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Abstract—Data centers consume significant amounts of energy.
As severs become more energy efficient with various energy
saving techniques, the data center network (DCN) has been
accounting for 20% or more of the energy consumed by the
entire data center. While DCNs are typically provisioned with
full bisection bandwidth, DCN traffic demonstrates fluctuating
patterns. The objective of this work is to improve the energy
efficiency of DCNs during off-peak traffic time by powering
off idle devices. Although there exist a number of energy
optimization solutions for DCNs, they consider only either the
hosts or network, but not both. In this paper, we propose a
joint optimization scheme that simultaneously optimizes virtual
machine (VM) placement and network flow routing to maximize
energy savings, and we also build an OpenFlow based prototype
to experimentally demonstrate the effectiveness of our design.
First, we formulate the joint optimization problem as an integer
linear program, but it is not a practical solution due to high
complexity. To practically and effectively combine host and
network based optimization, we present a unified representation
method that converts the VM placement problem to a routing
problem. In addition, to accelerate processing the large number
of servers and an even larger number of VMs, we describe a
parallelization approach that divides the DCN into clusters for
parallel processing. Further, to quickly find efficient paths for
flows, we propose a fast topology oriented multipath routing
algorithm that uses depth-first search to quickly traverse between
hierarchical switch layers and uses the best-fit criterion to
maximize flow consolidation. Finally, we have conducted extensive
simulations and experiments to compare our design with existing
ones. The simulation and experiment results fully demonstrate
that our design outperforms existing host- or network-only
optimization solutions, and well approximates the ideal linear
program.

Index Terms—Data center networks; virtual machine migra-
tion; multipath routing; energy efficiency.

I. INTRODUCTION

Public and private data centers are becoming popular, since

they achieve economies of scale with hundreds of thousands of

servers [20], e.g. about 300,000 servers in Microsoft’s Chicago

data center [3]. The huge number of servers in data centers

consume significant amounts of energy. It is estimated [2]

that national energy consumption by data centers in 2011 was

more than 100 billion kWh, representing a $7.4 billion annual

electricity cost. As a result, energy efficiency of data centers

has attracted significant attention in recent years [13], [22].

With the improvement of sever energy efficiency, the data

center network (DCN), the other important component of a

data center, has been accounting for 20% ore more [4], [25]

of the energy consumed by the entire data center. With the

huge number of servers in a data center, the DCN needs

proportionally large bandwidth to interconnect the servers.

In addition, a DCN is typically provisioned with full bisec-

tion bandwidth [5], [11], [12], [21] to support burst all-to-

all communication. However, since DCN traffic demonstrates

fluctuating patterns, the fully provisioned bandwidth cannot

be always well utilized, resulting in resource underutilization

and energy waste. For example, Figure 1 shows a 7-day traffic

sample of a core router interface from a data center service

provider. We can clearly see a wave pattern, with the highest

instant traffic volume at about 13Gbps, and the lowest at

about 2Gbps. Different colors in the figure represent different

transport layer protocols, with TCP being the majority.

The key for DCNs to achieve energy conservation during

off-peak traffic hours is to power off idle devices when possi-

ble. There exist a number of DCN energy saving solutions in

the literature, which can be divided into two broad categories:

optimizing network flow routing [14] and optimizing virtual

machine (VM) placement [19]. The former consolidates flows

to a smaller number of links, and thus leaves more idle

links and consequently switches to be powered off. The latter

consolidates VMs to physical servers in such a way that VM

pairs with more traffic are placed closer, to avoid heavy flows

traversing long paths.

To the best of our knowledge, existing DCN energy saving

solutions consider only either the hosts or the network, but

not both. In this paper, we study the joint host-network opti-

mization problem to improve the energy efficiency of DCNs.

The basic idea is to simultaneously consider VM placement

and network flow routing [24], so as to create more energy

saving opportunities. The simplest way to combine host and

network based optimization is just to naively first determine

the VM placement and then the flow routing. Unfortunately,

the existing VM placement algorithm [19] is not practical,

since it does not consider the bandwidth capacity constraints

of links, assumes fixed VM memory sizes, and has high time

complexity of O(|V |4), where V is the set of VMs.

For effective joint host-network optimization, the first chal-

lenge is how to simultaneously consider the two types of

optimization problems. To address the challenge, we present a

unified representation method that converts the VM placement

problem as a routing problem, so that a single optimization

solution can apply to both types of problems. Further, the

second challenge is how to accelerate the processing of the

huge number of VMs in a data center. To this end, we propose



Fig. 1. Fluctuating DCN traffic pattern.

a parallelization approach that divides the DCN into clusters

based on their subnet IP addresses, and processes the clusters

in parallel for fast completion. Finally, the third challenge

is how to quickly find efficient routing paths for the flows.

To solve this problem, we propose a topology oriented fast

multipath routing algorithm, which uses depth-first search to

quickly traverse between the hierarchical layers in a DCN, and

the best-fit criterion to maximize flow consolidation.

In this paper, we propose a joint host-network energy

optimization scheme that combines VM placement and flow

routing optimization, and build an OpenFlow based proto-

type to experimentally demonstrate the effectiveness of our

design. We first formulate the problem as an integer linear

program. Since integer linear programming is NP-complete

and not suitable for practical deployment, we then propose

a series of techniques to quickly and effectively solve the

joint optimization problem. In addition, we have implemented

the proposed scheme in a simulator and a prototype, and

conducted extensive evaluations to compare it with existing

solutions. The simulation and experiment results fully demon-

strate that our scheme outperforms existing host- or network-

only optimization solutions, and well approximates the ideal

linear program.

The rest of the paper is organized as follows. Section II

reviews the related work. Section III formulates the prob-

lem. Section IV elaborates our design guidelines. Section V

presents the joint host-network energy optimization scheme.

Section VI describes a prototype implementation. Section VII

shows the simulation and the experiment results. Section VIII

discusses the broadcast and safety margin issues. Finally,

Section IX concludes the paper.

II. RELATED WORK

In this section, we briefly review existing energy saving

solutions for DCNs and more broadly wide area networks.

