
13

I/O Deduplication: Utilizing Content Similarity
to Improve I/O Performance

RICARDO KOLLER and RAJU RANGASWAMI
Florida International University

Duplication of data in storage systems is becoming increasingly common. We introduce I/O Dedu-
plication, a storage optimization that utilizes content similarity for improving I/O performance by
eliminating I/O operations and reducing the mechanical delays during I/O operations. I/O Dedu-
plication consists of three main techniques: content-based caching, dynamic replica retrieval, and
selective duplication. Each of these techniques is motivated by our observations with I/O workload
traces obtained from actively-used production storage systems, all of which revealed surprisingly
high levels of content similarity for both stored and accessed data. Evaluation of a prototype im-
plementation using these workloads showed an overall improvement in disk I/O performance of 28
to 47% across these workloads. Further breakdown also showed that each of the three techniques
contributed significantly to the overall performance improvement.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management; D.4.8
[Operating Systems]: Performance

General Terms: Design, Performance

Additional Key Words and Phrases: Storage systems, I/O deduplication, content-based caching,
content-based I/O scheduling

ACM Reference Format:
Koller, R. and Rangaswami, R. 2010. I/O Deduplication: Utilizing content similarity to improve I/O
performance. ACM Trans. Storage 6, 3, Article 13 (September 2010), 26 pages.
DOI = 10.1145/1837915.1837921 http://doi.acm.org/10.1145/1837915.1837921

1. INTRODUCTION

Duplication of data in primary storage systems is quite common due to the
technological trends that have been driving storage capacity consolidation. The
elimination of duplicate content at both the file and block levels for improving
storage space utilization is an active area of research [Clements et al. 2009; Jain

This work was supported by the NSF grants CNS-0747038, CNS-0821345, and IIS-0837716.
Author’s address: R. Koller, School of Computing and Information Sciences, Florida International
University, 11200 S.W. 8th Street - ECS 234, Miami, FL 33199; email: rkoll001@cs.fiu.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1553-3077/2010/09-ART13 $10.00
DOI 10.1145/1837915.1837921 http://doi.acm.org/10.1145/1837915.1837921

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:2 • R. Koller and R. Rangaswami

et al. 2005; Kulkarni et al. 2004; Lillibridge et al. 2009; Quinlan and Dorward
2002; Rhea et al. 2008; Zhu et al. 2008]. Indeed, eliminating most duplicate
content is inevitable in capacity-sensitive applications such as archival storage
for cost-effectiveness. On the other hand, there exist systems with a moderate
degree of content similarity in their primary storage such as email servers,
virtualized servers, and NAS devices running file and version control servers.
In the case of email servers, mailing lists, circulated attachments and SPAM
can lead to duplication. Virtual machines may run similar software and thus
create colocated duplicate content across their virtual disks. Finally, file and
version control systems servers of collaborative groups often store copies of the
same documents, sources, and executables. In such systems, if the degree of
content similarity is not overwhelming, eliminating duplicate data may not be
a primary concern.

Gray and Shenoy have pointed out that given the technology trends for price-
capacity and price-performance of memory/disk sizes and disk accesses respec-
tively, disk data must “cool” at the rate of 10X per decade [Gray and Shenoy
2000]. They suggest data replication as a means to this end. An instantiation
of this suggestion is intrinsic replication of data created due to consolidation,
as now seen in many storage systems, including the ones illustrated earlier.
Here, we refer to intrinsic (or application/user-generated) data replication as
opposed to forced (system-generated) redundancy such as in a RAID-1 storage
system. In such systems, capacity constraints are invariably secondary to I/O
performance.

We analyzed on-disk duplication of content and I/O traces obtained from
three varied production systems at FIU that included a virtualized host run-
ning two department web-servers, the department email server, and a file
server for our research group. We made three observations from the analy-
sis of these traces. First, our analysis revealed significant levels of both disk
static similarity and workload static similarity within each of these systems.
Disk static similarity is an indicator of the amount of duplicate content in the
storage medium, while workload static similarity indicates the degree of on-
disk duplicate content accessed by the I/O workload. We define these similarity
measures formally in Section 2. Second, we discovered a consistent and marked
discrepancy between reuse distances [Mattson et al. 1970] for sector and con-
tent in the I/O accesses on these systems, indicating that content is reused more
frequently than sectors. Third, there is significant overlap in content accessed
over successive intervals of longer time frames such as days or weeks.

Based on these observations, we explore the premise that intrinsic content
similarity in storage systems and access to replicated content within I/O work-
loads can both be utilized to improve I/O performance. In doing so, we design
and evaluate I/O Deduplication, a storage optimization that utilizes content
similarity to either eliminate I/O operations altogether or optimize the result-
ing disk-head movement within the storage system. I/O Deduplication com-
prises three key techniques: (i) content-based caching that uses the popularity of
“data content” rather than “the data location” of I/O accesses in making caching
decisions; (ii) dynamic replica retrieval that, upon a cache miss for a read op-
eration, dynamically chooses to retrieve a content replica which minimizes

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:3

disk-head movement; and (iii) selective duplication that dynamically replicates
frequently accessed content in scratch space that is distributed over the entire
storage medium to increase the effectiveness of dynamic replica retrieval.

We evaluated a Linux implementation of the I/O Deduplication techniques
for workloads from the three systems described earlier. Performance improve-
ments measured as the reduction in total disk busy time in the range 28 to
47% were observed across these workloads. We measured the influence of each
technique of I/O Deduplication separately and found that each technique con-
tributed substantially to the overall performance improvement. In particular,
content-based caching increased memory caching effectiveness by at least 10%
and by as much as 4X in cache hit rate for read operations. Head-position-
aware dynamic replica retrieval directed I/O operations to alternate locations
on-the-fly, and additionally reduced average I/O times by 10 to 20%. And finally,
selective duplication created additional replicas of popular content during pe-
riods of low foreground I/O activity to further improve the effectiveness of
dynamic replica retrieval, leading to a reduction in average I/O times by 23 to
35%. We also measured the memory and CPU overheads of I/O Deduplication
and found these to be nominal.

In Section 2, we make the case for I/O deduplication. We elaborate on a
specific design and implementation of its three techniques in Section 3. We
perform a detailed evaluation of improvements and overhead for three different
workloads in Section 4. We discuss related research in Section 5; discuss salient
design and deployment alternatives in Section 6; and finally conclude with
directions for future work.

2. MOTIVATION AND RATIONALE

In this section, we investigate the nature of content similarity and access to
duplicate content using workloads from three production systems that are in
active, daily use at the FIU Computer Science department. We collected I/O
traces downstream of an active page cache from each system for a duration
of three weeks. These systems have different I/O workloads that consist of a
virtual machine running two web-servers (web-vm workload), an email server
(mail workload), and a file server (homes workload). The web-vm workload is
collected from a virtualized system that hosts two CS department web-servers,
one hosting the department’s online course management system and the other
hosting the department’s web-based email access portal; the local virtual disks,
which were traced, only hosted root partitions containing the OS distribution,
while the http data for these web servers reside on a network-attached stor-
age. The mail workload serves user INBOXes for the entire Computer Science
department at FIU. Finally, the homes workload is that of an NFS server that
serves the home directories of our small-sized research group; activities repre-
sent those of a typical researcher, consisting of software development, testing,
and experimentation, the use of graph-plotting software, and technical docu-
ment preparation.

