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Abstract—Academic literature search is a vital step of every
research project, especially in the face of the increasingly rapid
growth of scientific knowledge. Semantic academic literature
search is an approach to scientific article retrieval and ranking
using concepts in an attempt to address well-known deficiencies
of keyword-based search. The difficulty of semantic search,
however, is that it requires significant knowledge engineering,
often in the form of conceptual ontologies tailored to a
particular scientific domain. It also requires non-trivial tuning,
in the form of domain-specific term and concepts weights.
As part of an ongoing project seeking to build a domain-
specific semantic search system, we present an ontology-based
supervised concept learning approach for the biogeochemical
scientific literature. We first discuss the creation of a dataset
of scientific articles in the biogeochemical domain annotated
using the Environment Ontology (ENVO). Next we present
a supervised machine learning classifier—a random decision
forest—that uses a distinctive set of features to learn ENVO
concepts and then label and index scientific articles at the
sentence level. Finally, we evaluate our approach against two
baseline methods, keyword-based and bag-of-words, achieving
an overall performance of 0.76 F1 measure, an improvement
of approximately 50%.

Keywords-Natural Language Processing; Semantic Search;
Academic Search; Ontologies; Machine Learning

I. INTRODUCTION

The first step of most scientific research projects is a

review of the existing literature. This academic literature
search allows a researcher to understand what hypotheses

have been proposed, what methods or procedures have been

tried or tested, and what results have been achieved. In most

cases, indexing and retrieval of relevant articles is done

using keywords [1]. Although simple and computationally

inexpensive, keyword-based search has serious limitations

considering the complexity of human language [1], [2].

Furthermore, as scientific knowledge grows exponentially

larger, these limitations become more serious and serve to

inhibit the ability of researchers to use existing tools to find

relevant scientific literature [3].

A solution to this problem that has often been proposed

is semantic search, that is, systems that can infer the

meaning of a user’s query and therefore retrieve articles of

greater relevance [4]. Ontologies are a key component of

this approach, as they provide a specific lists of terms and

concepts as well as relationships between those items [5].

The challenge, however, lies in mapping articles and their

constituent parts to the relevant parts of the ontologies [6].

Early work on ontology-based concept extraction used

regular expressions or exact keywords matching [7], [8].

However, this requires encoding knowledge of all possible

tokens that can map to specific ontology entities [9], a

problematic task because of the ambiguity of language.

Because of this, keyword approaches often miss essential

concepts during the recognition and extraction steps. More

recent work tackles the problem using matches driven by

supervised machine learning (ML), which can automatically

learn and judge which ontology concept is indicated by

observed text.

The work presented here demonstrates the latter approach

specifically for the biogeochemical domain. It is part of

a larger domain-specific semantic search engine for the

biogeochemical academic literature. In a prior report, we

demonstrated the efficacy and feasibility of using ontological

concepts to rank articles based on a search query [10]. In this

paper, we demonstrate the development of a supervised ma-

chine learning (ML) approach that automatically learns onto-

logical concepts, and labels sentences from biogeochemical

articles with those concepts using features extracted from

the unstructured text. We discuss the features necessary to

build such systems and the process by which those features

are extracted.

The remainder of this paper is organized as follows:

We first review related work on ontology-based concept

extraction (§II). Next, we describe our approach including

the task definition, the ontology used, as well as the dataset

created (§III). We then present and discuss the experiments

performed as well as the results obrtained from those

experiments (§IV). Finally, we conclude and specify our

contributions (§V).
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II. RELATED WORK

An ontology provides formal and explicit specifications

of conceptualizations, usually with a focus on a particular

domain. Ontologies are one of the most recognized method-

ology of knowledge representation, providing definitions for

a particular entities, relationships between entities, and clas-

sification of an entity on a class hierarchy. Ontology-based

information extraction (OBIE) has been recently coined as a

subfield of information extraction. In OBIE, ontologies play

a crucial role in providing knowledge representation. The

process is a core building block for the implementation of

semantic search for large document repositories as well as

the development of the Semantic Web [11], [12].