Those solutions can be divided into two broad categories:

network-side optimization and host-side optimization.

A. Network-Side Optimization

In the first category, ElasticTree [14] is a DCN power

manager to find the set of switches and links that can

accommodate the traffic and consume the minimum power.

In addition, ElasticTree also addresses the robustness issue

so that the optimized network has sufficient safety margins

to prepare for traffic surges and network failures. GreenTE

[27] manipulates the routing paths of wide area networks, so

that the least number of routers shall be used to satisfy the

performance constraints such as traffic demands and packet

delays. Energy conservation can then be achieved by shutting

down the idle routers and links without traffic. [10] proposes

an energy saving scheme for the idle cables in bundled links.

By reorganizing network traffic and powering off individual

cables as well as the associated line cards in the low-utilized

bundles, the scheme achieves a theoretical 79% improvement

on energy efficiency for backbone networks. [4] indicates that

a flattened butterfly DCN topology is more energy efficient

than the folded Clos topology. [16] presents a large power

profile study for the power manager Urja in an enterprise

network, which saves over 30% of the network energy. [25]

establishes a model of energy-aware routing in DCNs, and

designs a heuristic to achieve the goal.

B. Host-Side Optimization

In the host-side optimization category, one approach is

to optimize VM placement using live migrations [8], which

will help consolidate VMs into fewer physical servers and

traffic flows into fewer links. [19] proposes a traffic-aware VM

placement scheme that localizes large traffic chunks and thus

reduces loads of high layer switches. The scheme achieves en-

ergy conservation by shutting down idle servers and switches

after the placement. [26] studies the VM consolidation prob-

lem in the context of dynamic bandwidth demands. The

problem is formulated as a stochastic bin packing problem and

proved as NP-hard. The paper then proposes an approximation

algorithm, which uses fewer servers while still satisfies all the

performance constraints. The second host-side optimization

approach is to improve the energy proportionality on the server

itself. PowerNap [18] is an energy saving scheme for servers to

quickly switch between two states: a high-performance active

state to transmit traffic, and an idle state with low power to

save energy.

III. PROBLEM FORMULATION

The joint host-network energy optimization problem is a

variant of the multi-commodity problem [9], and can be

formulated as a linear program. The optimization objective

is to minimize the power consumption of all the servers,

switches, and links in a DCN. Recent studies [14], [17], [23]

indicate that power consumption of servers and switches in

data centers can be roughly modeled as linear functions, which

are suitable for linear programming. Even with non-linear

power functions, approximation techniques can help convert

them to piece-wise linear ones.

Model a DCN as a directed graph G = (S ∪ X,L),
where a node s ∈ S is a physical server, a node x ∈ X
is a switch, and an edge (ni, nj) ∈ L is a link connecting



TABLE I
NOTATIONS FOR PROBLEM FORMULATION

Notation Meaning
v, s, x, f virtual machine, server, switch, or flow
(ni, nj) link connecting two nodes ni and nj , with one node being a switch, and the other being be a switch or server

V, S,X,L, F set of virtual machines, servers, switches, links, or flows
DS(v) potential migration destination servers of VM v
md(v) memory demand of VM v
mc(s) memory capacity of server s

src(f), dst(f) source or destination VM of flow f
bd(f) bandwidth demand of flow f

bc(ni, nj) bandwidth capacity of link (ni, nj)
p(∗) linear power function of ∗, where ∗ may be a server, switch, or link
on(∗) decision variable: 1 or 0 if ∗ is powered on or off, where ∗ may be a server, switch, or link

host(s, v) decision variable: 1 or 0 if VM v is or not hosted on server s
route(f, (ni, nj)) decision variable: 1 or 0 if flow f is or not routed through link (ni, nj)

a switch and a server or two switches. Assume that V is

the set of VMs, and a VM v ∈ V must be hosted by a

server s, denoted by host(s, v) = 1. When a server hosts

a VM, the former provides the latter with various resources,

such as memory space and CPU time, and we use memory

space as a representative of such resources. Each server s has

a memory capacity mc(s), and each VM v has a memory

demand md(v). Due to constraints such as subnet IP addresses

and hardware configurations, a VM v has a restricted set of

migration destination servers, denoted as DS(v) ⊂ S. Use

on(∗) to denote that a device ∗ is powered on, which may

be a switch, link, or sever, and use p(∗) to denote the power

consumption of the device ∗.

Assume that f ∈ F is a flow in the DCN. f is defined

as a triple f = (src(f), dst(f), bd(f)), where src(f) is the

source VM, dst(f) is the destination VM, and bd(f) is the

bandwidth demand. Use route(f, (ni, nj)) to denote whether

flow f is routed through link (ni, nj). fk(xi, xj) can only

be either 1 or 0 to prohibit splitting a single flow among

multiple paths. The reason is that, as seen in Figure 1, more

than 99% of data center traffic flows are TCP ones [6], which

will suffer performance degradation with out-of-order packet

delivery. Note that a link (ni, nj) ∈ L has a bandwidth

capacity bc(ni, nj).

With the above notations (summarized in Table I), we can

thus formulate the joint optimization problem as the following

linear program. Equation 1 is the objective function, simply

to minimize the total power consumption of all the switches,

links, and servers.

Equations 2 to 4 define the VM and server related con-

straints. Specifically, Equation 2 states the server-VM correla-

tion constraint, i.e. only a powered on server can host VMs.

Equation 3 states the server memory capacity constraint, i.e.

the total memory demand of all the VMs hosted by a server

cannot exceed its memory capacity. Equation 4 states the VM

migration destination constraint, i.e. a VM can only be hosted

by one of its destination servers.

Equations 5 to 10 define flow and link related constraints.

