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ABSTRACT in disk throughput. Virtual 10 breaks the components of an 10 into

Supporting preemptible disk access is essential for interactive multiine-grained physical disk-commands and enables 10 preemption
media applications that require short response time. In this study, vieetween any two disk commands. If a higher-priority 10 request
propose Virtual 10, an abstraction for disk 10, that transforms a nonean arrive at any time during the service time for the ongoing 10
preemptible 10 request into a preemptible one. In order to achievequest with equal probability, théR,qi:ing Of the higher-priority

its objective efficiently, Virtual 10 uses disk profiling to obtain ac- request can include seek timé;(..), rotational delay T5..:), and
curate and detailed knowledge about the disk. Upon implementatiaiata transfer timeT(;, .. se-) for the ongoing 10 request, with the

of Virtual 10, we show that not only does Virtual IO enable highly expected value of

preemptible disk access, but it does so with little or no loss in disk

1
throughput. E(Twaiting) = §(Tseek + Trot + Tt'ru.nsfe'r)~
1. INTRODUCTION Virtual 10 maps each IO request into multiple fast-executing disk

Many varieties of media such as video, audio, and interactive vigommands using three methods. The ongoing IO can now be pre-

tual reality are proliferating. Because of the large amount of memEMPted t0 service another higher-priority 10 between two disk com-

ory required by these media data, they are stored on disks and emgmds. Each method within Virt_u_al IQ addresses the reduction of
retrieved into main memory only when needed. For interactive mul2"€ Of the components of the waiting time.

timedia applications which require short response time, a disk [0 ® Chunking Transter. Virtual 10 divides a large 10 transfer
request must be serviced promptly. For example, in an immersive ~ INto & number of small chunk transfers, and makes preemp-
virtual world, the latency tolerance between a head movement and ~ tion possible between the chunk transfers. If the 10 is not
the rendering of the next scene (which may involve a disk IO tore- ~ Preempted, chunking does not incur any overhead. This is
trieve relevant data) is arounid milliseconds [1]. Such interactive due to the prefetching mechanism in current disk drives (Sec-
requests can be modeled as higher-priority 10 requests. However, ~ tion 2.1).

the disk might already be servicing an 10 when the higher-priority ~® PreemptingTro¢. Virtual IO performs just-in-time (JIT) seek,
IO request arrives. Due to the typically large media-1O size and the which converts the rotational delay at the destination track into
non-preemptible nature of an ongoing disk 10, even higher-priority @ fully preemptible pre-seek slack. This slack can also be used
requests can be kept waiting for at least tens, if not hundreds, of  to perform prefetching for the ongoing 10 request, or/and to

milliseconds before they are serviced by the disk. mask seek splitting overhead (Section 2.2).
To reduce the response time for a higher-priority request, its wait- e Splitting Tseex. Virtual 1O splits a long seek into sub-seeks,
ing time must be reduced. Theaiting time Tyaiting, for an 10 and permits preemption between two sub-seeks (Section 2.3).

request is defined as the amount of time it must wait, due to the non- virtual 10 services a single 10 request using multiple disk com-
preemptibility of the ongoing IO, before being serviced by the diskmands. Let the time required to executé disk command bd;.
The response time for the higher-priority request is then the sum gfet 7, . be the idle time before JIT-seek. The expected waiting
its waiting time and service time. Theervice timeis the sum of  time! using Virtual 10 can then be expressed as

the seek time, rotational delay, and data transfer time for an 10 re-

quest and can be reduced by intelligent data placement policies [12]. E(Thaiting) = 1 Y17 )
However, our focus is on reducing the waiting time by increasing the 77 2(X T+ Tiate)
preemptibility of disk access. [llustrative Example] Suppose &00 kB read-request has to seek

Ip this st_udy, we proposvlrtu_al IOf an abstracti_on _for disk 10, 20,000 cylinders requiringlseex of 14 ms, must wait for &}, of
which provides highly preemptible disk access with little or no loss; M, and requUire, an. er Of 25 Ms at a transfer rate af MBps.
The expected waiting timely(Twaiting), fOr @ higher-priority re-
quest arriving during the execution of this requesdsms, while
the maximum waiting time id6 ms.

o - ) ) Virtual IO can reduce the waiting time by performing the follow-
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personal or classroom %se is granted \rl)vithout fee pr?)vided that copies a a9 opera’[lons. It f',rSt predlcts bOt,h the seek time and _rotatl_onal de-
not made or distributed for profit or commercial advantage and that copiely- Since the predicted seek time is lofi§ .. = 14 ms), itdecides
bear this notice and the full citation on the first page. To copy otherwise, td0 split the seek operation into two sub-seeks, eaddod00 cylin-
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does not cause extra overhead becaus&the= 7 ms can mask the time during the execution of an ongoing IO request with equal prob-
4 msincreased total seek tim2X T..., — Tscer = 2x9—14 =4  ability. The waiting time for the higher-priority request can be as

ms) incurred by seek splitting. The rotational delay is rily, = long as the duration of the ongoing 0. The expected waiting time
Trot — (2 X Tagery — Tseek) = 3 MS. of a higher-priority 10 request can then be expressed in terms of