Ontologies have been useful for semantic data mining

and search tasks. Ontology-based semantic data mining and

search approaches and task include: association rule mining,

classification, clustering, information extraction, recommen-

dation systems, and link prediction for social networks [11].

Classification is a common task in data mining as well as

other fields which aims at finding a model (or function)

to describe and distinguish data classes or concepts [13].

Typical use of classification in ontology-based semantic

search is the annotation of classification labels using entities

and relations defined within the ontology. Setchi et al.
[14] proposed a concept indexing algorithm that makes use

of general-purpose ontologies. Although the paper uses a

supervised approach, the ontology tagging process was done

automatically instead of manually. Therefore, the accuracy

of the tagged terms is only an approximate.

Some approaches to ontology-based classification of doc-

uments or topic modeling use the similarity of semantic

graphs. The HITS algorithm [15] works over semantic

graphs to identify core entities. Using DBpedia-based on-

tologies, Allahyari et al. [8] identified entities and their

relations from test documents. By contrast, for this work, we

focus on indexing ontology concepts at the sentence level,

other approaches have indexed concepts at the word or the

document level [12].

Most related to this work is Textpresso [7], a search

engine which promises to enhance the retrieval of biolog-

ical literature (as opposed to the biogeochemical here) by

using an ontology-based approach. In Textpresso, multiple

ontologies play essential roles in the retrieval of pertinent

information from documents, resulting in significant acceler-

ation of extraction of biological facts. The user can retrieve

a set of documents by searching one or a combination of

keywords. Ontologies make it possible to create semantic

queries, facilitating the search the corpus of text by mean-

ing instead of keyword-match. Textpresso achieves this by

first identifying and matching the terms against pre-defined

regular expressions.

Additionally, the creation and use of ontologies have

been especially relevant in the biomedical domain where

they were used for the identification of biological terms

within raw text—such as scholarly publications and medical

records [16]–[18]. The first step in the extraction of such

terms is named entity recognition (NER), where the system

can recognize and extract names of genes, drugs, chemical

compounds, diseases, and so on. After these terms have

been listed and formally defined via ontologies, the next

step is defining the relationships between different entities

(i.e., identify gene-gene or protein-protein interaction) [18].

III. APPROACH

The goal of the work presented here is to label the sen-

tences of scientific articles—drawn from the biogeochemical

academic literature—with concepts derived from a domain-

specific ontology (specifically the Environment Ontology,

or ENVO). We treated this as a supervised classification

problem where we train a classifier using sentences that

have been manually labeled (annotated) for their concepts;

then, this classifier takes individual sentences found in a new

article as input, outputting ontology concepts.

In this section we first describe the task and ENVO in

detail, followed by the dataset which we created through

manual annotation. Next we discuss the classification train-

ing process, starting with data preprocessing, followed by

feature extraction, and ending with classifier construction.

A. Task Definition

As noted above, our task was to index academic articles

in the biogeochemical domain with concepts derived from

ENVO. That is, given a set of academic articles and our

domain-specific ontology, the solution is a supervised clas-

sification model that can assign ontology concepts to the sen-

tences found in the articles. We created a dataset of articles

which was manually labeled and indexed with concepts from

ENVO (§III-D discusses this in detail). Each sentence may

have any number of concepts and therefore the labels are not

mutually exclusive and our solution must admit a multi-label

classification, including possibly no label. We identified a

set of distinctive features to support this classification, and

designed feature extractors to compute these features over

article text.

B. The Environment Ontology

In prior work we determined that the most useful ontology

for our purposes was the Environment Ontology (ENVO), a

community-led, open ontology for various life science dis-

ciplines [19]. According to its creators, ENVO is an attempt

at establishing a standard annotation scheme for several

co-dependent or related disciplines, including, but not lim-

ited to, ecology, hydrology, environmental biology, and the

geospatial sciences. ENVO contains concepts corresponding

to a wide range of natural environments and environmental

conditions. It is encoded in the Open Biomedical Ontologies

(OBO) syntax, which is a subset of the Web Ontology
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Language (OWL). ENVO can be populated, managed, and

maintained using the OBO-Edit ontology development tool.