Key statistics related to these workloads are summarized in Table I. The mail
server is a heavily used system and generates a highly-intensive I/O workload

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:4 • R. Koller and R. Rangaswami

Table I. Summary Statistics of One Week I/O Workload
Traces from Three Different Systems

Workload FileSystem Memory FileSystem
Type Size [GB] Size [GB] Accessed
web-vm 70 2 2.8%
mail 500 16 6.27%
homes 470 8 1.44%

Workload Reads [GB]
Type Total Sectors Content
web-vm 3.40 1.27 1.09
mail 62.00 29.24 28.82
homes 5.79 2.40 1.99

Workload Writes [GB]
Type Total Sectors Content
web-vm 11.46 0.86 4.85
mail 482.10 4.18 34.02
homes 148.86 4.33 33.68

in comparison to the other two. However, some uniform trends can be observed
across these workloads. A fairly small percentage of the total file system data
is accessed during the entire week (1.44 to 6.27% across the workloads), rep-
resenting small working sets. Further, these are write-intensive workloads.
While it is therefore important to optimize write I/O operations, we also note
that most writes are committed to persistent storage in the background and
do not affect user-perceived performance directly. Optimizing read operations,
on the other hand, has a direct impact on user-perceived performance and sys-
tem throughput because it reduces the waiting time for blocked foreground
I/O operations. For read I/Os, we observed that in each workload, the unique
content accessed is lesser than the unique locations that are accessed on the
storage device. These observation directly motivate the three techniques of our
approach, as we elaborate next.

2.1 Content-Based Cache

The systems of interest in our work are those in which there are patterns of
work shared across more than one mechanism within a single system. A mecha-
nism represents any active entity, such as a single thread or process or an entire
virtual machine. Such duplicated mechanisms also lead to intrinsic duplication
in content accessed within the respective mechanisms’ I/O operations. Dupli-
cate content, however, may be independently managed by each mechanism and
stored in distinct locations on a persistent store. In such systems, traditional
storage-location (sector) addressed caching can lead to content duplication in
the cache, thus reducing the effectiveness of the cache.

Figure 1 shows that cache hit ratio (for read requests) can be improved
substantially by using a content-addressed cache instead of a sector-addressed
one. While write I/Os leading to content hits could be eliminated for improved
performance, we do not explore it in this article. A greater number of sector
hits with write I/Os is due to journaling writes by the file system, repeatedly
overwriting locations within a circular journal space.

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:5

Fig. 1. Page cache hits for the web-vm (top), mail (middle), and homes (bottom) workloads. A
single-day trace was used with an infinite cache assumption.

For further analysis, we define the average sector reuse distance for a work-
load as the average number of requests between successive requests to the same
sector. The average content reuse distance is defined similarly over accesses to
the same content. Figure 2 shows that the average reuse distance for content
is smaller than for sector for each of the three workloads that we studied for
both read and write requests. For such workloads, data addressed by content
can be cache-resident for a lesser time yet be more effective for servicing read
requests than if the same cached data is addressed by location. Write requests,
on the other hand, do not depend on cache hits, since data is flushed to rather
than requested from the storage system. These observations and those from
Figure 1 motivate content-based caching in I/O Deduplication.

2.2 Dynamic Replica Retrieval

Systems with intrinsic duplication of mechanism may also operate on duplicate
data stored in the persistent stores managed by each mechanism. Such intrinsic
content duplication creates opportunities for optimizing I/O operations.

We define the disk static similarity as the average number of copies per
filesystem-aligned block of content, typically of size 4KB, as a formal measure
of content similarity in the storage system. The disk static similarity is calcu-
lated as (all−zeros)/(unique−1), where all is the total number of blocks, zeroes
are the number of zeroed blocks (never-used), and unique is the number of
blocks with unique content (after eliminating duplicates). This static similarity

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:6 • R. Koller and R. Rangaswami

Fig. 2. Contrasting content and sector reuse distances for the web-vm (top), mail (middle), and
homes (bottom) workloads.

Table II. Disk Static Similarity. Total Pages Excludes
Zero Pages; Unique Pages Excludes Repeated Pages in

Addition to Zero Pages

Workloads web-vm mail homes

Uniquepages (millions) 1.9 27 62
Totalpages (millions) 5.2 73 183
Staticsimilarity 2.67 2.64 2.94

measure includes blocks that are not currently in use by the file-system; we in-
clude such blocks because they were previously used and therefore may contain
the same content as in-use data blocks. Table II summarizes static similarity
values for each of the three workloads. We notice that there is substantial du-
plication of content on the disks used by each of these workloads. In the case of
the mail workload, we might expect a higher level of content similarity, due to
mailing-list emails and circulated attachments appearing in many INBOXes.
However, we point out that all emails within a user’s INBOX are managed as
a single large file by the mail server, and therefore individual emails are less
likely to be aligned to the filesystem block-size, impacting the disk static simi-
larity measure. Nevertheless, the level of content similarity in these systems is
high.

While the presence of substantial duplicate content on each of these systems
is promising, it is possible that duplicate content is not accessed frequently

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:7

Fig. 3. Workload static similarity. One-day traces were used. The x axis limits the static similarity
consideration to blocks that have at most x copies on disk.

in the actual I/O workload. We measured the average number of copies in the
storage system for all the blocks read within each of these workloads. We refer
to this measure as the workload static similarity. By considering only the on-
disk duplicate content pertinent to the workload, we can better estimate the
impact of optimizations based on content similarity. To improve the accuracy
our measure, we limit the number of copies of target content. This allows us
to prevent a small set of highly replicated content from inflating the workload
static similarity value. As shown in Figure 3, the workload static similarity
limited to content not repeated more than 1000 times is 2.5. While more than
one copy of blocks read is present in the storage system on an average, we
note that the disk static similarity values (in Table II) do overestimate the
performance improvement potential.

Based on these observations, we can hypothesize that for each of these work-
loads, accesses to data that is duplicated on the storage device can be optimally
redirected to the location that minimizes the mechanical overhead of disk I/O
operations. This motivates dynamic replica retrieval in our approach.

2.3 Selective Duplication

A third property of workloads is repeated access to the same content. Here, we
refer to accesses to specific content, which is a different measure than repeated
access to the same block address. To illustrate this difference, accesses to two
copies of the same executable stored within two virtual disks owned by distinct
virtual machines do not lead to repeated access to the same block, but do result
in repeated access to the same content.

In Figure 4, we illustrate the overlap in content being accessed across time
for each of the workloads using traces over a longer, three-week duration. More
specifically, we divide the three-week trace duration into seven, 3-day intervals
and measure the overlap in content read (thus, we exclude writes) within each
interval with all data accessed (both read and written) in the previous interval.
The first 3-day interval uses self-similarity and therefore represents a 100%
content overlap. For the remaining intervals we observe high levels of overlap
in the content being read within each interval with all data accessed during

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:8 • R. Koller and R. Rangaswami

Fig. 4. Content working-sets for three-week traces. The trace duration is divided into 7 3-day
intervals and read content overlap for each interval with all content from the previous interval is
presented.

the previous interval; average overlaps are 45%, 85%, and 60%, for the mail,
web-vm, and homes workloads, respectively.

