
Software Persistent Memory

Jorge Guerra, Leonardo Mármol, Daniel Campello, Carlos Crespo, Raju Rangaswami, Jinpeng Wei
Florida International University

{jguerra, lmarm001, dcamp020, ccres008, raju, weijp}@cs.fiu.edu

Abstract

Persistence of in-memory data is necessary for many
classes of application and systems software. We pro-
pose Software Persistent Memory (SoftPM), a newmem-
ory abstraction which allows malloc style allocations
to be selectively made persistent with relative ease.
Particularly, SoftPM’s persistent containers implement
automatic, orthogonal persistence for all in-memory
data reachable from a developer-defined root structure.
Writing new applications or adapting existing applica-
tions to use SoftPM only requires identifying such root
structures within the code. We evaluated the correct-
ness, ease of use, and performance of SoftPM using
a suite of microbenchmarks and real world applica-
tions including a distributedMPI application, SQLite (an
in-memory database), and memcachedb (a distributed
memory cache). In all cases, SoftPM was incorporated
with minimal developer effort, was able to store and re-
cover data successfully, and provide significant perfor-
mance speedup (e.g., up to 10X for memcachedb and
83% for SQLite).

1 Introduction

Persistence of in-memory data is necessary for many
classes of software including metadata persistence in
systems software [21, 24, 32, 33, 35, 38, 40, 47, 48, 52,
59], application data persistence in in-memory databases
and key-value stores [3, 5], and computational state per-
sistence in high-performance computing (HPC) applica-
tions [19, 44]. Currently such software relies on the
persistence primitives provided by the operating system
(file or block I/O) or a database system. When using
OS primitives, developers need to carefully track persis-
tent data structures in their code and ensure the atomic-
ity of persistent modifications. Additionally they are re-
quired to implement serialization/deserialization for their
structures, potentially creating and managing additional
metadata whose modifications must also be made con-
sistent with the data they represent. On the other hand,
using databases for persistent metadata is generally not
an option within systems software, and when their use is
possible, developers must deal with data impedance mis-
match [34]. While some development complexity is al-
leviated by object-relation mapping libraries [10], these

translators increase overhead along the data path. Most
importantly, all of these solutions require substantial ap-
plication involvement for making data persistent which
ultimately increases code complexity affecting reliabil-
ity, portability, and maintainability.

In this paper, we present Software Persistent Mem-
ory (SoftPM), a lightweight persistent memory abstrac-
tion for C. SoftPM provides a novel form of orthogo-
nal persistence [8], whereby the persistence of data (the
how) is seamless to the developer, while allowing effort-
less control over when and what data persists. To use
SoftPM, developers create one or more persistent con-
tainers to house a subset of in-memory data that they
wish to make persistent. They only need to ensure that
a container’s root structure houses pointers to the data
structures they wish to make persistent (e.g. the head of
a list or the root of a tree). SoftPM automatically dis-
covers data reachable from a container’s root structure
(by recursively following pointers) and makes all new
and modified data persistent. Restoring a container re-
turns the container root structure from which all origi-
nally reachable data can be accessed. SoftPM thus ob-
viates the need for explicitly managing persistent data
and places no restrictions on persistent data locations in
the process’ address space. Finally, SoftPM improves
I/O performance by eliminating the need to serialize data
and by using a novel chunk-remapping technique which
utilizes the property that all container data is memory
resident and trades writing additional data for reducing
overall I/O latency.

We evaluated a Linux prototype of SoftPM for correct-
ness, ease of use, and performance using microbench-
marks and three real world applications including a re-
coverable distributed MPI application, SQLite [5] (a
serverless database), and memcachedb (a distributed
memory cache). In all cases, we could integrate SoftPM
with little developer effort and store and recover appli-
cation data successfully. In comparison to explicitly
managing persistence within code, development com-
plexity substantially reduced with SoftPM. Performance
improvements were up to 10X for memcachedb and
83% for SQLite, when compared to their native, opti-
mized, persistence implementations. Finally, for a HPC-
class matrix multiplication application, SoftPM’s asyn-

1

Function Description

int pCAlloc(int magic, int cSSize, void ∗∗ cStruct) create a new container; returns a container identifier

int pCSetAttr(int cID, struct cattr ∗ attr) set container attributes; reports success or failure

struct cattr ∗ pCGetAttr(int magic) get attributes of an existing container; returns container attributes

void pPoint(int cID) create a persistence point asynchronously
int pSync(int cID) sync-commit outstanding persistence point I/Os; reports success or failure

int pCRestore(int magic, void ∗∗ cStruct) restore a container; populates container struct, returns a container identifier

void pCFree(int cID) free all in-memory container data

void pCDelete(int magic) delete on-disk and in-memory container data
void pExclude(int cID, void ∗ ptr) do not follow pointer during container discovery

Table 1: The SoftPM application programmer interface.