ENVO, like many ontologies, is hierarchical in design.

Three of its top-level, most developed branches are

environmental system, environmental feature, and

environmental material. It’s hierarchical structure

allows for it to include not only entities, but also

higher-level relationships between various concepts,

including many standard ontological relationships such

as is-a, part-of, contained-in, connects, and

has-condition. ENVO also contains scientific and

domain-specific relationships such as derives-from,

input-of, output-of, has-habitat, and

biomechanically-related-to. Furthermore,

the ontology boasts a well-connected graph of synonymy

relationships, encoded using different granularities including

broad, exact, and narrow.

ENVO has seen quite a bit of success in adoption and use.

It has served as the foundation for the creation and expansion

of a number of other ontologies, as well as applied in several

annotation projects such as the International Census of

Marine Microbes (ICOMM) and the International Nucleotide

Sequence Database Collaboration (INSDC) [20]. Addition-

ally, ENVO has been used in data retrieval and query-based

systems such as the Genomic Metadata for Infectious Agents

Database (GEMINA) [21], while the National Institute for

Allergy and Infectious Diseases Bioinformatics Resource

Centers (NIAID BRCs) employ ENVO in metadata formu-

lation and manipulation [22].

C. Dataset

To the best of our knowledge there is no corpus of

scientific articles annotated with ENVO concepts, so we

created our own. We collected a total of 14 articles (62,015

total words) using three search queries that were created by

two domain experts (one of which is a co-author on this

paper [JA]). Our domain experts ran the queries through

Google Scholar and examind from the several hundred

results returned, identifying the top four or five most relevant

articles for each query. Importantly, several of the articles

were not ranked near the top of Google’s results, and were

rather found many pages deep. We then manually annotated

articles at the sentence level using concepts from ENVO

(§III-D discusses the annotation study in detail). Table I

lists the queries, the corresponding articles returned from

the search results, as well as article-specific statistics. The

articles have an average of 4,430 tokens, 172 sentences, 31

unique ENVO concepts. Table I presents detailed statistics

on the test set.

D. Annotation Study

The purpose of manually annotating concepts from the

ontology was twofold: first, to show that the ontological

concepts appear in the target texts and, second, to show that

More than 20 years ago, Andren & Harriss (1973) mea-
sured relatively high % MeHg (MeHg as a percent of total
Hg) in Everglades sediments, noting that samples from the
Everglades were comparable to Hg-contaminated Mobile Bay
sediments. [30, p. 328]

Text Span Concept ID
Everglades sediments sediment 2007

Everglades peat swamp 189

Mobile Bay sediments sediment 2007

Figure 1. Example sentence from article [30, p. 328]. Underlined portions
of the text indicate spans that were associated with an ENVO concept; the
table shows the associated ENVO concept ID.

it is possible to automatically learn domain-specific concepts

from a relevant ontology. Because developing concept detec-

tors is a non-trivial task, in prior work we tested the utility

of the ontology, as well as verified that it is feasible to auto-

matically rank articles using detected ontological concepts

[10]. The current work expands that effort by creating a

larger gold-standard corpus and demonstrating that we can

identify the concepts in the articles automatically.

As discussed above, we collected a corpus of 14 articles

from the biogeochemical domain, aligned with three search

queries. Our team of domain trained annotators then anno-

tated the queries and the articles for concepts from ENVO.

For each article, annotations were collected at the sentence

level.

Annotators used Protégé [37] to search and explore ENVO

when deciding what concepts should marked for each sen-

tence of each article. Annotators recorded their annotations

in a spreadsheet, where each row represented a sentence,

followed by columns representing the span of text containing

the concept and the ID of the identified concept.

Figure 1 gives an example sentence from one of the test

articles, along with the text spans which were associated

with an ENVO concept.

The process of annotation involved several rounds of train-

ing, annotating, and revision of the annotation guidelines.

Even for a relatively simple sentence as shown in Figure 1,

numerous annotation decisions were needed. Below, we

walk through this process phrase by phrase:

More than 20 years—This phrase does not need to be

annotated, as it is a temporal expression referring to time

period of the events mentioned later in the sentence.