With this T/, = 3 ms knowledge, Virtual 10 can wait f& ms  access times required for ongoing 10 as
before performing a JIT-seek. This JIT-seek method makgspre-
emptible. The disk then performs the two sub-seek disk commands, E(Twaiting) = E(ka + Trot + Tirans fer)- (1)
and ther5 successive read commands, each of 8x&B, requir- 2
ing 1 ms each. A higher-priority 10 request can be serviced immedi- To reduce the waiting time, we propose Virtual 10, which judi-
ately after each disk-command. Virtual IO thus makes preemptiblgiously services an 10 request using fine-grained disk commands.
the originally non-preemptible read 10 request. During the servicgjrtual 10 enables preemption of each of the above waiting-time
of this 10, we have two scenarios: components using three techniques: chunkiig.,s ., preempt-

No higher-priority 10 arrives.In this case, the disk does not in- ing T}.o:, and splittingT .., Let V; be the sequence of fine-grained
cur additional overhead for transferring data due to disk prefetchingisk commands used by Virtual 10 to service an IO request. Let the
(discussed in Sections 2.1 and 2.4) nor additional disk latency.  time required to execute disk-commakbibe T}. Let T}4. be the

A higher-priority 10 arrives. In this case, the maximum waiting idle time before JIT-seek. Using above assumption that the higher-
time for the higher-priority request is now a mérens, if it arrives  priority request can arrive at any time with equal probability, the
during one of the two seek disk commands. However, the longegfobability that it will arrive during the execution of thé* com-

stall for the higher-priority request during data-transfer is justs. ~ mandV; can be expressed as = ZT% Finally, the ex-
o . . 2 2 i idle
Thus, the expected value for waiting time is o5 #2505 = pected waiting time of a higher-priority request in Virtual 10 can be
2.03 ms, a significant reduction fro28 ms. expressed as
This example shows that Virtual 10 drastically reduces the ex- )
pected waiting tim& In summary, the contributions of this paper E(T .. ) — 1 Ty — 1 N 2
are as follows: (Twaiting) 2 Z(pl )= 20T+ Tiae) @

e We introduce Virtual 10, which abstracts both read and write
10 requests so as to make them highly preemptible with littl - .
or no loss in disk throughput. 21 Chunking: Preempting Transfer

e We show a feasible path to implement Virtual 10. We ex- Preemption of the data transfer compon@t{y. ser) in disk IOs

plain how the implementation of Virtual 10 is made possibleis important since it can be large (e.g., for multimedia) 5% kB
through Diskbench, our disk profiling tool [5]. 10 requires25 ms at a data transfer rate 26 MBps. To make the

The rest of this paper is organized as follows: Section 2 introduc%"‘““f” preemptible, Virtual 10 useshunking

Virtual 10 and describes its three components. In Section 3, W& efinition 2.1: Chunkingis a method for splitting the data transfer

evaluate the Virtual 10 scheme. Section 4 presents related resear hgzﬁﬂ’rslrllttgni?elr(s) e:reszgf\tiggg Lr;lilrlltlpi S;?:g‘;gitiﬁ;?;sn' ds. is-
In Section 5, we make concluding remarks and suggest directions g sep '

sued sequentially.
for future work. Benefits: Chunking reduces the transfer componenf@f;ting. A