App1

App2

Appn

A

P

I

LIMA

Container

Manager
Discovery &

Allocator

Write

Handler
Flusher

SID

Chunk

Remapper

Transaction

Handler

Network

memcachedb

PFS module

SSD module

Cache module

HDD module

Figure 1: The SoftPM architecture.

Container Root
Structure

Usage

struct c root

{
id = pCAlloc(m,sizeof(*cr),&cr);

list t *l; cr->l = list head;

} *cr; pPoint(id);

Figure 2: Implementing a persistent list. pCAlloc

allocates a container and pPointmakes it persistent.

chronous persistence feature provided performance at
close to memory speeds without compromising data con-
sistency and recoverability.

2 SoftPM Overview

SoftPM implements a persistent memory abstraction
called container. To use this abstraction, applications
create one or more containers and associate a root struc-
ture with each. When the application requests a persis-
tence point, SoftPM calculates a memory closure that
contains all data reachable (recursively via pointers)
from the container root, and writes it to storage atomi-
cally and (optionally) asynchronously.

The container root structure serves two purposes: (i)
it frees developers from the burden of explicitly track-
ing persistent memory areas, and (ii) it provides a simple
mechanism for accessing all persistent memory data af-
ter a restore operation. Table 1 summarizes the SoftPM
API. In the simplest case, an application would create
one container and create persistence points as necessary
(Figure 2). Upon recovery, a pointer to a valid container
root structure is returned.

2.1 System Architecture
The SoftPM API is implemented by two components:
the Location Independent Memory Allocator (LIMA),

and the Storage-optimized I/O Driver (SID) as depicted
in Figure 1. LIMA’s container manager handles con-
tainer creation. LIMA manages the container’s persis-
tent data as a collection of memory pages marked for
persistence. When creating a persistence point, the dis-
covery and allocator modulemoves any data newly made
reachable from the container root structure and located in
volatile memory to these pages. Updates to these pages
are tracked by the write handler at the granularity of
multi-page chunks. When requested to do so, the flusher
creates persistence points and sends the dirty chunks to
the SID layer in an asynchronous manner. Restore re-
quests are translated into chunks requests for SID.

The SID layer atomically commits container data to
persistent storage and tunes I/O operations to the under-
lying storage mechanism. LIMA’s flusher first notifies
the transaction handler of a new persistence point and
submits dirty chunks to SID. The chunk remapper im-
plements a novel I/O technique which uses the property
that all container data is memory resident and trades writ-
ing additional data for reducing overall I/O latency. We
designed and evaluated SID implementations for hard
drive, SSD, and memcached back-ends.

3 LIMA Design

Persistent containers build a foundation to provide seam-
less memory persistence. Container data is managed
within a contiguous container virtual address space, a
self-describing unit capable of being migrated across
systems and applications running on the same hardware
architecture. The container virtual address space is com-
posed solely of pages marked for persistence including
those containing application data and others used to store
LIMA metadata. This virtual address space is mapped to

2

Container 0 Container 1 Volatile Page Unused Page

Container

Page Table

Chunk

Ind. Map

LIMA Virtual Volume

...

<container>

...

...

SID Physical Volume

<chunk>

...

Process Virtual Address Space

<page>

Figure 3: Container virtual address spaces in rela-
tion to process virtual address space and LIMA/SID
volumes. The container virtual address space is chunked,
containing a fixed number of pages (three in this case).

logically contiguous locations within the virtual volume
managed by LIMA. SID remaps LIMA virtual (storage)
volumes at the chunk granularity to the physical (stor-
age) volume it manages. This organization is shown in
Figure 3. The indirection mechanism implemented by
SID simplifies persistent storage management for LIMA
which can use a logically contiguous store for each con-
tainer.

3.1 Container Manager
The container manager implements container allocation
and restoration. To allocate a new container (pCAlloc),
an in-memory container page table, that manages both
application persistent data and LIMA metadata, is first
initialized. Next, the container root structure and other
internal LIMA metadata structures are initialized to be
managed via the container page table.

To restore a container, an in-memory container in-
stance is created and all container data and metadata
loaded. Since container pages would likely be loaded
into different portions of the process’ address space, two
classes of updates must be made to ensure consistency of
the data. First, the container metadata must be updated
to reflect the new in-memory data locations after the re-
store operation. Second, all memory pointers within data
pages need to be updated to reflect the new memory ad-
dresses (pointer swizzling). To facilitate this, pointer lo-
cations are registered during process execution; we dis-
cuss automatic pointer detection in §5.