. . . Andren & Harris (1973)—This phrase also does not

need to be annotated, because it is a reference to a relevant

article, and referring to the scientific literature isn’t a concept

in ENVO.

. . . measured relatively high %—This does not need to be

annotated, as ENVO does not contain concepts related to

specific chemical concentration levels.

. . . MeHg—This is the chemical formula for methylmer-
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Unique
Query Title Citation Tokens Sentences Concepts κ

Methyl-Mercury concentrations in
Everglades water and sediment

Mercury in the Aquatic Environment . . . [23] 5,081 162 26 n/a
Sulfide Controls on Mercury Speciation . . . [24] 4,133 168 13 n/a
Sulfate Stimulation of Mercury Methylation . . . [25] 3,642 160 18 n/a
Effect of Salinity on Mercury Activity . . . [26] 3,421 150 22 n/a

Sulfate reduction occurring in
Everglades pore waters and sediments

Anaerobic Microflora of Everglades Sediments . . . [27] 4,651 179 35 0.64
Constants for mercury binding . . . [28] 4,629 173 17 0.62
Mercury methylation in periphyton . . . [29] 3,839 159 18 0.75
Methylmercury Concentrations . . . [30] 4,295 183 26 0.30
Bacterial Methylmercury Degradation . . . [31] 3,696 199 27 0.44

Sulfur reduction affecting South
Florida Everglades soils

Groundwater’s significance to changing . . . [32] 9,650 300 73 0.63
Variation in Soil Phosphorus . . . [33] 3,032 103 39 0.71
Sulfur in the South Florida ecosystem . . . [34] 3,485 149 37 0.69
Sulfur in peat-forming systems . . . [35] 3,998 165 35 0.71
Effects of sulfate amendments . . . [36] 4,463 160 42 0.62

Max 9,650 300 73 0.75
Average 4,430 172 31 0.61

Min 3,032 103 13 0.30
Standard Deviation 1,604 43 15 0.14

Table I
ARTICLES IN THE TEST SET. LISTED ARE THE NUMBER OF TOKENS IN EACH ARTICLE, THE NUMBER OF SENTENCES OVERALL, THE NUMBER OF

UNIQUE CONCEPTS, AND THE ANNOTATOR AGREEMENT EXPRESSED AS COHEN’S κ.

cury, an environmental contaminant. The concepts of con-
taminant and contamination are not in ENVO. However,

because this concept is relevant to the domain of interest, we

did record these text spans and their related ideas so as to

begin to build a set of concepts to expand ENVO in future

work.

. . . (MeHg as a percent of total Hg)—Again, we identified

the spans MeHg and Hg as the missing concept contaminant.
. . . in Everglades sediments—This phrase is tricky, be-

cause Everglades and sediment appear as individual con-

cepts in ENVO, but when they appear in succession they

form a multiword expression. Everglades sediment does not

appear directly in ENVO. However, as it is presumably a

subclass (or multiple subclasses) of sediments generally, we

queried ENVO for the entity sediment (ENVO ID 2007),

and examined its children for potential matches. Sediment
has multiple children, namely, specific subtypes such as lake
sediment or contaminated sediment. However, because there

is no concept corresponding to the specific collection of

different types of sediments that comprise the Everglades,

we tagged this with the more general entity sediment.
. . . noting that samples from the Everglades—For this

span, we first looked through ENVO to find a concept for

Everglades. The closest concept is peat swamp (ENVO ID

189), which has no children, and so we tag this span using

this concept.

. . . were comparable to Hg-contaminated Mobile Bay sed-
iments.—For this span, we again tagged Hg as the missing

concept contaminant. In the same way as above for Ev-
erglades sediment, the phrase Mobile bay sediments was

tagged with the general concept sediment.