Specifically, Equation 5 states the flow source/destination

constraint, i.e. a flow cannot start/end at a server that is not

hosting the source/destination VM. Equation 6 states the flow

demand satisfaction constraint, which means that if the source

and destination VMs of a flow are hosted by the same server,

minimize
∑
x∈X

p(x) +
∑

(ni,nj)∈L

p(ni, nj) +
∑
s∈S

p(s) (1)

subject to
∀s ∈ S, ∀v ∈ V, host(s, v) ≤ on(s) (2)

∀s ∈ S,
∑
v∈V

md(v)host(s, v) ≤ mc(s)on(s) (3)

∀v ∈ V,
∑

s∈DS(v)

host(s, v) = 1,

∑
s∈S\DS(v)

host(s, v) = 0 (4)

∀f ∈ F, ∀s ∈ S∑
x∈X

route(f, (s, x)) ≤ host(s, src(f)),

∑
x∈X

route(f, (x, s)) ≤ host(s, dst(f)) (5)

∀f ∈ F, ∀s ∈ S

host(s, src(f))− host(s, dst(f))

=
∑
x∈X

route(f, (s, x))−
∑
x∈X

route(f, (x, s)) (6)

∀f ∈ F, ∀x ∈ X∑
n∈S∪X

route(f, (n, x)) =
∑

n∈S∪X

route(f, (x, n)) (7)

∀(ni, nj) ∈ L,

on(ni, nj) ≤ on(ni), on(ni, nj) ≤ on(nj) (8)

∀(ni, nj) ∈ L, on(ni, nj) = on(nj , ni) (9)

∀(ni, nj) ∈ L,
∑
f∈F

bd(f)route(f, (ni, nj)))

≤ bc(ni, nj)on(ni, nj) (10)

∀x ∈ X, p(x) = α(x)on(x) + β(x)
∑

(x,n)∈L

on(x, n) (11)

∀(ni, nj) ∈ L, p(ni, nj) = γ(ni, nj)on(ni, nj) (12)

∀s ∈ S, p(s) = δ(s)on(s) + ε(s)
∑
v∈V

host(s, v) (13)

then the flow can be transmitted using the local bus of the

sever, without traversing any switches; otherwise, the flow



must start at the server hosting the source VM and end at the

server hosting the destination VM. Equation 7 states the switch

flow conservation constraint, i.e. a switch can only transmit

flows but not generate or destroy any. Equation 8 states the

node-link correlation constraint, i.e. only a powered on switch

can have active links. Equation 9 states the bidirectional link

power constraint, i.e. both directions of a link should have the

same on/off status [14]. Equation 10 states the link bandwidth

capacity constraint, i.e. the total bandwidth demand of all the

flows through a link cannot exceed its bandwidth capacity.

Equations 11 to 13 are sample power functions for switches,

links, and servers. Equation 11 defines that a powered on

switch x consumes α(x) base power, and each active port

consumes additional β(x) power [14]. Equation 12 defines

that an active link (ni, nj) consumes 2γ(ni, nj) power, or

γ(ni, nj) for each direction. Equation 13 defines that a server

s consumes δ(s) base power, and each hosted VM consumes

additional ε(s) power due to increased CPU usage [23].

Since integer linear programming is NP-complete, the above

solution is not a practical one, but it can still be an ultimate

bench mark to evaluate other approximation solutions.

IV. DESIGN GUIDELINES

In this section, we elaborate our design guidelines to quickly

and efficiently solve the joint optimization problem.

A. Unified Representation of Both Types of Optimization

For effective joint optimization, the first challenge is that

there are two types of optimization, i.e. VM placement and

flow routing, and it is not clear how to simultaneously con-

sider them. We propose a unified representation method that

converts the VM placement problem to a routing problem, so

that a single solution can apply to both optimization problems.

DCNs are typically organized in a multiple-layer hierarchical

structure. For example, Figure 2(a) shows a fat tree based DCN

with core, aggregation, and top-of-rack (ToR) three layers of

switches, and an additional layer of servers.

The key observation is that the VM-server relationship is

similar to that of sever-switch. A VM can select to reside on

one of multiple allowed servers, and send its traffic through

the physical network adapter of the hosting server. This is

similar to the selection made by a server to pick one of

multiple connected ToR switches to send its traffic. Inspired

by the observation, we add an additional hierarchical layer of

VMs. In detail, we create in the graph a new node for each

VM, and use an edge to connect it with a server if it can

migrate to the server. Figure 2(b) shows a simple example,

where v1, v2, and v3 can migrate to any server connected

by the same aggregation switch, and v4 can migrate to any

server connected by the same ToR switch. In the optimization

process, we search routing paths for the flows between VM

pairs. If a VM has a path to a server in the optimization result,

then the VM will be hosted by the server. In this way, we

provide a unified view to solve both optimization problems.

The next challenge is then to determine the capacity of the

newly added edges between VMs and servers. Theoretically, a

server can sustain a very large amount of traffic between two

hosted VMs by the local bus, and therefore the bandwidth

capacity constraints are not important for VM-server edges.

However, the servers do have memory capacity constraints

with the VMs. To reflect such constraints, we create a dummy

node for each server, and use an edge to connect them whose

capacity will be the memory capacity of the server. We now

let the VMs connect to the dummy node instead of the server.

Specifically, if a VM can migrate to a server, the VM has an

edge with infinite capacity connecting to the dummy node of

the server. When search a path for a flow between the dummy

node and the server or vice versa, the demand of the flow

will be the memory demand of the closer end VM instead of

bandwidth demand. In this way, the VMs connected to a server

is constrained by the server memory capacity. Figure 2(c)

shows the results after adding the dummy nodes to Figure 2(b).

Finally, there is a difference between a VM node and a

physical server node. While a server can send different flows to

different ToR switches, a VM has to send all its flows through

the same physical server. In other words, a VM can select

only one of the links connecting to different dummy nodes. If

a VM has multiple traffic flows, all of them should share the

same path between the VM and the hosting server.

B. Cluster based Parallel Processing

To accelerate processing the huge number of VMs in a data

center, we propose a parallelization approach that divides the

DCN into clusters to reduce the problem size, and processes

the clusters in parallel for fast completion. The design is

based on the requirement that live VM migration needs to

keep ongoing network connections and therefore the current IP

address [21]. Although with existing techniques such as mobile

IP, it is possible for an IP address to move into a different

subnet (or a foreign network in the term of mobile IP) and

keep the ongoing connections, there is an expensive overhead

caused by triangle routing [15]. As a result, we assume that

a VM will only migrate within its own subnet [21], which

consists of a fixed set of servers connecting to the same router

interface by the predefined wiring. Note that a VM may not

be able to migrate to every server in the subnet because of

other constraints, such as different hardware configurations.

