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ABSTRACT
Supporting preemptible disk access is essential for interactive multi-
media applications that require short response time. In this study, we
propose Virtual IO, an abstraction for disk IO, that transforms a non-
preemptible IO request into a preemptible one. In order to achieve
its objective efficiently, Virtual IO uses disk profiling to obtain ac-
curate and detailed knowledge about the disk. Upon implementation
of Virtual IO, we show that not only does Virtual IO enable highly
preemptible disk access, but it does so with little or no loss in disk
throughput.

1. INTRODUCTION
Many varieties of media such as video, audio, and interactive vir-

tual reality are proliferating. Because of the large amount of mem-
ory required by these media data, they are stored on disks and are
retrieved into main memory only when needed. For interactive mul-
timedia applications which require short response time, a disk IO
request must be serviced promptly. For example, in an immersive
virtual world, the latency tolerance between a head movement and
the rendering of the next scene (which may involve a disk IO to re-
trieve relevant data) is around15 milliseconds [1]. Such interactive
requests can be modeled as higher-priority IO requests. However,
the disk might already be servicing an IO when the higher-priority
IO request arrives. Due to the typically large media-IO size and the
non-preemptible nature of an ongoing disk IO, even higher-priority
requests can be kept waiting for at least tens, if not hundreds, of
milliseconds before they are serviced by the disk.

To reduce the response time for a higher-priority request, its wait-
ing time must be reduced. Thewaiting time, Twaiting, for an IO
request is defined as the amount of time it must wait, due to the non-
preemptibility of the ongoing IO, before being serviced by the disk.
The response time for the higher-priority request is then the sum of
its waiting time and service time. Theservice timeis the sum of
the seek time, rotational delay, and data transfer time for an IO re-
quest and can be reduced by intelligent data placement policies [12].
However, our focus is on reducing the waiting time by increasing the
preemptibility of disk access.

In this study, we proposeVirtual IO, an abstraction for disk IO,
which provides highly preemptible disk access with little or no loss
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in disk throughput. Virtual IO breaks the components of an IO into
fine-grained physical disk-commands and enables IO preemption
between any two disk commands. If a higher-priority IO request
can arrive at any time during the service time for the ongoing IO
request with equal probability, thenTwaiting of the higher-priority
request can include seek time (Tseek), rotational delay (Trot), and
data transfer time (Ttransfer) for the ongoing IO request, with the
expected value of

E(Twaiting) =
1

2
(Tseek + Trot + Ttransfer).

Virtual IO maps each IO request into multiple fast-executing disk
commands using three methods. The ongoing IO can now be pre-
empted to service another higher-priority IO between two disk com-
mands. Each method within Virtual IO addresses the reduction of
one of the components of the waiting time.

• Chunking Ttransfer. Virtual IO divides a large IO transfer
into a number of small chunk transfers, and makes preemp-
tion possible between the chunk transfers. If the IO is not
preempted, chunking does not incur any overhead. This is
due to the prefetching mechanism in current disk drives (Sec-
tion 2.1).

• PreemptingTrot. Virtual IO performs just-in-time (JIT) seek,
which converts the rotational delay at the destination track into
a fully preemptible pre-seek slack. This slack can also be used
to perform prefetching for the ongoing IO request, or/and to
mask seek splitting overhead (Section 2.2).

• Splitting Tseek. Virtual IO splits a long seek into sub-seeks,
and permits preemption between two sub-seeks (Section 2.3).

Virtual IO services a single IO request using multiple disk com-
mands. Let the time required to executeith disk command beTi.
Let Tidle be the idle time before JIT-seek. The expected waiting
time1 using Virtual IO can then be expressed as

E(T ′waiting) =
1

2

P
T 2

i

(
P

Ti + Tidle)
.

[Illustrative Example] Suppose a500 kB read-request has to seek
20, 000 cylinders requiringTseek of 14 ms, must wait for aTrot of
7 ms, and requiresTtransfer of 25 ms at a transfer rate of20 MBps.
The expected waiting time,E(Twaiting), for a higher-priority re-
quest arriving during the execution of this request, is23 ms, while
the maximum waiting time is46 ms.

Virtual IO can reduce the waiting time by performing the follow-
ing operations. It first predicts both the seek time and rotational de-
lay. Since the predicted seek time is long (Tseek = 14 ms), it decides
to split the seek operation into two sub-seeks, each of10, 000 cylin-
ders, requiringT ′seek = 9 ms each. In this case, the seek splitting
1Please refer to Section 2 for the derivation of this equation.



does not cause extra overhead because theTrot = 7 ms can mask the
4 ms increased total seek time (2×T ′seek−Tseek = 2×9−14 = 4
ms) incurred by seek splitting. The rotational delay is nowT ′rot =
Trot − (2× T ′seek − Tseek) = 3 ms.