The first four articles were the result of a previous pilot

annotation study [10]. The first three co-authors and a

domain expert served as the annotators for those articles,

and were annotated as follows: we annotated the first 50

sentences of one of the articles [23] cooperatively to develop

the annotation guidelines, while each annotator annotated

the remaining 130 sentences individually so as to allow us

to calculate inter-rater reliability. This produced a Cohen’s

κ of 0.57, which is “moderate to substantial” agreement

[38]. After these first articles was finished, we then assigned

each of the annotators one of the four remaining articles for

annotation [24]–[26], [30]. The remaining ten articles were

doubly annotated by a new team of trained annotators and

domain experts following the developed annotation guide-

lines. The resulting micro-averaged inter-annotator measure

agreement over all annotator groups using Cohen’s κ is 0.61

which is “substantial” agreement [38]. We also report per-

document κ measures. We report an κ with zeroes columns

and rows removed. This refers to the following situation:

when analyzing the confusion matrix for a given concept, if

there was a row or column that only contained the number

0, we removed it from the calculation of the average κ.

We justify this because situations where there is a row or

column consisting of only zeroes means that the annotators

consistently marked a certain concept as two different things.

An example of this is an annotator consistently marking a set

of spans as the concept watercourse, and the other annotator

consistently marking the same span as watershed, which are

two similar concepts. They were marking the same span

as different concepts, and each annotator always made the

same decisions, but the problem was with what they called
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the concept. They were consistent, which is qualitatively

represented by the fact that there is a column or row in

the confusion matrix of all 0’s. Due to the consistency of

the mislabeling, we can justify removing their κ’s from the

calculation of the average κ.

E. Data Preprocessing

In addition to annotating the data with ENVO concepts

as described in the previous section, we performed standard

NLP preprocessing tasks to prepare the data for feature

extraction and supervised learning. First, we encoded docu-

ment structure and formatting information such as section

and paragraph headers, as well as sentence counts and

relative positions of sentences within sections. Next, we

cleaned the text by removing in-text citations and stand-

alone mathematical, chemical, and biological formulas. We

then tagged each token with its part-of-speech [39], lemma-

tized tokens using WordNet [40], filtered known stop words

using PubMed’s list [41], and used the pywsd module to

perform word-sense disambiguation [42] to tag words with

WordNet senses.

F. Data Balancing

The articles included 192 unique concepts across 3,434

occurrences. More than half of these occurrences (2,049)

represented only 10 concepts, while the most frequent 50

concepts (26% of the total) occurred 3,091 times in total.

Additionally, 61 concepts (32%) appeared only once. When

supervised ML is performed over such distributions, they

tend to overfit the classes with higher number of examples.

Several solutions have been proposed and used for the prob-

lem of imbalanced data such as sampling (undersampling

and oversampling) and weight assignment. These techniques

are used to help supervised ML classifiers learn more about

a class that has a significantly smaller number of examples

relative to others. In our case we opted to use the Synthetic

Minority Over-sampling Technique (SMOTE) [43]. SMOTE

is an hybrid sampling technique that oversamples the mi-

nority classes while undersampling the majority classes.

We applied resampling to the training set only, leaving the

testing set with the original distribution.

G. Feature Extraction

Identifying a useful set of features is integral for an

accurate machine learning model. For this task we ex-

tracted lexical, syntactic, and semantic features from the

articles and their sentences. For lexical features, we used

the most frequent distinctive terms for each article using

term frequency-inverse document frequency (tf-idf) [44]. We

used the top 10% of the resulting lists. Additionally, we

used global and local sentence positions as features—i.e., the

relative position of a sentence in both its section and article,

expressed as a real number between 0 and 1, inclusive.

Further, we extracted named entities from each sentence

by examining parts-of-speech (looking for runs of tokens

tagged NNP or NNPS), and used these entities as features.

As discussed earlier, recognizing named entities is useful for

many IR and NLP tasks. An example of this from our study

is the term Everglades which is found encoded in ENVO as

a synonym and part definition for peat swamp.

Finally, for semantic features, we mapped the words

in each sentence to a semantic embedding space. As an

example of an embedding approach, word2vec [45] is a

popular and powerful method to represent high-dimensional

word embeddings which reduce the complexity and size

of the feature set as opposed to a bag of words (BoW)

approach. However, word2vec does not consider words that

have multiple senses, mapping them to the same position

in the vector space. To address this limitation, we used

sense2vec [46], where different senses of the same word

are placed differently in the embedding space. We used

Sense2vec as implemented in the SpaCy python module

[47], and followed the algorithm described in [46] by using

the part-of-speech tags and named entity labels assigned to

the tokens. Additionally, we merged named entities into sin-

gle tokens (using hash symbols), so that they were assigned

a single vector.