The main idea is to organize the servers and VMs in

the same subnet as a cluster, and conduct intra- and inter-

cluster processing separately at reduced scales. For intra-

cluster processing, we find the paths for all traffic flows

between the VMs in the cluster, and as a result determine

the placement of such VMs. If a VM has only inter-cluster

flows, i.e. to VMs in other clusters, we simply calculate its

placement according to its memory and bandwidth demands.

The reasoning is that the DCN topology is usually symmetric,

and VM placement anywhere in the cluster is not likely to

affect inter-cluster routing.

The advantages are two-fold. First, by dividing the problem

into a few smaller scale ones, the parallelization approach

reduces the solution search space and allows fast completion.

Second, since intra-cluster processing of different clusters are
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Fig. 2. Unified representation of VM placement and flow routing.

independent, it can be done in parallel to reduce the total

processing time.

V. HOST-NETWORK JOINT OPTIMIZATION SCHEME

With the above design guidelines, we now present a fast

topology oriented multipath routing algorithm to quickly

search paths for the intra- and inter-cluster flows. The design

utilizes the hierarchical feature of DCN topologies to conduct

fast routing. The basic idea is to use depth-first search to

find a sequence of best-fit links for the flow. Since a path

usually includes links connecting nodes at different layers,

depth first search can quickly traverse the layers. If the search

has exhausted all the links in a layer and cannot proceed

further, it is necessary to backtrack to the previous layer and

try the next candidate. For easy description, we define the VMs

to be the lowest layer, and the upstream direction to be from

a lower layer node to a higher layer one.

When there are multiple available links to the next hierar-

chical layer, the best-fit criterion selects the one with the best

matching capacity, i.e. the smallest and sufficient capacity,

so as to consolidate the flows to a few links and improve

energy conservation. The first-fit criterion achieves O(logN)
time complexity to select from N links by conducting binary

search on a sorted list. Compared with worst-fit that distributes

flows to available links in a load balancing way, best-fit

maximizes flow consolidation. A concern is then whether the

flow consolidation by best-fit will exhaust bandwidth of a

specific link, and block a future flow that has to use this link.

Fortunately, a switch in a typical DCN has more than one link

to switches in the neighboring layers for path redundancy, and

therefore the probability for all the links to be unavailable is

small. Further, exhaustive depth-first search with backtracking

guarantees to explore every possible path, and we observe

that all the three selection criteria have similar routing success

ratios, close to 100% under reasonable traffic loads, as shown

in Section VII.

As the initialization, the scheme uses the unified representa-

tion method in Section IV-A to show all the VMs, servers, and

switches in a graph. The scheme first processes each cluster,

which is the subgraph corresponding to the subnet, and then

searches paths between the subgraphs for inter-cluster flows.

A. Intra-cluster Processing

Intra-cluster processing starts with sorting the VMs in the

cluster by their memory demands in a decreasing order, for

two reasons. First, VM migration consumes energy, which

is proportional to the VM memory image size since VM

migration copies the VM memory image between servers [8].

By sorting the VM memory demands, we intend to keep the

VMs with large memory images intact and move those with

small ones. Second, the scheme will use best-fit decreasing

for VM placement, since it has better performance than best-

fit [9]. This will result in a smaller number of hosting servers.

Next, the scheme searches paths for intra-cluster flows

using the depth-first best-fit rule. The scheme picks among

the VMs with intra-cluster flows the one with the largest

memory demand, and processes its intra-cluster flows one by

one. Initially, neither the source nor the destination VM has

found a hosting server, the path will include three possible

sections: VM-to-server, server-to-switch-to-server, and server-

to-VM. Note that if the two VMs migrate to the same server,

the path does not need to traverse any switch.

The first step of the path searching is to determine the

necessary layer to connect the source and destination VMs.

Hosts in DCNs usually have IP addresses corresponding to

their topological locations [7]. For example, in a fat tree based

DCN, hosts in the same pod usually share the same subnet

address [21]. Thus, it is easy to determine by which layer

the two edge switches can be connected. Since the network

topology and IP address assignment are known in advance, it

is appropriate to do the calculation for all IP addresses in

advance and store the results, so that they can be quickly

obtained during path searching. Determining the connecting



layer avoids wasting bandwidth of switches at higher layers,

which will be available for future flows.

After determining the connecting layer, the scheme searches

paths for intra-cluster flows using the depth-first best-fit rule.

Specifically, starting from the source VM, the scheme searches

upstream by selecting the best-fit link to the next higher layer.

After reaching the connecting layer, the searching direction

turns downstream, similarly by selecting the best-fit link to

the next lower layer. For certain topologies, such as the fat

tree, the downstream path to a specific server is determined

after reaching the connecting layer. Since the depth-first best-

fit rule does not guarantee a path on the first try, backtracking

with the next candidate or to a higher layer may be necessary.

However, the depth-first search guarantees O(|N |+ |E|) time

complexity [9], where N and E are the node and edge set,

respectively. For easy understanding, Table II gives the pseudo

code description of the depth-first best-fit search.

Recall that for the VM-to-server section, the capacity

between the dummy node represents the available memory

capacity of the server and the flow demand is the memory

demand of the source VM. If the source VM is connected to

multiple servers and they have the same smallest but sufficient

capacity, preference will be given to the current hosting server

of the VM. If the servers in the cluster are homogeneous in

terms of memory and bandwidth configurations, the first VM

will stay on its current server, and thus we avoid migrating

the VM with the largest memory demand among the ones

with intra-cluster flows. Similarly, for the sever-VM section,

the link capacity between the server and the dummy node is

the server memory space, and the flow demand is the memory

demand of the destination VM.

Once the scheme finds the path for an intra-cluster flow, the

placement of the source and destination VMs are determined

as well based on the VM-to-server and server-to-VM paths.

The scheme will thus move the VMs to the selected servers,

so that additional flows of the VMs can start from the servers

instead.