Based on these observations, we can assume that if data accessed in the re-
cent past were replicated in locations dispersed across the disk area, the choice
in access provided by such replicas for future I/O operations can help reduce
disk arm movement and improve I/O performance. Complementary findings
about diurnal patterns in I/O workloads with alternating periods of low and
high storage activity [Ellard et al. 2003; Leung et al. 2008] suggest that such
selective duplication, if performed opportunistically during night-time, may
result in negligible impact to foreground I/O activity.

3. SYSTEM DESIGN

I/O Deduplication systematically explores the use of content similarity within
storage systems to reduce the mechanical delays incurred in I/O operations
and/or to eliminate I/O operations altogether. In this section, we start with
an overview of the system architecture and then present the various design
choices and rationale behind constructing each of the three mechanisms that
constitute I/O Deduplication.

3.1 Architectural Overview

An optimization based on content similarity can be built at various layers of
the storage stack, with varying degrees of access and control over storage de-
vices and the I/O workload. Prior research has argued for building storage
optimizations in the block layer of the storage stack [Guerra et al. 2008]. We
choose the block layer for several reasons. First, the block interface is a generic
abstraction that is available in a variety of environments, including operating
system block device implementations, software RAID drivers, hardware RAID
controllers, SAN (e.g., iSCSI) storage devices, and the increasingly popular
storage virtualization solutions (e.g., IBM SVC [IBM Corporation]; EMC In-
vista [EMC Corporation]; and NetApp V-Series [Network Appliance, Inc.]).
Consequently, optimizations based on the block abstraction can potentially be

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:9

Fig. 5. I/O Deduplication system architecture.

ported and deployed across these varied platforms. In the rest of the article, we
develop an operating system block device-oriented design and implementation
of I/O Deduplication. Second, the simple semantics of the block layer interface
allows easy I/O interception, manipulation, and redirection. Third, by operat-
ing at the block layer, the optimization becomes independent of the file system
implementation, and can support multiple instances and types of file systems.
Fourth, this layer enables simplified control over system devices at the block
device abstraction, allowing the elegantly simple implementation of selective
duplication that we describe later. Finally, additional I/Os generated by I/O
Deduplication can leverage I/O scheduling services, thereby automatically ad-
dressing the complexities of block request merging and reordering.

Figure 5 presents the architecture of I/O Deduplication for a block device
in relation to the storage stack within an operating system. We augment the
storage stack’s block layer with additional functionality, which we term the I/O
Deduplication layer, to implement the three major mechanisms: the content-
based cache, the dynamic replica retriever, and the selective duplicator. The
content-based cache is the first mechanism encountered by the I/O workload,
which filters the I/O stream based on hits in a content-addressed cache. The
dynamic replica retriever subsequently optionally redirects the unfiltered read
I/O requests to alternate locations on the disk to avail the best access latencies
to requests. The selective duplicator is composed of a kernel subcomponent that
tracks content accesses to create a candidate list of content for replication,
and a user-space process that runs during periods of low disk activity and
populates replica content in scratch space distributed across the entire disk.
Thus, while the kernel components run continuously, the user-space component
runs sporadically. Separating out the actual replication process into a user-level
thread allows greater user/administrator control over the timing and resource
consumption of the replication process, an I/O resource-intensive operation.

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:10 • R. Koller and R. Rangaswami

Next, we elaborate on the design of each of the three mechanisms within I/O
Deduplication.

3.2 Content-Based Caching

Building a content-based cache at the block layer creates an additional buffer
cache separate from the virtual file system (VFS) cache. Requests to the VFS
cache are sector-based, while those to the I/O Deduplication cache are both
sector- and content-based. The I/O Deduplication layer only sees the read re-
quests for sector misses in the VFS cache. We will discuss exclusivity across
these caches shortly. In the I/O Deduplication layer, read requests identified
by sector locations are queried against a dual sector- and content-addressed
cache for hits before entering the I/O scheduler queue or being merged with an
existing request by the I/O scheduler. Population of the content-based cache oc-
curs along both the read and write paths. In case of a cache miss during a read
operation, the I/O completion handler for the read request is intercepted and
modified to additionally insert the data read into the content-addressed cache
after I/O completion only if it is not already present in the cache and is impor-
tant enough in the LRU list to be cached. A write request to a sector which had
contained duplicate data is simply removed from the corresponding duplicate
sector list to ensure data consistency for future accesses. The new data con-
tained within write requests is optionally inserted into the content-addressed
cache (if it is sufficiently important) in the onward path before entering the
request into the I/O scheduler queue to keep the content cache up-to-date with
important data.

The in-memory data structure implementing the content-based cache sup-
ports look-up based on both sector and content-hash to address read and write
requests, respectively. Entries indexed by content-hash values contain a sector
list (list of sectors in which the content is replicated) and the corresponding
data if it was entered into the cache and not replaced. Cache replacement only
replaces the content field and retains the sector-list in the in-memory content-
cache data structure. For read requests, a sector-based lookup is first performed
to determine if there is a cache hit. For write requests, a content-hash-based
look-up is performed to determine a hit and the sector information from the
write request is added to the sector-list. Figure 6 describes the data structure
used to manage the content-based cache. A write to a sector that is present in a
sector-list indexed by content-hash is simply removed from the sector list and
inserted into a new list based on the sector’s new content hash. It is important
to also point out that our design uses a write-through cache to preserve the
semantics of the block layer. Next, we discuss some practical considerations
for our design.

Since the content cache is a second-level cache placed below the file system
page cache or, in case of a virtualized environment, within the virtualization
mechanism, typically observed recency patterns in first-level caches are lost at
this caching layer. An appropriate replacement algorithm for this cache level
is therefore one that captures frequency as well. We propose using Adaptive
Replacement Cache (ARC) [Megiddo and Modha 2003] or CLOCK-Pro [Jiang

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:11

Fig. 6. Data structure for the content-based cache. The cache is addressable by both sector and
content-hash. vc entries are unique per sector. Solid lines between vc entries indicate that they
may have the same content (they may not in case of hash function collisions.) Dotted lines form a
link between a sector (vc entry) and a given page (vc page.) Note that some vc entries do not point
to any page—there is no cached content for these entries. However, this indicates that the linked
vc entries have the same data on disk. This happens when some of the pages are evicted from the
cache. Additionally, pages form an LRU list.

et al. 2005] as good candidates for a second-level content-based cache and
evaluate our system with ARC and LRU for contrast.

Another concern is that there can be a substantial amount of duplicated
content across the cache levels. There are two ways to address this. Ideally, the
content-based cache should be integrated into a higher-level cache (e.g., VFS
page cache) implementation, if possible. However, this might not be feasible
in virtualized environments where page caches are managed independently
within individual virtual machines. In such cases, techniques that help make
in-memory cache content across cache levels exclusive, such as cache hints [Li
et al. 2005]; demotions [Wong and Wilkes 2002]; and promotions [Gill 2008]
may be used. An alternate approach is to employ memory deduplication tech-
niques such as those proposed in the VMware ESX server [Waldspurger 2002];
Difference Engine [Gupta et al. 2008]; and Satori [Milos et al. 2009]. In these
solutions, duplicate pages within and across virtual machines are made to point
to the same machine frame with use of an extra level of indirection, such as

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:12 • R. Koller and R. Rangaswami

the shadow page tables. In memory, duplicate content across multiple levels of
caches is indeed an orthogonal problem, and any of the referenced techniques
could be used as a solution directly within I/O Deduplication.

