts, as computed over the set of all articles in the database

(which here is the same as the test set). We then summed

these scaled counts to produce a similarity score for each

article.

Second, because article length will correlate with the

number of concepts (all other things being equal), the sim-

ilarity measure as described so far will also correlate with

length. We need to correct for this effect: just because an

article is short doesn’t mean it shouldn’t be highly ranked.

Moreover, it is also important to consider how much of the

article is actually relevant to the domain. Research articles

can be about multiple topics, and some of these topics may

not be relevant to biogeochemistry, or covered by ENVO.

We propose that both of these problems can be addressed by

scaling the similarity measure by a factor dependent on the

concept density in relevant sections. In this approach, arti-

cles with higher densities concepts should have their simi-

larity score boosted, and articles with lower densities should

have their score suppressed. We implemented this by com-

puting the ratio of total concept mentions in an article to
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1 Mercury in the Aquatic Environment . . . [27] 5,081 162 162 26 1.39 1.19

2 Methylmercury Concentrations . . . [11] 4,295 183 183 26 0.97 0.84

3 Sulfide Controls on Mercury Speciation . . . [5] 4,133 168 114 13 0.43 0.73

4 Sulfate Stimulation of Mercury Methylation . . . [10] 3,642 160 160 18 0.75 0.51

5 Effect of Salinity on Mercury Activity . . . [7] 3,421 150 150 22 0.50 0.45

Average 4,114 165 21

Table 1. Articles in the test set. Listed are the number of tokens in each article, the number of
sentences overall, and the number of sentences in conceptually relevant sections (note, only article
3 had irrelevant sections, resulting in 114 sentences in relevant sections). The last two columns are
described in §4.2.

the number of sentences in relevant sections. We say that

a section is relevant if it contains at least one ENVO con-

cept. We computed the mean and standard deviation of the

densities across the test set, and then computed the num-

ber of standard deviations from the mean for each article

(D). We then multiplied the raw similarity score described

above (second-to-last column of Table 1) by the scaling fac-

tor 1 + αD, where in this case the tuning parameter α was

set to 2.5. This value is likely fairly specific to this test set,

and our future work will explore the correct range of values

for this parameter, and their effects on the search. The re-

sulting scaled similarity score is shown in the last column

of Table 1.

The complexity of the algorithm is dependent on the

number of papers in the database (p), the number of con-

cepts in the search query (q), and the number of concepts in

each paper (c). The computation relies on looks up of the

distance between ontology entities, and the tf-df of the pa-

per concepts, both of which can be precomputed. Thus the

time complexity of the algorithm is O(p · q · c).

4.3. Preliminary Results and Discussion

We compared the Graph Search on the full document text

approach to five other ontology-based methods. First, we

compared with simple tf-idf weighting applied directly to

concepts appearing in the full text (Concept tf-idf). We used

the traditional tf-idf algorithm [22] on the list of unique con-

cepts in each document. The tf-idf weights for each concept

were summed for each article, and these sums were used to

rank the articles. Second, we compared to a simple concept

counting algorithm, where we count the number of times

concepts in the search query appear in an article (Concept

Counting). We also compared with the Graph Search, Con-

cept tf-idf, and Concept Counting approaches applied just

to the article abstracts.

Table 2 shows a comparison of the ranking results for

these different ranking algorithms. The articles in the ta-

ble are listed in their correct order provided by our domain

expert (KU).

Additionally, we collected rankings from four state-of-

the-art or easily available scientific literature engines: (1)

Google Scholar, (2) Microsoft Academic, (3) Web of Sci-

ence, and (4) our university library’s in-house article search

engine. The in-house search engine searches over one thou-

sand databases such as IEEE, PubMed, and Elsevier using

standard keyword-based search. To obtain rankings from

these search engines we provided the test query to each and

looked for each of the identified articles in the results.

The graph search algorithm generated the correct rank-

ing for each article. The Concept tf-idf and Concept Count-

ing approaches were less successful; the former, however,

did rank four of the five articles correctly. Although they use

semantic knowledge these algorithms are similar to classi-

cal keyword-based search, since they are making decisions

based only on the presence or absence of concepts that oc-

cur in each article.

For the abstract only tests, the graph search algorithm

was able to rank the top two articles correctly, while mis-

placing the last three. For the two of the articles the Concept

Counting algorithm ranked them the same

Furthermore, the graph search algorithm performed bet-

ter than the available search engines for ranking this test set.