After the scheme finishes processing a flow, it picks another

among the remaining ones of the same VM or the VM

with the next largest memory demand. The processing of

the newly selected flow is similar. However, since the source

and destination VMs of the flow may have been determined,

the scheme searches a path between the servers instead of

the VMs. The scheme continues the iterations until finishes

processing the VMs with intra-cluster flows. For each of

the remaining VMs with only inter-cluster flows, the scheme

decides only its hosting server based on the memory and

bandwidth demands by the best-fit criterion with priority given

to the memory demand.

B. Inter-Cluster Processing

Inter-cluster processing searches paths for flows between

different clusters, using the same depth-first best-fit rule.

After intra-cluster processing is done, all the VMs have

found their hosting servers and corresponding ToR switches.

Similar as intra-cluster processing, inter-cluster processing first

Fig. 3. Photo of our prototype.

determines the necessary layer to connect the source and

destination ToR switches, which is solely based on the network

topology and can be calculated in advance. Then, starting

from the source ToR switch, the scheme searches upstream by

selecting the best-fit link. After reaching the connecting layer,

the scheme turns downstream by also selecting the best-fit link.

Again, backtracking may be necessary to successfully find a

path. Figure 2(d) shows the example optimization results after

applying the joint optimization scheme to the DCN in Figure

2(a), where a VM pair with the same color has a flow between

them.

VI. PROTOTYPE IMPLEMENTATION

In this section, we describe our implementation of the

proposed scheme in a prototype using the Beacon OpenFlow

controller, HP ProCurve OpenFlow switches, VMware vCenter

server, and VMware ESXi hypervisor.

A. Hardware and Software Configuration

We have built a 4-pod and 16-host fat-tree prototype as

shown in Figure 3, to demonstrate the effectiveness and

practicality of our optimization algorithm in real networks. We

use 2 OpenFlow enabled 48-port HP ProCurve 6600 switches

running firmware version K.15.06.5008, and create 20 virtual

switches. Each virtual switch is assigned 4 ports, except that

the first core layer switch has 3 extra ports to allow connec-

tions to management nodes, including the VMware vCenter

server, Network File System (NFS) server, and DHCP server.

All switches are managed by the Beacon OpenFlow controller

version 1.0.0 with a self-developed Equinox framework bundle

that implements our optimization algorithm. Each host is

running the VMware ESXi hypervisor version 5.0.0 to host

VMs running operating system of Ubuntu Server 12.04.1 LTS

64 bit. The hosts and VMs are configured to request IP address

upon start-up through the DHCP protocol. When the controller

detects the DHCP discovery message sent by a host or a VM,

it records the host’s or the VM’s MAC address and location

based on which input port of which ToR switch received the



TABLE II
PSEUDO CODE DESCRIPTION OF DEPTH-FIRST BEST-FIT SEARCH.

DFS(G, a, b, d) { // G: network, a: source, b: destination, d: demand
1 H = necessary-layer-to-connect(G, a, b);
2 path = {};
3 u = a; // temp variable indicating current location
4 next = 1; // flag indicating search direction, 1: upstream, -1: downstream
5 return SEARCH(u, path, next);
}

SEARCH(u, path, next) {
1 path = path+ u;
2 if (u = b) return true;
3 if ( layer-of(u) = H) next = −1; // reverse search direction after reaching connecting layer
4 if ( next = −1 && layer-of(u) = 1) return false; // failure at bottom layer
5 links = links of u to layer (layer-of(u) + next) and with available bandwidth ≥ d;
6 found = false;
7 while (links �= ∅ && found = false) {
8 v = best-fit(links); links = links \ {v};
9 found = SEARCH(v, path, next);
10 };
11 return found;
}

Beacon Controller

OpenFlow SwitchesVmware vCenter

Optimizer

1. VM Update

3. Network Info.

5. Live VM Migration

4. Routing Paths

9. Power off Idle Hosts

6. RARP Packets

11. All Packets

2.
 F

lo
w

 U
pd

at
e

7.
 R

AR
P 

Pa
ck

et
s

8.
 D

el
et

e 
O

ld
 F

lo
w

 E
nt

rie
s

10
. P

ow
er

 o
ff 

Id
le

 S
w

itc
he

s

12
. P

ac
ke

t-
in

13
. B

ro
ad

ca
st

or
 In

st
al

l N
ew

 F
lo

w
 T

ab
le

Routing Path Database

Fig. 4. Major steps of optimization.

message. The IP address of the host or VM is updated when

the controller detects the DHCP offer message. All hosts and

VMs are remotely managed by the VMware vCenter server

version 5.0.0 and the VM’s file system is provided by the

NFS server.

Iperf UDP flows are employed to emulate the production

traffic in data centers. The controller assigns initial routing

paths to the flows. The initial routing paths are calculated

by using the Shortest Path Routing algorithm. If there exist

multiple routing paths from the source to the destination, the

controller selects one of them randomly. For each switch on

the routing path, the controller also calculates each flow’s

input and output ports. The controller installs the flow table

entries to all the switches on the routing path by sending

them ofp_flow_mod messages with the flow’s matching

information and the calculated input and output ports.

B. Optimization

Since the Beacon controller has the view of the entire

network, we integrate the optimizer into the controller as one

of its Equinox framework bundles. The optimizer can access

all the information gathered in the initialization stage. The

optimization executes cycle by cycle and each cycle follows

the four steps described below. The major exchanged data in

one optimization cycle are shown in Figure 4.

1) Network Status Update: Before executing the optimiza-

tion algorithm, the controller takes a snapshot of the current

network. The main purpose of this step is to update the

network topology, the VMs information, and the flows in-

formation that might have changed between two optimization

cycles.

