AAAI Technical Report WS-11-18

The Story Workbench: An Extensible Semi-Automatic Text Annotation Tool

Mark Alan Finlayson
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar Street, Room 32-258
Cambridge, MA 02138 USA
markaf@mit.edu

Abstract

Text annotations are of great use to researchers in the
language sciences, and much effort has been invested in
creating annotated corpora for an wide variety of pur-
poses. Unfortunately, software support for these corpora
tends to be quite limited: it is usually ad-hoc, poorly
designed and documented, or not released for public
use. [describe an annotation tool, the Story Workbench,
which provides a generic platform for text annotation. It
is free, open-source, cross-platform, and user friendly.
It provides a number of common text annotation opera-
tions, including representations (e.g., tokens, sentences,
parts of speech), functions (e.g., generation of initial
annotations by algorithm, checking annotation validity
by rule, fully manual manipulation of annotations) and
tools (e.g., distributing texts to annotators via version
control, merging doubly-annotated texts into a single
file). The tool is extensible at many different levels, ad-
mitting new representations, algorithm, and tools. I enu-
merate ten important features and illustrate how they
support the annotation process at three levels: (1) an-
notation of individual texts by a single annotator, (2)
double-annotation of texts by two annotators and an
adjudicator, and (3) annotation scheme development.
The Story Workbench is scheduled for public release
in March 2012.

Text annotations are of great use to researchers in the lan-
guage sciences: a large fraction of that work relies on an-
notated data to build, train, or test their systems. Good ex-
amples are the Penn Treebank, which catalyzed work in de-
veloping statistical syntactic parsers, and PropBank, which
did the same for semantic role labeling. It is not an exag-
geration to say that annotated corpora are a central resource
for these fields, and are only growing in importance. Work
on narrative shares many of the same problems, and as a
consequence has much to gain from advances in language
annotation tools and techniques.

Despite the importance of annotated data, there remains
a missing link: software support is not given nearly the
same amount of attention as the annotations themselves. Re-
searchers usually release only the data; if they release any
tools at all, they are usually ad-hoc, poorly designed and

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

21

documented, or just not released for public use. Tools do not
build on one another.

The language sciences need to move to a standard where,
if annotated data is released, software for accessing and cre-
ating the data are released as a matter of course. Researchers
should prepare for it, reviewers should demand it, and read-
ers should expect it. One way of facilitating this is to lower
the barrier for creating tools. Many of the phases of the anno-
tation cycle are the same no matter what sort of annotation
you are doing - a freely available tool, or suite of tools, to
support these phases would go a long way.

I describe the Story Workbench (Finlayson 2008), a ma-
jor step toward just such a tool suite. The Story Workbench
is free, open-source, extensible, cross-platform, and user
friendly. It is a working piece of software, having been in
beta testing for over three years, with a public release sched-
uled for March 2012. It has been used by more than 12 an-
notators to annotate over 100k words across 17 represen-
tations. Two corpora have been created so far with it: the
UMIREC corpus (Hervas and Finlayson 2010) comprising
25k words of news and folktales annotated for referring ex-
pression structure, and 18k words of Russian folktales anno-
tated in all 17 different representations.

The Story Workbench is especially interesting to re-
searchers working on narrative. Understanding a narrative
requires not just one representation, not just two, but a dozen
or more. The Story Workbench was created specifically to
overcome that problem, but is now finding application be-
yond the realm of narrative research. In particular, in the
next section I describe three phases of the annotation pro-
cess; many, if not most, annotation studies move through
these phases. In the next section I enumerate some of the
more important features of the Story Workbench, and show
how these support the phases.

Three Loops of the Annotation Process

Conceptually, the process of producing a gold-standard an-
notated corpus can be split into at least three nested loops. In
the widest, top-most loop the researchers design and vet the
annotation scheme and annotation tool; embedded therein
is the middle loop, where annotation teams produce gold-
annotated texts; embedded within that is the loop of the in-
dividual annotator working on individual texts. These nested
loops are illustrated in Figure 1.