With this T ′rot = 3 ms knowledge, Virtual IO can wait for3 ms
before performing a JIT-seek. This JIT-seek method makesT ′rot pre-
emptible. The disk then performs the two sub-seek disk commands,
and then25 successive read commands, each of size20 kB, requir-
ing 1 ms each. A higher-priority IO request can be serviced immedi-
ately after each disk-command. Virtual IO thus makes preemptible
the originally non-preemptible read IO request. During the service
of this IO, we have two scenarios:

No higher-priority IO arrives.In this case, the disk does not in-
cur additional overhead for transferring data due to disk prefetching
(discussed in Sections 2.1 and 2.4) nor additional disk latency.

A higher-priority IO arrives. In this case, the maximum waiting
time for the higher-priority request is now a mere9 ms, if it arrives
during one of the two seek disk commands. However, the longest
stall for the higher-priority request during data-transfer is just1 ms.
Thus, the expected value for waiting time is only1

2
2×92+25×12

2×9+25×1+3
=

2.03 ms, a significant reduction from23 ms.
This example shows that Virtual IO drastically reduces the ex-

pected waiting time2. In summary, the contributions of this paper
are as follows:

• We introduce Virtual IO, which abstracts both read and write
IO requests so as to make them highly preemptible with little
or no loss in disk throughput.

• We show a feasible path to implement Virtual IO. We ex-
plain how the implementation of Virtual IO is made possible
through Diskbench, our disk profiling tool [5].

The rest of this paper is organized as follows: Section 2 introduces
Virtual IO and describes its three components. In Section 3, we
evaluate the Virtual IO scheme. Section 4 presents related research.
In Section 5, we make concluding remarks and suggest directions
for future work.

2. VIRTUAL IO
Before introducing the concept ofVirtual IO, we first define some

terms which we will use throughout the rest of this paper. Alogical
disk blockis the smallest unit of data that can be accessed on a disk
drive (typically512 B). Each logical block resides at a physical disk
location, depicted by a physical address (cylinder, track, sector). A
disk commandis a non-preemptible request issued to the disk over
the IO bus. Examples of disk commands are the read, write, and seek
commands. AnIO requestis a request for read or write access to a
sequential set of logical disk blocks. Thewaiting time(Twaiting) is
the time between the arrival of a higher-priority IO request and the
moment the disk starts servicing it. Theexpected waiting timeis the
expected value for the waiting time for a higher-priority IO request.

In order to understand the magnitude of the waiting time, let us
consider a typical read IO request. The disk first performs a seek to
the destination cylinder requiringTseek time. Then, the disk must
wait for a rotational delay, denoted byTrot, so that the target disk
block comes under the disk arm. The final stage is the data trans-
fer stage, requiring a time ofTtransfer. For a typical commodity
system, once a disk command is issued on the IO bus, it cannot be
stopped. Traditionally, an IO request is serviced using a single disk
command. Consequently, the system must wait until the ongoing IO
is completed before it can service the next IO request on the same
disk. Let us assume that a higher-priority request may arrive at any
2Virtual IO increases the preemptibility of disk access with little or
no overhead. However, if an IO is preempted, an extra seek opera-
tion may be required to resume service for the preempted IO.

time during the execution of an ongoing IO request with equal prob-
ability. The waiting time for the higher-priority request can be as
long as the duration of the ongoing IO. The expected waiting time
of a higher-priority IO request can then be expressed in terms of
access times required for ongoing IO as

E(Twaiting) =
1

2
(Tseek + Trot + Ttransfer). (1)

To reduce the waiting time, we propose Virtual IO, which judi-
ciously services an IO request using fine-grained disk commands.
Virtual IO enables preemption of each of the above waiting-time
components using three techniques: chunkingTtransfer, preempt-
ing Trot, and splittingTseek Let Vi be the sequence of fine-grained
disk commands used by Virtual IO to service an IO request. Let the
time required to execute disk-commandVi beTi. Let Tidle be the
idle time before JIT-seek. Using above assumption that the higher-
priority request can arrive at any time with equal probability, the
probability that it will arrive during the execution of theith com-
mandVi can be expressed aspi = TiP

Ti+Tidle
. Finally, the ex-

pected waiting time of a higher-priority request in Virtual IO can be
expressed as

E(T ′waiting) =
1

2

X
(piTi) =

1

2

P
T 2

i

(
P

Ti + Tidle)
. (2)