3.2 Discovery and Memory Allocation
A core feature of SoftPM is its ability to discover con-
tainer data automatically. This allows substantial control
over what data becomes persistent and frees the devel-
oper from the tedious and error-prone task of precisely
specifying which portions of the address space must be
allocated persistently. SoftPM implements automatic
container discovery and persistent memory allocation by

automatically detecting pointers in process memory, re-
cursively moving data reachable from the container root
to the container data pages, and fixing any back refer-

ences (other pointers) to the data that was moved. In
our implementation, this process is triggered each time
a persistence point is requested by the application and is
executed atomically by blocking all threads of a process
only until the container discovery phase is completed;
disk I/O is performed asynchronously (§3.4).
To make automatic container discovery possible,

SoftPM uses static analysis and automatic source trans-
lation to register both pointers and memory allocation

requests (detailed in §5). At runtime, pointers are added
either to a persistent pointer set or a volatile pointer set
as appropriate, and information about all memory allo-
cations is gathered. Before creating a persistence point,
if a pointer in the persistent pointer set (except those ex-
cluded using pExclude) references memory outside the
container data pages, the allocation containing the ad-
dress being referenced is moved to the persistent mem-
ory region. Forward pointers contained within the moved
data are recursively followed to similarly move other new
reachable data using an edge-marking approach [30]. Fi-
nally, back references to all the data moved are updated.
This process is shown in Figure 4. There are two spe-
cial cases for when the target is not within a recognized
allocation region. If it points to the code segment (e.g.
function pointers), the memory mapped code is regis-
tered so that we can “fix” the pointer on restoration. Oth-
erwise, the pointer metadata is marked so that its value
is set to NULL when the container gets restored; this
allows SoftPM to correctly handle pointers to OS state
dependent objects such as files and sockets within stan-
dard libraries. If allocations made by library code are
required to be persistent, then the libraries must also
be statically translated using SoftPM; the programmer
is provided with circumstantial information to help with
this. In many cases, simply reinitializing the library upon
restoration is sufficient, for instance, we added one extra
line in SQLite (see § 6.3.3) for library re-initialization.

3.3 Write Handler
To minimize disk I/O, SoftPM commits only modified
data during a persistence point. The write handler is re-
sponsible for tracking such changes. First, sets of con-
tiguous pages in the container virtual address space are
grouped into fixed-size chunks. At the beginning of a
persistence point, all container data and metadata pages
are marked read-only. If any of these pages are subse-
quently written into, two alternatives arise when hand-
ing the fault: (i) there is no persistence point being cre-
ated currently – in this case, we allow the write, mark
the chunk dirty, and its pages read-write. This ensures at
most one write page fault per chunk between two consec-

3

(a) Start (b) Copy (c) Fix pointer (d) Add pointers (e) Repeat (f) Fix references

Figure 4: Container Discovery. Grey boxes indicate freed memory.

utive persistence points. (ii) there is a persistence point
being created currently – then we check if the chunk has
already been made persistent. If so, we simply proceed
as in the first case. If it has not yet been made persistent,
a copy of the chunk is first created to be written out as
part of the ongoing persistence point, while write to the
original chunk is handled as in the first case.

3.4 Flusher

Persistence points are created asynchronously (via
pPoint) as follows. First, the flusher waits for previous
persistence points for the same container to finish. It then
temporarily suspends other threads of the process (if any)
and marks all the pages of the container as read-only. If
no chunks were modified since the previous persistence
point, then no further action is taken. If modifications ex-
ist, the flusher spawns a new thread to handle the writing,
sets the state of the container to persistence point commit,
and returns to the caller after unblocking all threads. The
handler thread first identifies all the dirty chunks within
the container and issues write operations to SID. Once
all the chunks are committed to the persistent store, SID
notifies the flusher. The flusher then reverts the state of
the container to indicate that persistence point has been
committed.

4 SID Design

LIMA maps chunks and containers to its logical volume
statically and writes out only the modified chunks during
persistence points. If a mechanical disk drive is used di-
rectly to store this logical volume, I/O operations during
a persistence point can result in large seek and rotational
delay overheads due to fragmented chunk writes within
a single container; if multiple containers are in use si-
multaneously, the problem compounds causing disk head
movement across multiple container boundaries. If a
solid-state drive (SSD) were used as the persistent store,
the LIMA volume layout will result in undesirable ran-
dom writes to the SSD that is detrimental to both I/O
performance and wear-leveling [22, 31]. The comple-
mentary requirement of ensuring atomicity of all chunk
writes during a persistence point must be addressed as
well. The SID component of SoftPM is an indirection
layer below LIMA and addresses the above concerns.