3.3 Dynamic Replica Retrieval

The design of dynamic replica retrieval is based on the rationale that better I/O
schedules can be constructed with more options for servicing I/O requests. A
storage system with high disk static similarity (i.e., duplicated content) creates
such options naturally. With dynamic replica retrieval in such a system, read
I/O requests are optionally indirected to alternate locations before entering
the I/O scheduler queue. Choosing alternate locations for write requests is
complicated due to the need for ensuring up-to-date block content; while we
do not consider this possibility further in our work, investigating alternate
mechanisms for optimizing write operations to utilize content similarity is
certainly a promising area of future work. The content-addressed cache data
structure that we explored earlier supports look-up based on sector (contained
within a read request) and returns a sector-list that contains replicas of the
requested content, thus providing alternate locations to retrieve the data from.

To help decide if and to where a read I/O request should be redirected, the
dynamic replica retriever continuously maintains an estimate of the disk-head
position by monitoring I/O completion events. For estimating head position, we
use read I/O completion events only, and ignore I/O completion events for write
requests, since writes may be reported as complete as soon as they are written
to the disk cache. Consequently, the head position as computed by the dynamic
replica retriever is an approximation, since background write flushes inside the
disk are not accounted for. To implement the head-position estimator, the last
head position is updated during the execution of the I/O completion handler of
each read request. Additionally, the direction of the disk arm managed by the
scheduler is also maintained for elevator-based I/O schedulers.

One complication with redirection of an I/O request before a possible merge
operation (done by the I/O scheduler later) is that this optimization can reduce
the chances for merging the request with another request already awaiting
service in the I/O scheduler queue. For each of the workloads we experimented
with, we did indeed observe reduction in merging negatively affecting perfor-
mance when using redirection purely based on current head-position estimates.
Request merging should gain priority over any other operation, since it elimi-
nates mechanical overhead altogether. One means to prioritize request merg-
ing is performing the indirection of requests below the I/O scheduler which
performs merging within its mechanisms. Although this is an acceptable and
correct solution, it is substantially more complex compared to implementation
at the block layer above the I/O scheduler because there are typically multiple
dispatch points for I/O scheduler implementations inside the operating system.
The second option, and the one used in our system, is to evaluate whether or not
to redirect the I/O request to a more opportune location, based on an actively
maintained digest of outstanding requests at the I/O scheduler – these are re-
quests that have been dispatched to the I/O scheduler, but not yet reported as

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:13

completed by the device. If an outstanding request to a location adjacent to the
current request exists in the digest, redirection is avoided to allow for merging.

3.4 Selective Duplication

Figure 4 revealed that the overlap in longer-time frame working sets can be
substantial in workloads, more than 80% in some cases. While such overlapping
content is the perfect choice for content to be cached, such content was found
to be too big to fit in memory.

A complementary optimization to dynamic replica retrieval based on this ob-
servation is that an increase in the number of duplicates for popular content on
the disk can create even greater opportunities for optimizing the I/O schedule.
A basic question then is what to duplicate and when. We implemented selective
duplication to run every day during periods of low disk activity based on the
observed diurnal patterns in the I/O workloads that we experimented with.
The question of what to duplicate can be rephrased as: What is the content
accessed in the previous days that is likely to be accessed in the future? Our
analysis of the workloads revealed that the content overlap between the most
frequently used content of the previous days was found to be a good predictor
of future accesses to content. The selective duplicator kernel component calcu-
lates the list of frequently used content across multiple days by extending the
ARC replacement algorithm used for the content-addressed cache.

A list of sectors to duplicate is then forwarded to the user-space replicator
process, which creates the actual replicas during periods of low activity. The
periodic nature of this process ensures that the most relevant content is repli-
cated in the scratch space, while older replicas of content that have either been
overwritten or are no longer important are discarded. To make the replication
process seamless to file system, we implemented transparent replica manage-
ment that implements the scratch space used to store replicas transparently.
The scratch space is provisioned by creating additional physical storage vol-
umes/partitions interspersed within the file system data. Figure 7 depicts the
transparent replica management wherein the storage is interspersed with five
scratch space volumes interspersed between file system-mapped space. For
file system transparency, a single logically contiguous volume is presented to
the file system by the I/O Deduplication extension. The scratch space is used to
create one or more replicas of data in the exported space. Since the I/O opera-
tions issued during the selective duplication process are themselves routed via
the in-kernel I/O Deduplication components, the additional content similarity
information due to replication is automatically recorded into the content cache.

3.5 Persistence of Metadata

A final issue is the persistence of the in-memory data structure so that the
system can retain intelligence about content similarity across system restart
operations. Persistence is important for retaining the locations of on-disk in-
trinsic and artificially created duplicate content so that this information can
be restored and used immediately upon a system restart event. We note that
while persistence is useful to retain intelligence that is acquired over a period

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:14 • R. Koller and R. Rangaswami

Fig. 7. Transparent replica management for selective duplication. The read request to the solid
block in the exported space can either be retrieved from its original location in the mapped space
or from any of the replicas in the scratch space that reduce head movement.

of time, “continuous persistence” of metadata in I/O Deduplication is not nec-
essary to guarantee the reliability of the system, unlike other systems such
as the eager writing disk array [Zhang et al. 2002] or doubly distorted mirror-
ing [Orji and Solworth 1993]. In this sense, selective duplication is similar to
the opportunistic replication as performed by FS2 [Huang et al. 2005] because
it tracks updates to replicated data in memory and only guarantees that the
primary copy of data blocks are up-to-date at any time. While persistence of the
in-memory data is not implemented in our prototype yet, guaranteeing such
persistence is relatively straightforward. Before the I/O Deduplication kernel
module is unloaded (occuring at the same time as the managed file system is
unmounted), all in-memory data structure entries can be written to a reserved
location of the managed scratch space. These can then be read back to popu-
late the in-memory metadata upon a system restart operation when the kernel
module is loaded into the operating system.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate each mechanism in I/O Deduplication separately
first and then evaluate their cumulative performance impact. We also evaluate
the CPU and memory overhead incurred by an I/O Deduplication system. We
used the block-level traces for the three systems that were described in detail
in Section 2 for our evaluation. The traces were replayed as block traces in
a similar way as done by blktrace [Axboe 2007]. Blktrace could not be used
as-is, since it does not record content information; we used a custom Linux
kernel module to record content-hashes for each block read/written in addition
to other attributes of each I/O request. Additionally, the blktrace tool, btreplay,
was modified to include traces in our format and to replay them using content
provided. Replay was performed at a maximum acceleration of 100x, with care
being taken in each case to ensure that block access patterns were not modi-
fied as a result of the speedup. Measurements for actual disk I/O times were

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:15

Fig. 8. Per-day page cache hit ratio for content- and sector-addressed caches for read operations.
The total number of pages read are 0.18, 2.3, and 0.23 million, respectively, for the web-vm, mail,
and homes workloads. The numbers in the legend next to each type of addressing represent the
cache size.

obtained with per-request block-level I/O tracing using blktrace and the results
reported by it. Finally, all trace playback experiments were performed on a sin-
gle Intel(R) Pentium(R) 4 CPU 2.00GHz machine with 1 GB of memory and a
Western Digital disk WD5000AAKB-00YSA0 running Ubuntu Linux 8.04 with
kernel 2.6.20.