2.1 Chunking: PreemptingTtransfer

Preemption of the data transfer component (Ttransfer) in disk IOs
is important since it can be large (e.g., for multimedia). A500 kB
IO requires25 ms at a data transfer rate of20 MBps. To make the
Ttransfer preemptible, Virtual IO useschunking.
Definition 2.1: Chunkingis a method for splitting the data transfer
component of an IO request into multiple smallerchunktransfers.
The chunk transfers are serviced using separate disk commands, is-
sued sequentially.
Benefits: Chunking reduces the transfer component ofTwaiting. A
higher-priority request can be serviced after a chunk transfer is com-
pleted instead of having to wait for the entire IO to complete. For
example, suppose a500 kB IO request requires aTtransfer of 25
ms at a transfer rate of20 MBps. Using a chunk size of20 kB, the
expected waiting time for a higher-priority request is reduced from
12.5 ms to0.5 ms.
Overhead: Chuck size must be carefully chosen or disk throughput
may degrade. We show in Section 2.4 that an optimal range of chunk
sizes can be obtained by our disk profiler, in a disk-dependent way.

2.2 JIT-seek: PreemptingTrot

The rotational period can be as much as10 ms in current-day
disk drives. To reduce the rotational delay component (Trot) of the
waiting time, we propose aJust-In-Time seek(JIT-seek) technique.
Definition 2.2: The JIT-seektechnique delays the servicing of the
next IO request in such a way that the rotational delay to be incurred
is minimized. We refer to the delay between two IO requests, due to
JIT-seek, as the slack time.
Benefits:

1. The slack time between two IO requests is fully preemptible.
For example, if an IO request must incur aTrot of 5 ms and JIT-
seek delays the issuing of the IO by4 ms, then the expected waiting
time is reduced from2.5 ms to 1

2
1×1
1+4

= 0.1 ms.

2. The slack obtained due to JIT-seek can also be used to perform
data prefetching for the previous IO stream (free preefetching).

3. The slack can also be used to mask the overhead incurred in
performingseek-splitting, which we shall discuss in next section.



Overhead: Virtual IO predictsTrot andTseek between two IO oper-
ations in order to perform JIT-seek. If there is an error in prediction,
then the penalty can be one extra disk rotation.

2.3 Seek Splitting: PreemptingTseek

The seek time (Tseek) becomes the dominant component when
theTtransfer andTrot components are reduced drastically. A full-
stroke of the disk arm may require as much as20 ms in current day
disk drives. It may then be necessary to reduce theTseek component
to further reduce the waiting time.
Definition 2.3: Seek-splittingbreaks a long, non-preemptible seek
of the disk arm into multiple smaller sub-seeks.
Benefits:Theseek-splittingmethod reduces theTseek component of
the waiting time. A long non-preemptible seek can be transformed
into multiple shorter sub-seeks. A higher-priority request can now
be serviced at the end of a sub-seek, instead of waiting for the entire
seek operation to finish.
Overhead: Due to the mechanics of the disk arm, the total time re-
quired to perform multiple sub-seeks is greater than that for a single
seek of given seek distance. Thus, the seek-splitting can degrade
disk throughput. However, when the obtained slack in JIT-seek is
large, it can be used to mask the seek overhead.

2.4 Disk Profiling
Virtual IO greatly relies on disk profiling to obtain accurate disk

parameters. The extraction of these disk mappings is described in [5].
The disk profiler runs once before Virtual IO is used for the first
time to obtain the following required disk parameters:disk block
mappings(both logical-to-physical and physical-to-logical block ad-
dress transformation),the optimal chunk size(required to efficiently
perform chunking),disk rotational factors(rotation period and ro-
tational skew factors for disk tracks), andseek curve(required for
accurate JIT-seek and seek-splitting).
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Figure 1: Sequential throughput (SCSI ST318437LW).
The disk profiler provides Virtual IO the optimal range for the

chunk size. Figure 1 depicts the effect of chunk size on the sequen-
tial read throughput for one SCSI disk drive. On y-axis we show
achieved sequential disk throughput for the read operation using the
chunk size ofx. For this particular disk, the range for the optimal
chunk size is between6 kB and263 kB, and can be automatically
extracted. Our disk profiler implementation was successful in ex-
tracting the optimal chunk size for several SCSI and IDE disk drives
with which we experimented [4].