Manual
Creation &
Correction

§5. Creators

Automatic i
Creation of ?nnsnoet(?ttilg: A|ndlvid?al
Annotations P nnotation

§1. Story Model ~ §4. Detail Views

§2. Factories

Problem
Identification

§3. Build Rules & Resolutions

A. Individual Annotation

B. Double Annotation

C. Annotation Development

Adjudication | Tool Updates
& Manual i & Text
. 1 . . .
Correction | ! Distribution
§3-§5 i §8. Update Framework

H & Source Control
: Annotation
: Double Scheme
i | Annotation .
! Implementation
i §9. Representation
| Versioning
1

Compare i Identification /

& Contrast | ! of Scheme

Annotations i Problems
§6. Meta Reps. | §10. Inter-annotator
§7. Merge Tool ! Agreement Tool

I
1
1

Figure 1: Three Loops of the Annotation Process. Letters and numbers correspond to sections in the text. Underneath each stage

are the Story Workbench features that support that stage.

A. Individual Annotation

Individual annotation occurs when an annotator annotates
a text in a particular annotation scheme. This is the most
fundamental part of the annotation process: it is in this tight
loop that most of the effort in annotation is expended, and
therefore is where most of the Story Workbench support is
focused. Stages of this loop include automatic production of
initial annotations, finding problems with those annotations
by either the annotator or the tool, and then manual creation,
correction or elaboration of the annotations by the annotator.
This loop is repeated for each text.

B. Double Annotation

Double annotation! is the norm when annotating complex
representations or large amounts of text. It is done to guard
against errors and to obtain measures of annotation quality.
Although differences between annotations may be caused by
simple mistakes, it is often the case that, for complex repre-
sentations, the difference is a legitimate ambiguity and must
be adjudicated by a third party. This adjudicator is responsi-
ble for comparing and contrasting the two annotation sets,
and correcting the discrepancies. Operationally, this loop
involves distributing the texts to the individual annotators,
comparing the resulting annotations, and discussing and cor-
recting the differences. This loop repeats itself, either in par-
allel or in serial, for each text being annotated.

C. Annotation Development

The top-most loop is only necessary when one is develop-
ing a new representation, a new tool, or evaluating which
texts to annotate. This loop involves developing the annota-
tion scheme and annotation software, distributing the texts to
the annotation teams (or individual annotators, if no double

' call it double annotation for ease of exposition; of course, in
the general case, one may have as many annotators as one likes.

22

annotation), and finally evaluating the results to determine
what changes should be made to the representation or to the
software.

Story Workbench Functionality

As indicated in the figure, the Story Workbench supports the
three annotation loops with specific features, functions, and
tools. Each section here is numbered to correspond with the
figure.

1. Story Model

The Story Workbench distinguishes between representa-
tions and descriptions. A representation is the programmatic
format of the annotation, while descriptions are actual anno-
tations in that format. Within the Story Workbench, a rep-
resentation is defined first by a data structure that specifies
all the information possibly contained in a single annotation
in that representation, and second by a singleton lifecycle
object that controls serialization and deserialization of de-
scriptions for that representation, and defines on which other
representations that representation depends. A description is
a concrete instance of data that conforms to the representa-
tion specification and is linked to the representation lifecycle
object.

The core of the Story Workbench is the story model,
which is the data structure that describes a whole text and
all of its annotations. Most importantly it comprises maps
from representation lifecycle objects to (1) sets of descrip-
tions in that representation; (2) configuration information for
that representation; and (3) an annotation factory for that
representation (see §2). The model has a primary, root repre-
sentation, called the character representation, whose single
description contains the actual characters for the text. All de-
scriptions in the model are indexed to character offsets in the
this singleton character description.

The two most important features of representations are
that they are (1) layered, in that more complex representa-
tions can build upon simpler representations, and (2) exten-
sible, in that new representations may be added. There are
currently more than 17 representations implemented in the
Story Workbench, with more on the way. They include:

. Tokens - the constituent characters of each token

. Multi-word Expressions - words with multiple tokens

. Sentences - the constituent tokens of each sentence

. Part of Speech Tags - a tag for each token

. Lemmas - root form for each inflected word

. Word Senses - a dictionary sense for each word

. Context-Free Grammar Parse - one per sentence

. Referring Expressions - expressions that refer

. Referent Attributes - unchanging properties of referents

. Co-reference Bundles - referring expressions that co-refer
. Time Expressions - cf. TimeML (Pustejovsky et al. 2003)
. Events - TimeML happenings and states

. Temporal Relationships - TimeML time order

. Referent Links - static non-temporal relationships

. Semantic Roles - PropBank verbal arguments

. Proppian Functions - as identified in (Propp 1968)

17. Proppian Archetypes - Propp’s dramatis personae

O 00 1 O Lt B W~

—_ e e e =
AN A W= O

2. Factories

One of the most important functions of the workbench is the
ability to provide automatic annotation. Automatic annota-
tion is triggered by any change to the text or existing annota-
tions, and are created by annotation factories, each of which
is specific to a representation. An example of an annotation
factory is a part-of-speech tagger (associated, naturally, with
the part of speech representation) which tags new tokens as
they are created; a second example is a a semantic role tag-
ger, that tags new verbs with semantic roles.