In addition features extracted directly from the raw text,

we also used other concepts as features. First, we used

concepts identified in the abstract of each article as features

for the body of the article. Second, we used the concepts

present in a the immediately preceding sentence as features

for determining the next sentence’s concepts. This feature

engineering led to several interesting observations; first that

concepts found in the abstract of an article can improve

concept labeling performance for the article body; and

further, that knowing which concepts came before a sentence

(i.e., in sentences preceding the sentence in question) also

improves concept labeling performance.

H. Concept Learning

The first stage of classification is model training, fol-

lowed by a stage of testing on separate (unseen) data. As

discussed in §III-C, the original data was randomly split

into two portions ten different times (ten folds), 80% in

the training set and 20% in testing set (11 and 3 articles,

respectively). We built and trained our models using random

decision forest models (RDFs). RDFs are ensemble learning

methods and are employed in regression and classification

applications [48]. They operate through the construction

of numerous decision trees during the training stage. The

technique outputs the class that contains the mode of the

classes of the collection of collection of tress. This technique

is influential, especially in data mining applications [49]. A

major advantage of RDF over regular decision trees is that

the RDF avoids overfitting the training set [50].

We built and trained two separate models using the fea-

tures discussed in the previous section—a body-only model,

406



which used all features, and an abstract-only model, which

omitted the abstract concept features as well as the sentence

counts and position features. This two-model approach at-

tempts to mimic how human read scientific articles, namely,

using the concepts found in the abstract to better guide the

understanding concepts found in the rest of the text.

With regard to the parameters of the RDF classifiers,

max features was set to the square root of the total number

of features in an individual run, number of trees was arbi-

trarily set to 50, where this is referring to the number of trees

built before taking the average tree votes for predictions.

Finally, min sample leaf was set to 50. To implement these

models we used the scikit-learn python ensemble module

[51].

IV. EXPERIMENTS AND RESULTS

As discussed above, we randomly split the dataset into

training and testing sets across ten folds, resulting in 11

articles for training and 3 for testing in each fold. Our models

learned a total of 192 unique concepts. For all experiments,

we evaluated the performance of the models on each concept

using the F1 measure averaged across all folds. Here we

present our evaluation methods and results, describing our

baseline approaches, as well as the performance of both the

baselines and our method average averaged across the test

sets.

A. Baseline Methods

We compared our approach to two baseline methods.

The first baseline was a keyword-based approach, where we

matched sentence words directly to the names of ontology

concepts. All previously mentioned preprocessing steps were

performed on both the text and the ontology, such as

lemmatization of both concepts and words in the sentences.

This model needed no training. The second baseline was a

Bag of Words (BoW) supervised classifier. For this classifier,

we trained and tested a support vector machine (SVM)

[52] following the same cross-validation splits and multi-

label fashion as used for our proposed approach. The SVM

classifier was trained using the RBF kernel function and a

soft margin C of 10,000—a common setup.

B. Experiments

As noted above we built two models: (1) an abstract-
only model, and (2) a body-only model. Both the models

learn concepts using all sentences in the text (including

the abstract), but as the names suggest, they only used

to label the abstract sentences and the body sentences

respectively. Additionally, the the body-only model uses the

labels produced by the abstract-only model as features for

labeling the body of an article. In order to compare the

efficacy of using the sense2vec approach as a feature, we

built trained and tested the same models using a word2vec

approach instead.

Unique Concepts
Approach Single Top 50 All

Keyword Search 0.39 0.35 0.38
SVM BoW 0.45 0.56 0.50

RDF word2Vec 0.54 0.69 0.61
RDF sense2Vec 0.67 0.78 0.76

Table II
AVERAGE F1 SCORES PER APPROACH OVER ALL CONCEPTS, THE 50

MOST FREQUENT CONCEPTS, AND THE 61 LEAST FREQUENT CONCEPTS

WITH SINGLE OCCURRENCES.