4.1 Content-Based Cache

In our first experiment, we evaluated the effectiveness of a content-addressed
cache against a sector-addressed one. The primary difference in implementa-
tion between the two is that for the sector-addressed cache, the same content for
two distinct sectors will be stored twice. We fixed the cache size in both variants
to one of two different sizes, 1000 pages (4MB) and 50000 pages (200MB). We
replayed two weeks of the traces for each of the three workloads; the first week
warmed up the cache and measurements were taken during the second week.
Figure 8 shows the average per-day cache hit counts for read I/O operations
during the second week when using an adaptive replacement cache (ARC) in
two modes, content and sector-addressed.

This experiment shows that there is a large increase in per-day cache hit
counts for the web and the home workloads when a content-addressed cache
is used (relative to a sector-addressed cache). The first observation is that
improvement trends are consistent across the two cache sizes. Both cache im-
plementations benefit substantially from a larger cache size, except for the
mail workload, indicating that mail is not a cache-friendly workload, validated
by its substantially larger working set and workload I/O intensity (as observed
in Section 2). The web-vm workload shows the biggest increase, with an al-
most 10X increase in cache hits with a cache of 200MB compared to the home
workload which shows an increase of 4X. The mail workload show the least
improvement of approximately 10%.

We performed additional experiments to compare an LRU implementation
with the ARC cache implementation (used in the previous experiments) using
a single-day trace of the web-vm workload. Figure 9 provides a performance
comparison of both replacement algorithms when used for a content-addressed

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:16 • R. Koller and R. Rangaswami

Fig. 9. Comparison of ARC and LRU content-based caches for pages read only (top) and pages
read/write operations (bottom). A single-day trace (0.18 million page reads and 2.09 million page
read/writes) of the web workload was used as the workload.

cache. For small and large cache sizes, we observe that ARC is either as good or
more effective than LRU, with ARC’s improvement over LRU increasing sub-
stantially for write operations at small to moderate cache sizes. More generally,
this experiment suggests that the performance improvements for a content-
addressed cache are sensitive to the cache replacement mechanism, which
should be chosen with care.

4.2 Dynamic Replica Retrieval

To evaluate the effectiveness of dynamic replica retrieval, we replayed a one-
week trace for each workload with and without using I/O Deduplication. When
using I/O Deduplication, prior to replaying the trace workload, information
about duplicates was loaded into the kernel module’s data structures, as would
have been accumulated by I/O Deduplication over the lifetime of all data on
the disk. Content-based caching and selective duplication were turned off. In
each case, we measured the per-request disk I/O time per request. A lower
per-request disk I/O time informs us of a more efficient storage system.

Figure 10 shows the results of this experiment. For all the workloads, there
is a decrease in median per-request disk I/O time of at least 10% and up to
20% for the homes workload. These findings indicate that there is room for
optimizing I/O operations by simply using pre-existing duplicate content on
the storage system.

4.3 Selective Duplication

Given the improvements offered by dynamic replica retrieval, we now evalu-
ate the impact of selective duplication, a mechanism whose goal is to further

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:17

Fig. 10. Improvement in disk read I/O times with dynamic replica retrieval. Box and whisker
plots depicting median and quartile values of the per-request disk I/O times are shown. For each
workload, the values to the left represent the vanilla system and those on the right the dynamic
replica retrieval.

Fig. 11. Improvement in disk read I/O times with selective duplication and dynamic replica
retrieval optimizations. Other details are the same as in Figure 10.

increase the opportunities for dynamic replica retrieval. The workloads and
metric used for this experiment were the same as the ones in the previous
experiment.

To perform selective duplication, for each workload, ten copies of the pre-
dicted popular content were created on scratch space distributed across the
entire disk drive. The set of popular data blocks to replicate is determined
by the kernel module during the day and exported to user space after a time
threshold is reached. A user space program logs the information about the
popular content that are candidates for selective duplication and creates the
copies on disk-based on the information gathered during periods of little or no
disk activity. As in the previous experiment, prior to replaying the trace work-
load, all the information about duplicates on disk was loaded into the kernel
module’s data structures.

Figure 11 (when compared with the numbers in Figure 10) shows how selec-
tive duplication improves upon the previous results using pure dynamic replica
retrieval. Figure 4 showed that the web workload had more than 80% in content
reuse overlap, and the effect of duplicating this information can be observed
immediately. Overall, the reduction in per-request disk I/O time was improved
substantially for the web-vm and homes workloads, and to a lesser extent for
the homes workload using this additional technique when compared to using
dynamic replica retrieval alone. Overall reductions in median disk I/O times

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:18 • R. Koller and R. Rangaswami

Table III. Reduction in Total Disk Read I/O Times

Workload Vanilla (sec) I/O dedup (sec) Improvement

web-vm 3098.61 1641.90 47%
mail 4877.49 3467.30 28%
home 1904.63 1160.40 39%

when compared to the vanilla system were 33% for the web workload; 35% for
the homes workload; and 23% for mail.

4.4 Putting It All Together

We now examine the impact of using all the three mechanisms of I/O Dedu-
plication at once for each workload. We use a sector-addressed cache for the
baseline vanilla system and a content-addressed one for I/O Deduplication.
We set the cache size to 200 MB in both cases. Since sector- or content-based
caching is the first mechanism encountered by the I/O request stream, the re-
sults of the caching mechanism remain unaffected because of the other two, and
the cache hit counts remain as with the independent measurements reported in
Section 4.1. However, cache hits do modify the request stream presented to the
remaining two optimizations. While there is a reduction in the improvements
to per-request disk read I/O times with all three mechanisms (not shown) when
compared to using the combination of dynamic replica retrieval and selective
duplication alone, the total number of I/O requests is different in each case.
Thus the average disk I/O time is not a robust metric to measure relative per-
formance improvement. The total disk-read I/O time for a given I/O workload,
on the other hand, provides an accurate comparative evaluation by taking into
account both the reduced number of I/O read operations due to content-based
caching and the improvements in disk latencies of the latter two optimizations,
and effectively measures the true increase in disk I/O efficiency.

When comparing total disk read I/O time for these three workloads, substan-
tial reductions were observed when compared to a vanilla system as shown on
Table III. These uniformly large improvements (28 to 47% across the three
workloads) are a clear indication of the effectiveness of I/O Deduplication in
improving I/O performance for a range of different storage workloads.

4.5 Evaluating Overhead

While the gains due to I/O Deduplication are promising, it incurs resource
overhead. Specifically, the implementation uses content- and sector- addressed
hash-tables to simplify lookup and insert operations into the content-based
cache. We evaluate the CPU overhead for insert/lookup operations and memory
overhead required for managing hash-table metadata in I/O Deduplication.