For the switches and links, the controller utilizes the Link

Layer Discovery Protocol (LLDP) implemented in the original

Beacon controller. The network topology information is stored

inside the controller and will be used later in the optimization

stage describe in the next subsection. The memory and CPU

capacities of each host are fetched from the host manage-

ment node, i.e., the VMware vCenter server. Specifically,

the controller sends Get-VMHost command with the host’s

IP address to the VMware vCenter through the VMware

vSphere PowerCLI interface. The VMs location and capacity

information can be gathered by using similar methods. For the

VM information, the controller sends a Get-VM command

to the VMware vCenter to update each VM’s location, CPU

demand and memory demand. For the flow information, the

controller sends ofp_stats_request messages of type

OFPST_FLOW to each virtual switch to request the flow statis-

tics. From the statistic reply messages, each flow’s average

bandwidth demand can be estimated by the flow’s duration

and total traffic amount. The controller stores the updated

information in its database. Note that only the bandwidth of

large flows will be stored, since these flows have the major

impact on the optimization result.

2) Optimal Network Scheme Calculation: Based on the

network status snapshot, the optimizer executes the host-

network joint optimization algorithm described in Section V.
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An optimal network scheme, including the VM’s new location

and the flow’s new routing path, is calculated. The routing

path of each large flow are stored in a HashMap dictionary

in the controller. The key of each map entry is a string that

uniquely identifies each individual flow. The value of each

map entry contains the flow table information of each switch

on the routing path, including the switch’s datapath ID, and

the input and output port of the flow. In our prototype, Iperf

UDP flows among VMs are the large flows. We concatenate

the source VM’s MAC address, the destination VM’s MAC

address and the transport layer port number of the destination

VM to form the HashMap key.

For example, one Iperf flow is from VM 2 with MAC

address 00:00:00:00:00:02 to VM 6 with MAC address

00:00:00:00:00:06 on transport layer port 5001. First

we transform the MAC address to Long type and the source

and destination MAC addresses become 2 and 6, respectively.

Then, the HashMap key should be the string of "265001".

As shown in Figure 5, we assume that the optimized locations

of VM 2 and VM 6 are on host 1 and host 4, respectively.

We also assume that the optimized routing path of this Iperf

flow is from ToR switch 301’s port 1 to port 2, then from

aggregation switch 202’s port 12 to port 14 and then from

ToR switch 302’s port 7 to port 8. Then the routing path of

this flow should be <<301, 1, 2>, <202, 12, 14>,
<302, 7, 8>>.

3) VM Location and Flow Routing Path Adjustment: In

this stage, the controller passes the optimization result to the

VMWare vCenter which will execute live VM migrations to

adjust the VM locations. Then the controller will adjust the

flow routing paths accordingly. In out prototype, the live VM

migration is implemented by the VMware vMotion migration

command Move-VM. Switches and hosts will be powered on

if they are included in the optimization result.

Upon the completion of each VM’s live migration, the VM

will broadcast several RARP messages to announce its new

location. When the controller detects such messages, it will

delete flow table entries that are calculated based on the VM’s

old location. To be specific, the controller sends two messages

to each switch to delete all flow entries that are related to

the just migrated VM. One message is to delete flow entries

whose source is the VM, while the other message is to delete

flow entries whose destination is the VM. The two messages

have the similar structure. They are both ofp_flow_mod
messages of command type OFPFC_DELETE. The only dif-

ferences are in the the flow match attribute and in the

wildcards attributes. One sets the data link layer source

address as the address of the migrated VM, and sets the

wild card to OFPFW_ALLˆOFPFW_DL_SRC. The other one

sets the data link layer destination address as the ad-

dress of the migrated VM, and sets the wild card to

OFPFW_ALLˆOFPFW_DL_DST.

4) Powering Off Idle Hosts, Switch Ports and Switches:
In this stage, the controller sends commands to power off

idle hosts, idle switch ports, and idle switches. A host is

considered idle if it is not hosting any active VM. A switch

port is considered idle if no traffic is currently running on the

port, and according to the optimization result, no traffic will

pass this port before the next optimization cycle. A switch

is considered idle if all of its ports are idle. For the idle

hosts, the controller sends out Stop-VMHost commands

through the VMware PowerCLI interface to power them off.

For the idle switch ports and idle switches, the controller

sends port-down commands and switch power-off commands

through the switch’s command line interface to power them

off, respectively.

The optimization cycle completes when all idle hosts and

idle switches are powered off. At this moment, when a packet

is sent to the controller to find the routing path, 1) if the packet

is a broadcast packet, the controller will ask the switches in the

spanning tree to flood this packet; 2) if the packet is a unicast

packet and belongs to a large flow with a stored routing path,

the controller will fetch the path in the HashMap database

and then install flow table entries to switches on the routing

path; 3) if the packet is a unicast packet but belongs to a flow

without a stored routing path, the controller will calculate a

random routing path based on the current topology by using

the Shortest Path Routing algorithm.

VII. SIMULATION AND EXPERIMENT RESULTS

We have implemented the proposed joint host-network

energy optimization scheme in a simulator. In this section,

we present the numerical results from the simulations and

experiments, to evaluate our design.

A. Simulation Results

We compare the simulation results with the network-only

[14], host-only [19], and the linear programing optimization

solutions. The simulation results demonstrate that our design

outperforms the network- and host-only optimization solu-

tions, and well approximates the ideal linear program.

1) Comparison with Linear Program: First, we compare

our joint optimization scheme with the ideal linear program,

as well as the network-only optimization solution. We use the

32-bit IBM ILOG CPLEX [1] as the linear program solver. For

network-only optimization, we pick the greedy-bin packing
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Fig. 6. Comparison with linear program and network-only optimization.

algorithm in [14], because the topology-aware heuristic in

[14] uses different assumptions by splitting a flow among

multiple paths. We do not include host-only optimization in

this subsection, because it assumes that all the VMs have the

same memory demand.

Since the linear program is NP-complete, the simulations

can only be at small scales. We consider a fat tree with k = 4,

with the numbers of servers and switches determined as in [5].

Each link has a bandwidth capacity of 1Gbps. Each server has

a memory capacity of 8GB. The memory demand of a VM is

a random number between 500MB to 1GB, and the number of

VMs is determined by the memory load parameter. We restrict

that a VM can only migrate to a server connected by the

same aggregation layer switch, i.e. within the same pod [21].