Features Unique Concepts
Abstract Position Single Top 50 All

Omitted Omitted 0.52 0.69 0.65
Omitted Included 0.63 0.71 0.68
Included Omitted 0.63 0.76 0.70
Included Included 0.67 0.78 0.76

Table III
AVERAGE F1 SCORES FOR THE FEATURE COMBINATION EXPERIMENTS.

THE FIRST TWO COLUMNS INDICATE WHETHER THE ABSTRACT

CONCEPTS AND SENTENCE POSITIONS WERE INCLUDED OR OMITTED

AS FEATURES IN THE MODELS.

Table II shows three average F1 scores over different

sets of concepts for all discussed approaches. The first

column shows the average F1 score for the concepts with

single occurrence in the original data (61 concepts), while

the second column shows the average scores for the top

50 concepts in terms of total occurrences over all the

articles. The last column shows the results over all concepts.

The proposed approach (RDF sense2vec) outperforms both

baselines as well as the RDF word2vec models across all

concepts. Additionally, Figure 2 shows the frequency of the

top 50 ENVO concepts as well as the average F1 score of

each for each of the concepts. As shown, the score drops

with the frequency of the concept in the dataset, although

not dramatically. This is expected as it is a result of the

original class imbalance. Finally, the abstract-only model

performed similarly well with a 0.69 F1 over all concepts

present in the abstract sections, which were relatively small

in number.

As discussed in §III-G, we proposed that the model’s

performance would improve when (1) abstract concepts

are used as features for the body concept extraction, and

(2) sentence positions are also included as features (i.e.,

sentence positions relative to the article as a whole and

individual sections). To evaluate this, we performed four

experiments, testing the inclusion of abstract concepts and

sentence position features. Table III shows three average F1

scores over different sets of concepts per experiment.

In the last row in Table III, both abstract concepts and

sentence positions were included as features in the models.

The results confirm our proposal, in that the inclusion of

both of those features yields better labeling results across
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Figure 2. Frequency of the top 50 ENVO concepts (grey bars) and the average 10-fold testing results (F1 scores) for each of the concepts (black line).

all concepts. The second-to-last row shows the results for

including the abstract concepts as features, but omitting

the position features. This resulted in lower results overall,

but significantly impacted the average score for the single

occurrence concepts. Interestingly, we investigated this and

found that deeper concepts (i.e., in terms of the ontology

hierarchy) are found at higher densities close to the middle

of the articles as well as the centers of article sections.

In retrospect this makes sense, as the methodology section

of a scientific paper (located around the middle) would

normally contain detailed concepts rather than abstract ones.

To put this together, most of the single occurrence concepts

are deeper, low-level concepts, hence the low occurrence

frequency in the original data. The second row shows the

results for only omitting the abstract concepts as features

when labeling the rest of the text in the articles. Again,

the models’ performance dropped overall, but less so than

for single occurrence concepts. This can be attributed again

to including the sentence position features, which aid the

labeling for less frequent concepts. Finally, the first row

shows the results for omitting both features with the models

performing the worst across all concepts.

V. CONTRIBUTIONS

In this paper we present a system for learning to iden-

tify domain-specific ontology concepts in the academic

literature, specifically for the biogeochemical domain. We

created a dataset of academic articles that we manually

annotated. We then used the annotated dataset to build

a supervised machine learning model—a random decision

forest classifier—which was trained and tested using cross-

validation. Further, we identified a set of useful features

and evaluated their efficacy in training and testing the mod-

els. Our model significantly outperformed the the baseline

methods discussed, however we do believe that the model

could be further improved, in particular by performing

additional preprocessing and including additional features

such as multi-word expressions. It is also important to note

the small size of the annotated corpus used for training; more

data will likely improve the result. In this vein our annotation

is ongoing and our team is well on its way to double the

size of the dataset. This will provide our models with more

training examples for the concepts as well as additional

unseen concepts. Additionally, using a larger dataset will

allow for further tuning of the model’s parameters which

may yield better performance.
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