4.5.1 CPU Overhead. To evaluate the overhead of I/O Deduplication, we
measured the average number of CPU cycles required for lookup/insert oper-
ations as we vary the number of unique pages (i.e., size) in the content-based
cache (i.e., cache size) for a day of the web workload. Figure 13 depicts these
overheads for two cache configurations, one configured with 225 buckets in the

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:19

Fig. 12. Overhead of content and sector lookup operations with increasing size of the content-
based cache.

Fig. 13. Overhead of sector and content lookup operations with increasing hash-table bucket
entries.

hash tables and the other with 25 buckets. Read operations perform a sector
lookup and additionally content lookup in case of a miss for insertion. Write op-
erations always perform a sector and content lookup due to our write-through
cache design. Content lookups need to first compute the hash for the page con-
tents, which takes around 100K CPU cycles for MD5. With few buckets (25),
lookup times approach O(N) where N is the size of the hash-table. However,
given enough hash-table buckets (225), lookup times are O(1).

Next, we examined the sensitivity to the hash-table bucket entries. As the
number of buckets are increased, the lookup times decrease as expected due
to reduction in collisions, but beyond 220 buckets, there is an increase. We
attribute this to L2 cache and TLB misses due to memory fragmentation, thus
under-scoring that hash-table bucket sizes should be configured with care. In
the sweet spot of bucket entries, the lookup overhead for both sector and content
reduces to 1K CPU cycles or less than 1μs for our 2GHz machine. Note that
the content lookup operation includes a hash computation, which inflates its
cycles requirement by at least 100K.

4.6 Memory Overhead

The management of I/O Deduplication’s content-based cache introduces mem-
ory overhead for managing metadata for the content-based cache. Specifically,

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:20 • R. Koller and R. Rangaswami

the memory overhead is dictated by the size of the cache measured in pages
(P); the degree of workload static similarity (WSS); and the configured number
of buckets in the hash tables (HTB), which also determine the lookup time,
as we saw earlier. In our current unoptimized implementation, the memory
overhead in bytes (assuming 4 byte pointers and 4096 byte pages):

mem(P, WSS, HTB) = 13 ∗ P + 36 ∗ P ∗ WSS + 8 ∗ HTB. (1)

These overheads include 13 bytes per-page to store the metadata for a a specific
page content (vc page); 36 bytes per page per duplicated entry (vc entry); and 8
bytes per hash-table entry for the corresponding linked list. For a 1GB content
cache (256K pages), a static similarity of 4, and a hash-table of size 1 million
entries, the metadata overhead is ∼48MB, or approximately 4.6%.

5. RELATED WORK

In this section, we examine research literature related to workload-based I/O
performance optimization and research related to the use of content similarity
in memory and storage systems. While there is substantial work done along
both these directions, they are, for the most part, explored as orthogonal tech-
niques in the literature, with the latter primarily being used for optimizing
storage capacity utilization by using data deduplication.

5.1 I/O Performance Optimization

Workload-based I/O performance optimization has a long history. The first class
of optimizations is based on creating optimized layouts for storage system data.
The early work of Wong [1980]; Vongsathorn et al. [1990]; and Ruemmler and
Wilkes [1991], which argued for shuffling on-disk data based on data access
frequency. Later, Akyurek and Salem [1995] argued for copying over shuffling
of data, with the observation that original layouts are often useful and that data
popularity and access patterns can be temporary. More recently, ALIS [Hsu
et al. 2005] and BORG [Bhadkamkar et al. 2009] have employed a dedicated,
reorganized area on the disk to improve both locality and sequentiality of I/O
access.

The second class of work is based on replicating data and creating opportu-
nities for reducing disk-head movement by increasing the number of choices
for retrieving data. These include the large body of work on mirroring sys-
tems [Bitton and Gray 1988]. The work on doubly distorted mirrors [Solworth
and Orji 1991] creates multiple replicas on master and slave disks to increase
both write performance (using initial write-anywhere and background updat-
ing of original locations) and read performance by dispatching read requests to
the nearest free arm. Zhang et al.’s work on eager writing [Zhang et al. 2002]
extended this approach to mirrored/striped RAID configurations primarily for
database OLTP workload (which are characterized by little locality or sequen-
tiality). Yu et al. [2000] propose an alternate approach for trading disk capacity
for performance in a RAID system, by storing several rotational replicas of
each block and using a rotational latency sensitive disk scheduler. FS2 [Huang
et al. 2005] proposed replication in file system free-space based on block-access

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:21

frequency and the use of such selective duplication of content to optimize head
movement during subsequent retrieval of replicated data. Quite obviously, se-
lective duplication is motivated by the above works, but is different in two
respects: (i) it targets identifying replication candidates based on content pop-
ularity, rather than block address popularity; and (ii) duplication is performed
in preconfigured dedicated space transparently to the file system and/or other
managers of the storage system. To the best of our knowledge the only work to
use content-based optimization of I/O is the work of Tolia et al. [2003], where
the authors use content hashes to perform dynamic replica retrieval, choosing
between multiple hosts in an extrinsically-duplicated distributed storage sys-
tem. Our work, on the other hand, uses intrinsic duplication within a single
storage system.

5.2 Data Deduplication

Content similarity in both memory and archival storage have been investi-
gated in the literature. Memory deduplication has been explored before in the
VMware ESX server [Waldspurger 2002]; Difference Engine [Gupta et al. 2008];
and Satori [Milos et al. 2009], each aiming to eliminate duplicate in-memory
content both within and across virtual machines sharing a physical host. Of
these, Satori has apparent similarities to our work because it identifies candi-
dates for in-memory deduplication as data is read from storage. Satori runs in
two modes: content-based sharing and copy-on-write disk sharing. For content-
based sharing, Satori uses content-hashes to track page contents in memory
read from disk. Since its goal is not I/O performance optimization, it does not
track duplicate sectors on disk, and therefore does not eliminate duplicated
I/Os that would read the same content from multiple locations. In copy-on-
write disk sharing, the disk is already configured to be copy-on-write, enabling
the sharing of multiple VM disk images on storage. In this mode, duplicated
I/Os due to multiple VMs retrieving the same sectors on the shared physical
disk would be eliminated in the same way as a regular sector-addressed cache
would do. In contrast, our work eliminates duplicated I/Os by retrieving their
content irrespective of where they reside on storage. Additionally, our work im-
proves I/O performance by reducing head movement. Thus, the contributions
of Satori are complementary to our work and can be used simultaneously.

Data deduplication in archival storage has also gained importance in both
the research and industry communities. Current research on data dedupli-
cation uses several techniques to optimize the I/O overheads incurred due
to data duplication. Venti [Quinlan and Dorward 2002] proposed by Quinlan
and Dorward was the first to propose the use of a content-addressed storage
for performing data deduplication in an archival system. The authors sug-
gested the use of an in-memory content-addressed index of data to speed-up
lookups for duplicate content. Similar content-addressed caches were used in
data backup solutions such as Peabody [Morrey III and Grunwald 2003] and
Foundation [Rhea et al. 2008]. Content-based caching in I/O Deduplication is
inspired by these works. Recent work by Zhu and his colleagues [Zhu et al.
2008] suggests new approaches to alleviate the disk bottleneck via the use of

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:22 • R. Koller and R. Rangaswami

Bloom filters [Bloom 1970] and by further accounting for locality in the content
stream. The Foundation work suggests additional optimizations using batched
retrieval and flushing of index entries and a log-based approach to writing
data and index entries to utilize temporal locality [Rhea et al. 2008]. The work
on sparse indexing [Lillibridge et al. 2009] suggests improvements to Zhu et
al.’s general approach by exploiting locality in the chunk index lookup opera-
tions to further mitigate the disk I/O bottleneck. I/O Deduplication addresses
an orthogonal problem, that of improving I/O performance for foreground I/O
workload based on the use of duplicates, rather than their elimination. Nev-
ertheless, the above approaches do suggest interesting techniques to optimize
the management of a content-addressed index and cache in main-memory that
is complementary to and can be used directly within I/O Deduplication.