Each VM has 2 flows in average with uniformly distributed

destinations, and the the flow bandwidth demand is determined

by the traffic load parameter. We use Equations 11 and 13

as the switch and server power functions, respectively, with

α(x) = δ(s) = 200 and β(x) = ε(x) = 10, and assume that

links are powered by the switches and consume no additional

energy.

In Figure 6, we let the memory load equal to the traffic load,

which changes from 0.1 to 0.9, and compare the power saving

percentages of the three solutions. We can see that our scheme

is consistently superior over network-only optimization, up to

40% better. On the other hand, our scheme well approximates

the linear program. We tried to solve the linear program

with a higher load or a larger network size, but unfortunately

CPLEX reported insufficient memory errors due to too many

constraints.

2) Comparison with Network-only Optimization: Next, we

compare the joint and network-only optimization solutions on

a fat tree with k = 16. The simulation settings are similar to

those in the previous subsection.

In Figure 7(a), we adjust the memory and traffic load, and

compare the power saving percentage of the two solutions.

Joint optimization consistently outperforms network-only op-

timization. While the power consumption of network-only

optimization increases quickly with the load, joint optimization

demonstrates energy proportionality. In Figure 7(b), we fix

the memory and traffic load at 0.3 and adjust the percentage

of intra-cluster traffic. Joint optimization still performs much
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(a) Different memory and traffic loads. (b) Different traffic patterns.
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(c) Different traffic loads. (d) Different memory loads.
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Fig. 7. Comparison with network-only optimization.

better than network-only optimization. As the percentage of

intra-cluster traffic increases, we can see that the performance

of joint optimization improves, because there are more op-

timization opportunities for intra-cluster processing. In Fig-

ure 7(c), we fix the memory load at 0.5 and adjust the traffic

load. The power consumption of both solutions increases with

the traffic load, but joint optimization still beats network-only

optimization. In Figure 7(d), we fix the traffic load at 0.5 and

adjust the memory load, and the conclusion is similar to that

in Figure 7(c). In Figure 7(e), we use the following different

power functions for switches and servers:

switch power = 200

(
1 +

# of active powers

# of total ports

)
(14)

server power = 200

(
1 +

memory of hosted VMs

total available memory

)
(15)

Under the new power functions, joint optimization still per-

forms better than network-only optimization. Finally, in Fig-

ure 7(f), we compare the routing success ratio of the two

solutions. Although our scheme is not designed to work under

heavy loads for a high routing success ratio, it achieves about

100% routing success under reasonably heavy loads, and so

does network-only optimization.
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Fig. 8. Comparison with host-only optimization.

3) Comparison with Host-only Optimization: Finally, we

compare the joint and host-only optimization solutions on

a fat tree with k = 16. Since the host-only optimization

solution considers VM placement but not flow routing, we

use a OSPF like ECMP multipath routing algorithm for it in

the simulations. Because host-only optimization assumes fixed

VM memory demands, we use a value of 0.8GB.

In Figure 8(a), we adjust the memory and traffic load, and

compare the power saving percentage of the two solutions.

Both solutions demonstrate similar and proportional power

efficiencies, with joint optimization having a slight advantage.

In Figure 8(b), we fix the memory and traffic load at 0.3 and

adjust the percentage of intra-cluster traffic. Joint optimization

is still better than network-only optimization. Similarly, the

performance of joint optimization improves with the increase

of intra-cluster traffic, because there are more optimization

opportunities. In Figure 8(c), we fix the memory load at

0.5 and adjust the traffic load. Joint optimization is initially

better than host-only optimization, but becomes worse after

the traffic load is greater than 0.6. This implies that host-

only optimization does a better job in terms of VM placement.

However, we should also notice that, host-only optimization

has higher time complexity as the cost. On the other hand,

the performance of host-only optimization is not sensitive to

the change of traffic load, because it optimizes only VM

placement. In Figure 8(d), we fix the traffic load at 0.5

and adjust the memory load. Joint optimization is initially

worse than host-only optimization, but becomes better after

the memory load is grater than 0.5. It is interesting to note that

the performance of host-only optimization is almost linear to

the memory load. Finally, in Figure 8(e), we use the second set

of switch and server power functions, and joint optimization

still outperforms host-only optimization.

B. Experimental Results

We have conducted experiments in our prototype to evaluate

the performance of the optimization scheme. In this subsec-

tion, we first describe the experimental setup, and then present

the results to demonstrate that the optimization scheme is

effective and practical.

1) Experiment Configuration: Two experiments are con-

ducted. In the fist experiment, the average memory and traffic

load of the prototype is set to 15%, while in the second

experiment, the load is set to 30%. VMs and network flows

are generated according to the load and the following rules.

Each VM’s memory is randomly selected between 250 MB

and 500 MB. The initial location of each VM is randomly

selected among the hosts. We adjust the number of VMs to

meet the host utilization goal of each experiment. Each VM

is configured to send out one Iperf UDP flow in average. The

normal size of the flows are randomly selected between 20
Mbps and 250 Mbps and we adjust the flow size to meet the

network utilization goal of each experiment if necessary. For

the experiment with 15% memory and traffic load, 21 VMs and

24 Iperf UDP flows are generated. For the second experiment

with 30% memory and traffic load, 42 VMs and 49 Iperf UDP

flows are generated.

Both experiments run the following steps. Initially all

switches, hosts and VMs are powered on and all flows are

started. We measure and record the current power consump-

tion. Then, we run one full optimization cycle. After the

optimization completes, we measure the power consumption

again and compare it with the original value. Note that only

the power consumption of the hosts are measured both before

and after the optimization. This is because that the physical

switch has large power consumption overhead, and the power

consumption of each virtual switch cannot be accurately

measured. We use the Kill-A-Watt power meter model P4320

to measure the power consumption.

2) Experimental Results - Routing Path Control: In order to

verify whether the optimization is able to adjust flow’s routing

paths correctly, we study the traffic amount of the hosts to see

if they are as same as expected. Due to space limitations, we

only present the result of Host 4 in this paper. The results of

other hosts follow the similar pattern and lead to the same

conclusion.