Factories are also responsible for keeping the model con-
sistent: for example, if a character is inserted at the begin-
ning of the text, all the annotations in the model, which are
indexed to character offsets, must be shifted forward by one.
This is taken care of automatically by the factories. Facto-
ries are extensible in that it is easy to add new factories to
existing representations.

3. Build Rules & Resolutions

Each representation is associated with a number of build
rules. Build rules are provided by the representation im-
plementer; they check for known or suspected annotation
errors. Build rules are run when the text is saved, and the
problems they find are displayed in the editor (highlighted
for easy identification) and in separate views. In many of the
annotation tasks for which the Story Workbench has so far
been used, the task is set up so that the text starts with one
problem per potential annotation. The annotator’s job is then
to eliminate all the errors, which, when done, indicates the
annotation in that representation is finished.

Problems found by build rules can be associated with
problem resolutions. These resolutions are mini programs

23

that, when run, fix in a specific way the problem with which
they are associated. These resolutions are shown to the an-
notator when any graphical representation of the problem is
clicked. As an example, for the multi-word expression rep-
resentation, it is considered an error to have two multi-words
that share a token. Such an occurrence is marked by a red X
in the problems list, and the offending token or tokens are
underlined in red in the editor. When the annotator clicks on
either the underline or the X, a dropdown list appears with
four resolution options: delete the first multi-word, delete the
second, remove the token from the first multi-word, or re-
move the token from the second. The annotator may choose
any one of those resolutions, or go about fixing the problem
in his own way. Like most everything else, build rules and
resolutions are extensible.

4. Detail Views

Also associated with each representation is a detail view,
which provides detailed information about the annotations
for that representation. Detail views can provide informa-
tion such as the internal structure of annotations or a detailed
breakdown of field values with explanations. As an example,
the detail view for the Semantic Role representation shows
a list of all the verbs in the text; each verb’s semantic argu-
ments are listed underneath, and clicking on the verb in the
details view, or an argument to the verb, highlights the as-
sociated text in the editor. The detail viewer infrastructure is
extensible: additional detail viewers can be added by third
parties for existing representations.

One can also include in this category a number of spe-
cialized viewers and information transmission mechanisms
which make the Story Workbench a user friendly environ-
ment. The fext hover infrastructure allows representation im-
plementers to show information in a tooltip when the mouse
hovers over a specific section of the text. For example, when
the mouse hovers over a word, a tooltip displays the part
of speech tag and the root form (if the word is inflected).
The workbench also allows specialized viewers outside of
the detail view - a good example of this is the parse tree
viewer, which, when the cursor is placed on a sentence with
a CFG parse, the parse is displayed in graphical tree form.

5. Creators

The heavy lifting of annotation happens in the creator view,
where the annotator can create and modify individual an-
notations. Each creator view is customized to its associated
representation. For example, in the TimeML event repre-
sentation, the creator view allows (1) identification of to-
kens involved in the event, (2) identification of head tokens,
(3) marking the part of speech, tense, and aspect of verbal
events, (3) identification of polarity tokens, and associated
polarity flag, (4) identification of tokens indicating cardinal-
ity, and the number, and (5) identification of tokens indicat-
ing modality.

6. Meta Representations

In addition to the main representations that encode the syn-
tactic and semantic information of the text, there are so-
called meta representations that track information common

to all descriptions. Meta representations are also extensible.
Iidentify four of the most important below. Perhaps the most
useful of these is the Note meta representation, which allows
annotators and adjudicators to record their thoughts and ob-
servations for later consideration.