3. EXPERIMENTAL RESULTS
We have implemented a prototype system which can service IO

requests using either the traditional non-preemptible method (non-
preemptible IO) or Virtual IO. Our prototype runs as a user-level
process in Linux and talks directly to a SCSI disk using the Linux
SCSI-generic interface. All experiments were performed on a Sea-
gate ST318437LW SCSI disk. The prototype uses Diskbench [5]
to profile the disk. For performance benchmarking, we use equal-
sized IO requests at random positions on the disk. The Virtual IO

prototype services a non-preemptible IO request using the smallest
number of disk commands that provide the optimal disk throughput.
Based on the disk profiling, chunking in Virtual IO divides the data
transfer into25 kB chunks, except for the last chunk, which can be
smaller. JIT-seek uses an offset of1 ms to reduce the probability of
prediction misses. Seeks for more than half of a disk size in cylin-
ders are split into two equal-sized, smaller seeks.

3.1 Preemptibility of Virtual IO
In this section, we aim to answerwhat is the level of preemptibility

of Virtual IO and how does it influence the disk throughput. The ex-
periments for preemptibility of disk access measure the duration of
(non-preemptible) disk commands in both non-preemptible IO and
Virtual IO in the absence of higher-priority IO requests.
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Figure 2: Improvements in the expected waiting time.

Figure 2 depicts the difference in the expected waiting time be-
tween non-preemptible IO and Virtual IO (calculated using Equa-
tions 1 and 2). The expected waiting time in non-preemptible IO
depends linearly on the size of IO requests. This is to be expected,
since the time needed to complete one IO increases due to the larger
data transfer time for larger IO requests. However, the expected
waiting time in Virtual IO actually decreases for large IOs, since
a disk spends more time in data transfer, which has a higher pre-
emptibility. Virtual IO can reduce the expected waiting time by
more than an order of magnitude in systems with large IOs. Fig-
ure 3 shows that Virtual IO provides IO preemptibility with little
loss in disk throughput.
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Figure 3: Effects on the achieved disk throughput.

We use the duration of disk commands to measure the preemptibil-
ity of the disk access, a smaller value implying a more preemptible
system. Figure 4 shows the distribution of the durations of disk com-
mands for both non-preemptible IO and Virtual IO (for exactly the
same sequence of IO requests). In the case of non-preemptible IO
(Figure 4a), one IO request is serviced using a single disk command.
Hence, the disk access can be preempted only when the current IO
request is completed. In the case of Virtual IO (Figure 4b), the dis-
tribution does not depend on the IO request size, but on individual
disk commands used to perform an IO request. For detailed study
please refer to [4].
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Figure 4: Distribution of disk commands duration.

3.2 Individual Contributions within Virtual IO
In this section, we aim to answerwhat are the individual contribu-

tions of the three components of Virtual IO. Figure 5 shows the indi-
vidual contributions of the three Virtual IO components with respect
to expected waiting time. The data transfer in Virtual IO is highly
preemptible, and the expected waiting time decreases as the duration
of the transfer increases. When the transfer component dominates
the seek and rotational components, chunking is the most important
method for reducing the expected waiting time. Otherwise, JIT-seek
and seek-splitting are more important. Virtual IO provides more than
an order of magnitude reduction in waiting time when IO requests
are large, which is often the case in multimedia systems. Figure 6
summarizes the individual contributions of the Virtual IO compo-
nents with respect to the achieved disk throughput.
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4. RELATED WORK
In the past, little need has been expressed for highly preemptible

disk access. Before the pioneering work of [3, 7], it was assumed
that the nature of disk IOs was inherently non-preemptible. In [3],
the authors proposed breaking up a large IO into multiple smaller
chunks to reduce the data transfer component of the waiting time.
A minimum chunk size of one track was proposed. In addition to
reducing the data transfer component of the waiting time, we show
how theTrot andTseek components can also be reduced. This fur-
ther improves the preemptibility of a system. Even for the data
transfer component, we show that the bounds for zero-overhead pre-
emptibility proposed in [3] are too tight.
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Figure 6: Effect of Virtual IO components on throughput.

There is a large body of literature proposing IO scheduling poli-
cies for multimedia and real-time systems that improve disk response
time [11, 10, 2, 9, 6, 8]. Virtual IO, however, is orthogonal to these
contributions. We believe that the existing methods can benefit from
using preemptible Virtual IO, to further decrease response time for
high-priority requests.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented the design and implementation

of Virtual IO, and proposed three techniques— data transfer chunk-
ing, just-in-time seek, and seek-splitting. These techniques enable
the preemption of a disk IO request with little or no loss in disk
throughput. We believe that delay-sensitive multimedia applications
such as virtual reality and interactive games can take advantage of
Virtual IO to improve the quality of service significantly. We plan to
further our research in two directions. First, we plan to investigate
how preemptible Virtual IO can be used to improve disk scheduling
algorithms for multimedia applications. Second, we plan to imple-
ment Virtual IO in Linux kernel.
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