Table III(a) and (b) give the detailed configuration of the

flows and traffic amount of Host 4, before and after the

optimization, respectively. The VMs with bold name are the

ones hosted by Host 4. Thus, before the optimization, only

VM 7 is hosted by Host 4; after the optimization, 3 additional



TABLE III
FLOW CONFIGURATION AND TRAFFIC AMOUNT OF HOST 4

Flow Direction Flow Bandwidth (Mbps) Outgoing Traffic Amount of Host 4 (Mbps) Incoming Traffic Amount of Host 5 (Mbps)
VM 4 → VM 7 83.7 - 83.7

VM 7 → VM 19 90.1 90.1 -
Total 173.8 90.1 83.7

(a) Before Optimization

Flow Direction Flow Bandwidth (Mbps) Outgoing Traffic Amount of Host 4 (Mbps) Incoming Traffic Amount of Host 5 (Mbps)
VM 4 → VM 7 83.7 - -
VM 4 → VM 17 27.8 27.8 -
VM 7 → VM 19 90.1 - -
VM 9 → VM 3 26.8 26.8 -

VM 11 → VM 9 22.7 - -
VM 11 → VM 20 56.0 56.0 -
VM 19 → VM 3 119.1 119.1 -

Total 396.2 229.7 0
(b) After Optimization
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Fig. 9. Measured incoming and outgoing traffic of Host 4.

VMs are hosted by Host 4, including VM 4, VM 11, and VM

19. If either a flow’s source or destination VM is on Host

4, this flow accounts Host 4’s network traffic. The traffic’s

direction and amount is the same as the flow’s direction and

bandwidth, respectively. For example, after the optimization,

the flow from VM 4 to VM 17 accounts 27.8 Mbps of Host 4’s

total outgoing traffic. If both the source and destination VMs

of a flow are on Host 4, the flow does not account any of Host

4’s traffic. One example is the flow from VM 7 to VM 19 after

the optimization. The total outgoing traffic amount and total

incoming traffic amount of Host 4 should be the summation

of each flow’s outgoing traffic amount and the summation of

each flow’s incoming traffic amount, respectively.

Figure 9 shows the measured total outgoing and the mea-

sured total incoming traffic of Host 4 before and after the

optimization. We can find that, before the optimization and the

VM migrations, the amount of outgoing traffic and the amount

of incoming traffic of Host 4 are the same as the calculated

amount shown in Table III(a). During the optimization, Host

4’s incoming traffic amount changes dramatically. This is

due to the VM migration traffics that has Host 4 as the

destination. After the optimization, the total outgoing traffic

of Host 4 stabilizes at around 225 Mbps which has less than

2% difference as the calculated amount shown in Table III(b).

The incoming traffic amount of Host 4 after the optimization

drops to zero which is the same as calculated in Table III(b).

In summary, by comparing the measured traffic amount with
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(a) Memory and traffic load = 15%. (b) Memory and traffic load = 30%.

Fig. 10. Power consumption comparison before and after optimization.

the calculated traffic amount, we show that the optimization

can adjust the flow’s routing paths correctly.

3) Experimental Results - Power Consumption Reduction:
Figure 10(a) and 10(b) illustrates the comparison of the power

consumptions before and after the optimization when system

load is equal to 15% and 30%, respectively. Both figures

show that the power consumption after the optimization is

lower than before the optimization. Specifically, Figure 10(a)

shows that when system load is equal to 15%, the total power

consumption drops from 1139W to 466W or from 100%
to 41%. In other words, the optimization saves 59% of the

original power consumption. Figure 10(b) shows that when

system load is equal to 30%, the total power consumption

drops from 1228W to 742W or from 100% to 60%. In other

words, the optimization saves 40% of the original power

consumption. It is worth noting that the optimization yields

larger reduction of the power consumption when system load

is lighter. This is because that, when the system load is lighter,

VMs will be consolidated into fewer number of hosts and

thus more idle hosts can be powered off to further reduce the

power consumption. The experiment results have demonstrated

that our joint host-network optimization is an effective and

practical method to improve the data center’s energy efficiency.

VIII. DISCUSSIONS

In this section, we discuss some practical issues in the joint

host-network optimization implementation.



A. Broadcast in OpenFlow Networks

Traditional switches flood broadcast packets to certain ports,

while other ports are blocked by the spanning tree protocol

such that no loop exists in the network. But since the spanning

tree protocol may conflict with the controller, it is disabled on

OpenFlow switches by default. Thus it is challenging to enable

broadcast in networks that have loops. To solve such problem,

we construct a spanning tree and put it in the controller instead

of on the switches. When the controller detects broadcast

packets, it asks only the switches in the spanning tree to flood

the packets.

B. Energy Consumed by VM Migration

It should be noted that while we try to reduce energy con-

sumption by migrating VMs, the operation of VM migration

itself also consumes energy, but it is fortunately a one-time

overhead. Since VM migration is essentially to copy the VM

memory image between servers, its energy consumption can

be estimated by by the size of the VM memory image.

C. Safety Margins

While our design uses the best-fit criterion to maximize

flow consolidation, it is necessary to leave certain safety

margins for redundancy and traffic burst. This can be done

by leaving a certain percentage of the link capacity untouched

in the optimization process, and it will be our future work to

determine a reasonable percentage value.

IX. CONCLUSIONS

The data center network (DCN) has become a major fraction

of the energy consumption of a data center. In this paper, we

propose a joint host-network optimization scheme to improve

the energy efficiency of DCNs. First, we present a unified

representation method to convert the virtual machine place-

ment problem to a routing problem, so that a single solution

can apply to both types of optimization. Next, we describe

a parallelization approach that divides the DCN into clusters

based on subnet IP addresses, and processes the clusters in par-

allel for fast completion. Further, we propose a fast topology

oriented mutipath routing algorithm that can quickly find paths

by using depth-first search to traverse between the hierarchical

layers, and maximize energy conservation by using the best-fit

criterion to consolidate flows. Finally, we build an OpenFlow

based prototype, and have conducted extensive simulations

and experiments to evaluate the performance of our design.

The simulation and experiment results demonstrate that our

design is effective and practical, and it is also superior over

existing host- or network-only optimization solutions, and well

approximates the ideal linear program.
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