1. Notes - arbitrary text attached to a description to record
observations, thoughts, ideas; see §7 & §9

2. Origin - automatically added upon description creation to
record the identity of the creator; see §5

3. Timing - automatically added upon description creation
to record creation and editing times; see §5

4. Check - marks a problem as resolved or checked relative
to a particular description; see §3

7. Merge Tool

A key function for double annotation and adjudication is the
ability to compare and contrast annotations done by two dif-
ferent annotators. The Story Workbench provides a general
tool for merging two sets of annotations into a single text.
Each representation implementor provides a small amount
of code that allows the workbench to decide if two anno-
tators are equivalent - this is provided in the implementa-
tion of the representation data structure (§1). The tool then
allows an adjudicator to decide which representations to
merge, which should already be identical, and which should
be ignored, and enforces constraints imposed by the repre-
sentation hierarchy. The resulting annotated text can then be
edited and corrected in the normal way (§3-5); the represen-
tation build rules may be defined so that, where possible,
conflicting annotations from different annotators show up as
errors to be corrected.

8. Update Framework & Source Control

Integrated with the workbench is a general means for in-
terfacing with source control systems. Such systems, such
as Subversion or CVS, can be used to great effect in anno-
tation studies. Let us take Subversion as a concrete exam-
ple. Researchers upload texts to be annotated to the Sub-
version repository. Annotators then check out the texts and
do their annotation. The workbench tracks when they have
made changes, and displays the presence of those changes to
the annotator; he then knows to check in his changes to the
repository, where they are then available to the adjudicator
or the researchers.

Also included in the workbench is a sophisticated update
functionality. This can be used to to fix bugs or add new
features without requiring a re-install of the tool.

9. Representation Versioning

Developing an annotation scheme is facilitated by a version-
ing system for representation implementations. By way of
example, imagine a researcher designs a representation that
allows a single tag to be applied to any token. He implements
the scheme, gives it a version number (say, 1.0), and has his
annotators annotate some text with that representation. Af-
ter considering the results (e.g., inter-annotator agreement
scores, see §10), he decides there should be a second tag

24

to supplement the first. He then modifies the implement-
ing code, increments the version (to 2.0), and specifies in
the versioning system that when an v1.0 annotation is trans-
formed into a v2.0 annotation, the new fields should be filled
in with a tag called UNKNOWN. He writes a build rule that
marks all annotations with an UNKNOWN tag as an error.
He uses the update feature to distribute the new code to the
annotators. When the annotators re-open their old texts, the
Story Workbench automatically transforms the old annota-
tions into the new, and they are presented with new errors
that, when corrected, will naturally lead them to fill in the
second field.

10. Inter-annotator Agreement Tool

Finally, a general facility is provided for measuring inter-
annotator agreements. The facility allows for automatic
measurement of F-scores for all representations. A facility
is also provided for representation implementers to provide
code that allows annotator agreements to be measured in
terms of the kappa score.

Contributions

I have described the Story Workbench annotation tool, a
general text annotation platform that is free, open-source,
extensible, cross-platform, and user friendly. It addresses a
long-standing need in the language sciences, that of a reli-
able tool that provides a number of commonly needed func-
tions. I illustrated how various features of the workbench
support three levels of the annotation process.

Acknowledgments

This work was supported in part by the Defense Advanced
Research Projects Agency, under contract FA8750-10-1-
0076, and in part by the Office of Naval Research under
award number N00014-09-1-0597. Any opinions, findings,
and conclusions or recommendations expressed here are
those of the author and do not necessarily reflect the views
of the Office of Naval Research. Many thanks to Patrick H.
Winston for his helpful comments.

References

Finlayson, M. A. 2008. Collecting semantics in the wild:
The story workbench. In Naturally Inspired Artificial Intel-
ligence, Technical Report FS-08-06, Papers from the AAAI
Fall Symposium, 46-53. Menlo Park, CA: AAAI Press.
Hervas, R., and Finlayson, M. A. 2010. The prevalence of
descriptive referring expressions in news and narrative. In
Proceedings of the 48th ACL, 49-54.

Propp, V. 1968. Morphology of the Folktale. Austin: Uni-
versity of Texas Press.

Pustejovsky, J.; Castano, J.; Ingria, R.; Sauri, R
Gaizauskas, R.; Setzer, A.; and Katz, G. 2003. TimeML: Ro-
bust specification of event and temporal expressions in text.
In Proceedings of IWCS-5, the Fifth International Workshop
on Computational Semantics.

	AIIDE11WS.pdf
	2011 AIIDE Workshops
	Workshop Contents
	WS-11-18
	WS-11-19

	Help
	Terms
	AAAI Website
	AIIDE Website