6. DISCUSSION

Several aspects of I/O Deduplication design, implementation, and deployment
warrant further discussion. Some of these also suggest avenues for future work.

6.1 Multidisk Deployment

In previous sections, we designed and evaluated a single disk implementation of
I/O Deduplication. Multidisk storage deployments in the form of RAID or more
complex NAS appliances are common in enterprise data centers. One might
question both the utility and effectiveness of the single disk-head movement
optimizations central to I/O Deduplication in such systems. We believe that
head movement optimizations based on content similarity are viable and can
enable complementary optimizations by minimizing the unavoidable mechani-
cal delays in any disk-based storage system. The dynamic replica retrieval and
selective duplication subtechniques require further consideration for multidisk
systems. First, these optimizations must be implemented where information
about individual disk-head positions is available. Such information is avail-
able inside the driver for software RAID, in the RAID controller for hardware
RAID, and inside the firmware/OS or internal hardware controllers for NAS
appliances. Digest information about the outstanding requests and I/O com-
pletion events at each disk can then be utilized as in the single disk design.
While the optimal location within each disk for each I/O request can be com-
piled in this way, the complementary issue of load balancing across multiple
disks must also be addressed. Apart from the well-known queue depth-based
techniques for load-balancing, alternate solutions such as simultaneous dis-
patching to multiple disks combined with just-in-time I/O cancellation can also
be envisioned where applicable.

6.2 Hash Collisions

Our design and implementation of I/O Deduplication makes the assumption
that MD5 (128 bits) is collision-free. Specifically, this assumption is made when
the content-hash entry for a new page being written is registered. A similar
assumption, for SHA-1 is made for deduplication in archival storage [Quinlan
and Dorward 2002] and low-bandwidth network file transfers [Muthitacharoen

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:23

et al. 2001]. While this assumption may be reasonable in several settings,
delivering absolute correctness guarantees requires that this assumption be
removed. Systems like Foundation [Rhea et al. 2008] additionally include the
provision to perform a byte-wise comparison following a hit in the content cache
by reading the target location which potentially contains the duplicate data.
This, of course, requires an additional I/O operation. The use of a specific hash
function or the method of determining duplicate content is not decisive in our
design, and these alternatives can be employed if found necessary within the
target deployment scenario.

6.3 Variable-Sized Chunks

Our implementation of I/O Deduplication uses fixed-size blocks as the basic
data unit for determining content similarity. This choice was motivated by
our goal of simplified deployment on a variety of block storage systems. Using
variable size chunks as units has been demonstrated to be more effective for
similarity detection for mostly similar content and similar content at different
offsets within a file [Brin et al. 1995; Muthitacharoen et al. 2001]. This capa-
bility is especially important for archival storage where a single backup file
is composed of multiple data files stored at different offsets and possibly with
partial modifications. We believe that for online storage systems, this may be
of lesser concern, except for very specific applications (e.g., a mail server where
entire user INBOXes or folders are managed as a single file). Nevertheless,
the use of variable-sized chunks for I/O deduplication provides an interesting
avenue for future work.

7. CONCLUSIONS AND FUTURE WORK

System and storage consolidation trends are driving increased duplication of
data within storage systems. Past efforts have been primarily directed towards
the elimination of such duplication for improving storage capacity utilization.
With I/O Deduplication, we take a contrary view that intrinsic duplication
in a class of systems which are not capacity-bound can be effectively utilized
to improve I/O performance – the traditional Achilles’ heel for storage sys-
tems. Three techniques contained within I/O Deduplication work together to
either optimize I/O operations or eliminate them altogether. An in-depth eval-
uation of these mechanisms revealed that together they reduced average disk
I/O times by 28 to 47%, a large improvement, all of which can directly im-
pact the overall application-level performance of disk I/O bound systems. The
content-based caching mechanism increased memory caching effectiveness by
increasing cache hit rates by 10% to 4x for read operations when compared
to traditional sector-based caching. Head-position-aware dynamic replica re-
trieval directed I/O operations to alternate locations on-the-fly and additionally
reduced I/O times by 10 to 20%. And, selective duplication created additional
replicas of popular content during periods of low foreground I/O activity and
further improved the effectiveness of dynamic replica retrieval by 23 to 35%.

I/O Deduplication opens up several directions for future work. One av-
enue for future work is to explore content-based optimizations for write I/O

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:24 • R. Koller and R. Rangaswami

operations. A possible future direction is to optionally coalesce or even elim-
inate altogether write I/O operations for content that is already duplicated
elsewhere on the disk, or alternatively direct such writes to alternate loca-
tions in the scratch space. While the first option might seem similar to data
deduplication at a high level, we suggest a primary focus on the performance
implications of such optimizations rather than capacity improvements. Any op-
timization for writes affects the read-side optimizations of I/O Deduplication,
and a careful analysis and evaluation of the trade-off points in this design space
is important.

ACKNOWLEDGMENTS

We thank Ajay Gulati and the anonymous reviewers of the USENIX FAST
conference for their input which significantly improved the content and pre-
sentation of our work. We thank Eric Johnson for his help with production
server traces at FIU.

REFERENCES

AKYUREK, S. AND SALEM, K. 1995. Adaptive block rearrangement. Comput. Syst. 13, 2, 89–121.
AXBOE, J. 2007. Blktrace User Guide.
BHADKAMKAR, M., GUERRA, J., USECHE, L., BURNETT, S., LIPTAK, J., RANGASWAMI, R., AND HRISTIDIS, V.

2009. BORG: BlockreORGanization for self-optimizing storage systems. In Proceedings of the
USENIX Conference on File and Storage Technologies. USENIX Association, Monterey, CA.

BITTON, D. AND GRAY, J. 1988. Disk shadowing. In Proceedings of the International Conference on
Very Large Data Bases.

BLOOM, B. H. 1970. Space/time trade-offs in hash coding with allowable errors. Comm. ACM 13,
7, 422–426.

BRIN, S., DAVIS, J., AND GARCIA-MOLINA, H. 1995. Copy detection mechanisms for digital documents.
In Proceedings of the ACM SIGMOD Conference. ACM, New York.

CLEMENTS, A., AHMAD, I., VILAYANNUR, M., AND LI, J. 2009. Decentralized deduplication in SAN
cluster file systems. In Proceedings of the USENIX Annual Technical Conference. USENIX As-
sociation, Monterey, CA.

ELLARD, D., LEDLIE, J., MALKANI, P., AND SELTZER, M. 2003. Passive NFS tracing of email and
research workloads. In Proceedings of the USENIX Conference on File and Storage Technologies.
USENIX Association, Monterey, CA.