Google Scholar was able to retrieve all five articles and rank

three of them correctly (relative to other articles). However,

Microsoft Academic did not retrieve four articles, and our

university library’s system did not retrieve any of the arti-

cles, even though all of those articles were present in their
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Article 1 1 2 4 3 5 5 3 - 3 -

Article 2 2 3 5 1 3 1,2 1 - 1 -

Article 3 3 4 3 4 1 1,2 2 1 2 -

Article 4 4 5 1 2 2 3 4 - 5 -

Article 5 5 1 2 5 4 4 5 - 4 -

Full Article Abstract Only Baseline

Table 2. Ranking results for baseline and models employed in full articles and abstract only sets

databases. Web of Science was able to retrieve all the arti-

cles, but with an incorrect ranking.

Finally, we note that there is nothing especially specific

to the biogeochemical domain in our approach. Thus we

expect that the Graph Search algorithm could be applied to

other domains, as long as one has relevant ontologies and

methods to automatically extract ontology concepts from

text.

5. Future Directions

We have demonstrated the feasibility of several impor-

tant steps in the development of semantic search for the bio-

geochemical literature. In future work, we plan to build an

end-to-end system that implements full, automatic semantic

search for the domain. For this pilot study, several parts of

the system were simulated by human computation, such as

the extraction of concepts and relevant sections. Next steps

will include collating an extensive database of biogeochem-

istry articles, refining and extensively testing our semantic

similarity measure, creating automatic concept extractors

for text, and expanding the ENVO ontology with missing

concepts. We discuss each of these in turn.

5.1. Database

A key step in building the proposed system is to develop

a database of biogeochemistry scientific articles. For this

we propose to begin with data provided by Elsevier, which

in 2014 released a new Application Programming Interface

(API) to make it easier to text-mine scholarly articles [28].

The articles are provided in XML format, where informa-

tion such as title, authors, and content are explicitly tagged

making the document easy to parse, following Elsevier’s

principle for most of its content which is “XML first.” We

will extract from Elsevier’s databases the articles related to

biogeochemistry.

5.2. Evaluating and Enhancing the Ranking Algo-
rithm

As previously discussed, there are many different ap-

proaches to semantic search. In this paper, we presented

a simple method for ranking tailored to small test set. How-

ever, it is clear that we will need to engage in much more

significant evaluation of our ranking algorithm to demon-

strate that it works for the significantly larger task of rank-

ing thousands of articles across many different queries. No

doubt, this work evaluation will lead to many refinements

and additions. For instance, in this study we only consid-

ered ancestors-descendant relationships between concepts.

In our future work we will consider more complex paths be-

tween concepts, as well as other attributes that are encoded

in the ontology. We will also need to expand the database

from which we calculate our tf-idf weights. Concepts that

appear frequently in the literature, like water and sediment,
can overwhelm the ranking algorithm because of their fre-

quent use.

5.3. Developing Automatic Concept Extractors

We also plan to automate the task of extracting ENVO

concepts from text, using state-of-the-art NLP approaches.

To assist in this we plan to expand our set of annotations

with ten more biogeochemical research articles (approxi-

mately 40,000 words). The ten additional articles will each

be independently annotated by two annotators, and the con-

flicts in the annotations will be resolved by adjudication.

This will result in a larger corpus of gold-standard ENVO

annotations, and allow us to measure more accurate agree-

ment statistics on this task. These data will allow us to eval-

uate our to-be-developed entity and concept extractors, and

also help in improving our ranking algorithm.
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5.4. Ontology Expansion

Although the ENVO ontology contains a large number

of concepts and entities related to the environment, the on-

tology by design leans towards biology rather than hydrol-

ogy. For example, the ontology does not contain concepts

for contaminant, methylation, and trophic, all of which are

extremely common in the broader biogeochemical domain.

For this reason, we plan to extend ENVO by adding con-

cepts and leveraging existing mappings between ENVO and

other related ontologies, e.g., to the Semantic Web for Earth

and Environmental Terminology (SWEET) ontologies [21].

6. Contributions

We have described preliminary, work-in-progress results

exploring the feasibility of using the ENVO ontology to en-

able semantic search for the scientific literature in the bio-

geochemical domain. We confirmed that ENVO does cap-

ture many important concepts expressed in these articles,

and demonstrated a straightforward ranking algorithm that

correctly ranks the articles in our test set relative to the test

query. We plan to continue this work by constructing a

database of biogeochemical articles, building and evaluat-

ing a more sophisticated ranking algorithm, creating auto-

matic concept extractors for ENVO tested using more anno-

tated data, and expanding the ENVO ontology with impor-

tant missing concepts.
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