2. VIRTUALIO higher-priority request can be serviced after a chunk transfer is com-
Before introducing the concept bfrtual 10, we first define some Pleted instead of having to wait for the entire IO to complete. For
terms which we will use throughout the rest of this papelogical ~ €xample, suppose &0 kB 10 request requires & qns e Of 25
disk blockis the smallest unit of data that can be accessed on a di$RS at a transfer rate @) MBps. Using a chunk size df0 kB, the
drive (typically512 B). Each logical block resides at a physical disk €xpected waiting time for a higher-priority request is reduced from
location, depicted by a physical address (cylinder, track, sector). A2.5 ms t00.5 ms.
disk commands a non-preemptible request issued to the disk ovePverhead: Chuck size must be carefully chosen or disk throughput
the 10 bus. Examples of disk commands are the read, write, and se@ly degrade. We show in Section 2.4 that an optimal range of chunk
commands. AnO requestis a request for read or write access to asizes can be obtained by our disk profiler, in a disk-dependent way.
sequential set of logical disk blocks. Thaiting time(Twaiting) IS . :
the time between the arrival of a higher-priority 10 requesi and thg'2 JIT-seek: Preemptlnngt
moment the disk starts servicing it. TeRpected waiting timis the The rotational period can be as much@sms in current-day
expected value for the waiting time for a higher-priority 10 request.disk drives. To reduce the rotational delay compong&ht) of the
In order to understand the magnitude of the waiting time, let u¥vaiting time, we propose dust-In-Time see{dIT-seektechnique.
consider a typical read 10 request. The disk first performs a seek f€finition 2.2: The JIT-seektechnique delays the servicing of the
the destination cylinder requiring... time. Then, the disk must Next 10 request in such a way that the rotational delay to be incurred
wait for a rotational delay, denoted K., so that the target disk is minimized. We refer to the delay between two IO requests, due to
block comes under the disk arm. The final stage is the data trandlT-seek, as the slack time.
fer stage, requiring a time &Fy,qnsser. FOr a typical commodity ~Benefits: ) . ‘
system, once a disk command is issued on the 10 bus, it cannot b The slack time between two 10 requests is fully preemptible.
stopped. Traditionally, an 10 request is serviced using a single diskFor example, if an 10 request must incuff,; of 5 ms and JIT-
command. Consequently, the system must wait until the ongoing l10Seek delays the issuing of the 10 byns, then the expected waiting
is completed before it can service the next 10 request on the samdime is reduced fron2.5 ms to 3 {5 = 0.1 ms.
disk. Let us assume that a higher-priority request may arrive at any2. The slack obtained due to JIT-seek can also be used to perform

2Virtual 10 increases the preemptibility of disk access with little or data prefetching for the previous 10 streaine¢ preefetching

no overhead. However, if an 1O is preempted, an extra seek opera3. The slack can also be used to mask the overhead incurred in
tion may be required to resume service for the preempted 10. performingseek-splittingwhich we shall discuss in next section.




Overhead: Virtual IO predictsT..: andT ... betweentwo IO oper- prototype services a non-preemptible 10 request using the smallest
ations in order to perform JIT-seek. If there is an error in predictionnumber of disk commands that provide the optimal disk throughput.
then the penalty can be one extra disk rotation. Based on the disk profiling, chunking in Virtual 10 divides the data
PR ; transfer into25 kB chunks, except for the last chunk, which can be
2.3 Seek Splitting: PreemptingTscex smaller. JIT-seek uses an offsetlofns to reduce the probability of

The seek timeTs..x) becomes the dominant component whenyegiction misses. Seeks for more than half of a disk size in cylin-
the Tirans rer andT;o; components are reduced drastically. A full- gers are split into two equal-sized, smaller seeks.
stroke of the disk arm may require as muck2@sns in current day

disk drives. It may then be necessary to reducefthg, component 3.1 Preemptibility of Virtual 1O

to further reduce the waiting time. _ In this section, we aim to answeat is the level of preemptibility
Definition 2.3: Seek-splittingoreaks a long, non-preemptible seek of Virtual 10 and how does it influence the disk throughpitie ex-
of the disk arm into multiple smaller sub-seeks. periments for preemptibility of disk access measure the duration of

Benefits: Theseek-splittingnethod reduces tHE..,. componentof  (non-preemptible) disk commands in both non-preemptible 10 and
the waiting time. A long non-preemptible seek can be transformeirtual 10 in the absence of higher-priority 10 requests.

into multiple shorter sub-seeks. A higher-priority request can now
be serviced at the end of a sub-seek, instead of waiting for the entire E \'jﬁ';gfg“ﬂ“b'e'o
seek operation to finish.

Overhead: Due to the mechanics of the disk arm, the total time re- 40 —
quired to perform multiple sub-seeks is greater than that for a single T B
seek of given seek distance. Thus, the seek-splitting can degrade % %0
disk throughput. However, when the obtained slack in JIT-seek is = 22
large, it can be used to mask the seek overhead. _g 5
2.4 Disk Profiling g 1 @E_E
Virtual 10 greatly relies on disk profiling to obtain accurate disk a i -
parameters. The extraction of these disk mappings is described in [5]. 50 100 250 500 1000 2000

. . . . 10 size (kB
The disk profiler runs once before Virtual 10 is used for the first Figure 2: Improvements instﬁie(e;pected waiting time.