EMC CORPORATION. EMC Invista. http://www.emc.com/products/software/invista/invista.jsp.
GILL, B. S. 2008. On multi-level exclusive caching: offline optimality and why promotions are bet-

ter than demotions. In Proceedings of the USENIX Conference on File and Storage Technologies.
USENIX Association, Monterey, CA.

GRAY, J. AND SHENOY, P. 2000. Rules of thumb in data engineering. In Proceedings. of the IEEE
International Conference on Data Engineering. IEEE, Wshington, D.C.

GUERRA, J., USECHE, L., BHADKAMKAR, M., KOLLER, R., AND RANGASWAMI, R. 2008. The case for active
block layer extensions. ACM Oper. Syst. Rev. 42, 6.

GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN, A. C., VARGHESE, G., VOELKER, G., AND VAHDAT,
A. 2008. Difference engine: Harnessing memory redundancy in virtual machines. In Proceed-
ings of the USENIX Symposium on Operating Systems Design and Implementation. USENIX
Association, Monterey, CA.

HSU, W. W., SMITH, A. J., AND YOUNG, H. C. 2005. The automatic improvement of locality in storage
systems. ACM Trans. Comput. Syst. 23, 4, 424–473.

HUANG, H., HUNG, W., AND SHIN, K. G. 2005. FS2: Dynamic data replication in free disk space for
improving disk performance and energy consumption. In Proceedings of the ACM SOSP. ACM,
New York.

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

I/O Deduplication: Utilizing Content Similarity to Improve I/O Performance • 13:25

IBM CORPORATION. IBM system storage SAN volume controller.
http://www03.ibm.com/systems/ storage/software/virtualization/svc/.

JAIN, N., DAHLIN, M., AND TEWARI, R. 2005. TAPER: Tiered approach for eliminating redundancy in
replica synchronization. In Proceedings of the USENIX Conference on File and Storage Systems.
USENIX Association, Monterey, CA.

JIANG, S., CHEN, F., AND ZHANG, X. 2005. Clock-pro: An effective improvement of the clock re-
placement. In Proceedings of the USENIX Annual Technical Conference. USENIX Association,
Monterey, CA.

KULKARNI, P., DOUGLIS, F., LAVOIE, J. D., AND TRACEY, J. M. 2004. Redundancy elimination within
large collections of files. In Proceedings of the USENIX Annual Technical Conference. USENIX
Association, Monterey, CA.

LEUNG, A., PASUPATHY, S., GOODSON, G., AND MILLER, E. 2008. Measurement and analysis of large-
scale network file system workloads. In Proceedings of the USENIX Annual Technical Conference.
USENIX Association, Monterey, CA.

LI, X., ABOULNAGA, A., SALEM, K., SACHEDINA, A., AND GAO, S. 2005. Second-tier cache management
using write hints. In Proceedings of the USENIX Conference on File and Storage Technologies.
USENIX Association, Monterey, CA.

LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR, V., TREZISE, G., AND CAMBLE, P. 2009. Sparse
indexing: Large scale, inline deduplication using sampling and locality. In Proceedings of the
USENIX Conference on File and Storage Technologies. USENIX Association, Monterey, CA.

MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER, I. L. 1970. Evaluation techniques for storage
hierarchies. IBM Syst. J. 9, 2, 78–117.

MEGIDDO, N. AND MODHA, D. S. 2003. Arc: A self-tuning, low overhead replacement cache. In
Proceedings of the USENIX Conference on File and Storage Technologies. USENIX Association,
Monterey, CA.

MILOS, G., MURRAY, D. G., HAND, S., AND FETTERMAN, M. 2009. Satori: Enlightened page sharing.
In Proceedings of the USENIX Annual Technical Conference. USENIX Association, Monterey,
CA.

MORREY, C. B., III, AND GRUNWALD, D. 2003. Peabody: The time travelling disk. In Proceedings of
the IEEE/NASA MSST. IEEE, Los Alamitos, CA.

MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. 2001. A low-bandwidth network file system. In
Proceedings of the ACM SOSP. ACM, New York.

NETWORK APPLIANCE, INC. NetApp V-series of heterogeneous storage environments.
http://media.netapp.com/documents/v-series.pdf.

ORJI, C. U. AND SOLWORTH, J. A. 1993. Doubly distorted mirrors. In Proceedings of the ACM
SIGMOD. ACM, New York.

QUINLAN, S. AND DORWARD, S. 2002. Venti: A new approach to archival storage. In Proceedings of
the USENIX Conference on File and Storage Technologies. USENIX Association, Monterey, CA.

RHEA, S., COX, R., AND PESTEREV, A. 2008. Fast, inexpensive content-addressed storage in foun-
dation. In Proceedings of the USENIX Annual Technical Conference. USENIX Association, Mon-
terey, CA.

RUEMMLER, C. AND WILKES, J. 1991. Disk shuffling. Tech. rep. HPL-CSP-91-30, Hewlett-Packard
Laboratories.

SOLWORTH, J. A. AND ORJI, C. U. 1991. Distorted mirrors. In Proceedings of the 1st International
Conference on Parallel and Distributed Information Systems (PDIS).

TOLIA, N., KOZUCH, M., SATYANARAYANAN, M., KARP, B., AND BRESSOUD, T. 2003. Opportunistic use of
content addressable storage for distributed file systems. In Proceedings of the USENIX Annual
Technical Conference. USENIX Association, Monterey, CA.

VONGSATHORN, P. AND CARSON, S. D. 1990. A system for adaptive disk rearrangement. Softw. Pract.
Exper. 20, 3, 225–242.

WALDSPURGER, C. A. 2002. Memory resource management in VMware ESX server. In Proceed-
ings. of the USENIX Symposium on Operating Systems Design and Implementation. USENIX
Association, Monterey, CA.

WONG, C. K. 1980. Minimizing expected head movement in one-dimensional and two-
dimensional mass storage systems. ACM Comput. Surv. 12, 2, 167–178.

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

13:26 • R. Koller and R. Rangaswami

WONG, T. M. AND WILKES, J. 2002. My cache or yours? Making storage more exclusive. In Pro-
ceedings. of the USENIX Annual Technical Conference. USENIX Association, Monterey, CA.

YU, X., GUM, B., CHEN, Y., WANG, R. Y., LI, K., KRISHNAMURTHY, A., AND ANDERSON, T. E. 2000.
Trading capacity for performance in a disk array. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation. USENIX Association, Monterey, CA.

ZHANG, C., YU, X., KRISHNAMURTHY, A., AND WANG, R. Y. 2002. Configuring and scheduling an
eager-writing disk array for a transaction processing workload. In Proceedings of the USENIX
Conference on File and Storage Technologies. USENIX Association, Monterey, CA.

ZHU, B., LI, K., AND PATTERSON, H. 2008. Avoiding the disk bottleneck in the data domain dedupli-
cation file system. In Proceedings of the USENIX Conference on File and Storage Technologies.
USENIX Association, Monterey, CA.

Received April 2010; revised May 2010; accepted June 2010

ACM Transactions on Storage, Vol. 6, No. 3, Article 13, Publication date: September 2010.