time to obtain the following required disk parametedisk block
mappinggboth logical-to-physical and physical-to-logical block ad-  Figure 2 depicts the difference in the expected waiting time be-
dress transformationihe optimal chunk sizgequired to efficiently ~tween non-preemptible 10 and Virtual 10 (calculated using Equa-
perform chunking)disk rotational factorg(rotation period and ro- tions 1 and 2). The expected waiting time in non-preemptible 10
tational skew factors for disk tracks), asdek curverequired for ~depends linearly on the size of 10 requests. This is to be expected,
accurate JIT-seek and seek-splitting). since the time needed to complete one IO increases due to the larger
- . data transfer time for larger 10 requests. However, the expected
waiting time in Virtual 10 actually decreases for large 10s, since
a disk spends more time in data transfer, which has a higher pre-
emptibility. Virtual 10 can reduce the expected waiting time by
more than an order of magnitude in systems with large 10s. Fig-
ure 3 shows that Virtual 10 provides IO preemptibility with little
loss in disk throughput.
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Figure 1: Sequential throughput (SCSI ST318437LW). =
The disk profiler provides Virtual 10 the optimal range for the 2%
chunk size. Figure 1 depicts the effect of chunk size on the sequen- %8” 15
tial read throughput for one SCSI disk drive. On y-axis we show £ 10
achieved sequential disk throughput for the read operation using the g’ 5
chunk size ofc. For this particular disk, the range for the optimal o
chunk size is betwee6 kB and263 kB, and can be automatically I o P ) s
extracted. Our disk profiler implementation was successful in ex- Figure 3: Effects on the achieved disk throughput.
tracting the optimal chunk size for several SCSI and IDE disk drives ) ) .
v ch s epernened ) o s st e e e e
ity 0 i , value implyi i
3. EXPERIMENTAL RESULTS system. Figure 4 shows the distribution of the durations of disk com-

We have implemented a prototype system which can service Ihands for both non-preemptible 10 and Virtual 10 (for exactly the
requests using either the traditional non-preemptible method-( same sequence of 10 requests). In the case of non-preemptible 10
preemptible IQ or Virtual 10. Our prototype runs as a user-level (Figure 4a), one 10 request is serviced using a single disk command.
process in Linux and talks directly to a SCSI disk using the LinuxHence, the disk access can be preempted only when the current 10
SCSI-generic interface. All experiments were performed on a Segequest is completed. In the case of Virtual 10 (Figure 4b), the dis-
gate SB18437LW SCSI disk. The prototype uses Diskbench [5] tribution does not depend on the IO request size, but on individual

to profile the disk. For performance benchmarking, we use equadtisk commands used to perform an 10 request. For detailed study
sized 10 requests at random positions on the disk. The Virtual IQ|ease refer to [4].
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Figure 6: Effect of Virtual |0 components on throughput.

There is a large body of literature proposing 10 scheduling poli-
cies for multimedia and real-time systems that improve disk response
time [11, 10, 2, 9, 6, 8]. Virtual IO, however, is orthogonal to these
contributions. We believe that the existing methods can benefit from
using preemptible Virtual 10, to further decrease response time for
high-priority requests.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design and implementation
of Virtual 10, and proposed three techniques— data transfer chunk-
ing, just-in-time seek, and seek-splitting. These techniques enable
the preemption of a disk 10 request with little or no loss in disk
throughput. We believe that delay-sensitive multimedia applications
such as virtual reality and interactive games can take advantage of

In this section, we aim to answethat are the individual contribu-
tions of the three components of Virtual.IEigure 5 shows the indi-

Virtual 10 to improve the quality of service significantly. We plan to
further our research in two directions. First, we plan to investigate

vidual contributions of the three Virtual IO components with respechqy preemptible Virtual 10 can be used to improve disk scheduling
to expected waiting time. The data transfer in Virtual IO is h'ghlyalgorithms for multimedia applications. Second, we plan to imple-
preemptible, and the expected waiting time decreases as the duratigRnt Virtual 10 in Linux kernel.

of the transfer increases. When the transfer component dominates
the seek and rotational components, chunking is the most importabt
method for reducing the expected waiting time. Otherwise, JIT-seek[1]
and seek-splitting are more important. Virtual IO provides more than
an order of magnitude reduction in waiting time when 10 requests [2]
are large, which is often the case in multimedia systems. Figure 6
summarizes the individual contributions of the Virtual 10 compo-

) . : 3]
nents with respect to the achieved disk throughput.

[ Chunking [4]
O Chunking + JIT-seek
B Chunking + JIT-seek + seek-splitting
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Figure 5: Effect of Virtual IO components on E(Twaiting )-

4. RELATED WORK [9]

In the past, little need has been expressed for highly preemptible
disk access. Before the pioneering work of [3, 7], it was assumed%)
that the nature of disk 10s was inherently non-preemptible. In [3],
the authors proposed breaking up a large 10 into multiple smallef 1)
chunks to reduce the data transfer component of the waiting time.
A minimum chunk size of one track was proposed. In addition to
reducing the data transfer component of the waiting time, we show#2]
how theT).: andTs..,, components can also be reduced. This fur-
ther improves the preemptibility of a system. Even for the data
transfer component, we show that the bounds for zero-overhead pre-
emptibility proposed in [3] are too tight.
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