4.1 SID Basics

SID divides the physical volume into chunk-sized units
and maps chunks in the LIMA logical volume to phys-
ical volume locations for I/O optimization. The chunk

remapper utilizes the property that all container data
is memory resident and trades writing additional data
(chunk granularity writes) for reducing I/O latency using
device-specific optimizations.

Each physical volume stores volume-level SID meta-
data at a fixed location. This metadata includes for each
container the address of a single physical chunk which
stores two of the most recent versions of metadata for
the container to aid crash recovery (elaborated later). To
support chunk indirection, SID maintains a chunk indi-
rection map as part of the container metadata. Finally,
SID also maintains both an in-memory and on-disk per-
container free chunk bitmap to locate the chunks utilized
by a container. We chose to store per-container free
chunk bitmaps to make each container self-describing
and as a simple measure to eliminate race conditions
when persisting multiple containers simultaneously.

During SID initialization, the free chunk bitmaps
for each container stored on the physical volume are
read into memory. An in-memory global free chunk
bitmap obtained by merging the per-container free chunk
bitmaps is used to locate free chunks in the physical vol-
ume quickly during runtime.

Atomic Persistence. To ensure atomicity of all chunk
writes within a persistence point, SID uses persistence
version numbers. When SID receives a request to create
a persistence point, it goes through several steps in se-
quence. First, it writes all the dirty data chunks; chunks
are never updated in place to allow recovery of the pre-
vious version of the chunks in case the persistence oper-
ation cannot be completed. Once the data chunk writes
have all been acknowledged, SID writes the updated free
chunk bitmap. Finally, it writes the container’s metadata.
This metadata includes, the chunk indirection map, the
location of the newly written free chunk bitmap, and a
(monotonically increasing) version number to uniquely
identify the persistence point. Writing the last block of
the metadata (the version number) after an I/O barrier
commits the persistence point to storage; we reasonably
assume that this block gets written to the storage device
atomically.

4

Recovery. SID recovers the same way after both nor-
mal shutdowns and crashes. In either case, it identifies
the most recent metadata for each container by inspect-
ing their version numbers. It then reads the per-container
free chunk bitmaps, and builds the global free chunk
bitmap by merging all per-container bitmaps. When the
application requests to restore a container, the most re-
cent version of the chunk indirection map is used to re-
construct the container data in memory.

4.2 Device-specific optimizations

Disk Drives. Since sequential access to disk drives is
orders of magnitude more efficient than random, we de-
signed a mechanical disk SID driver to employ mostly-
sequential chunk layout. The design assumes that the
storage device will be performance rather than capacity
bound, justifying a fair degree of space over-provisioning
for the SID physical volume. Every chunk is written to
the nearest free location succeeding the previously writ-
ten location, wrapping around in a circular fashion. The
greater the over-provisioning of the SID physical vol-
ume, the higher the probability of finding an adjacent
free chunk. For instance, a 1.5X over-provisioning of
capacity will result in every third chunk being free on
average. Given sufficient outstanding chunk requests in
the disk queue at any time, chunks can be written with
virtually no seek overhead and minimum rotational de-
lay. Reclaiming free space is vastly simpler than a log-
structured design [49] or that of other copy-on-write sys-
tems likeWAFL [28] because (i) the design is not strictly
log-structured and does not requiremultiple chunkwrites
to be sequential, and (ii) reclaiming obsolete chunks is
as simple as updating a single bit in the freespace bitmap
without the need for log cleaning or garbage collection
that can affect performance.

Flash drives. An SSD’s logical address space is orga-
nized into erase units which were hundreds of kilobytes
to a few megabytes in size for the SSD units we tested.
If entire erase units are written sequentially, free space
can be garbage collected using inexpensive switch merge
operations rather than more expensive full merge opera-
tions that require data copying [31]. SID writes to the
SSD space one erase unit at a time by tuning its chunk
size to a multiple of the erase unit size. The trade-off be-
tween the availability of free chunks and additional ca-
pacity provisioning follows the same arguments as those
for disk drives above.

5 Pointer Detection

As discussed in §3, LIMAmust track pointers in memory
for automatic container discovery and updating pointer
values during container restoration. The life-cycle of a
pointer can be defined using the following stages: (i) al-

location: when memory to store the pointer is allocated,
(ii) initialization: when the value of the pointer is initial-
ized, (iii) use: when the pointer value is read or written,
and (iv) deallocation: when the memory used to store the
pointer is freed. Note that, a pointer is always associated
with an allocation. In SoftPM, we detect pointers at ini-
tialization, both explicitly (via assignment) or implicitly
(via memory copying or reallocation). Hence, if pro-
grams make use of user-defined memory management
mechanisms (e.g., allocation, deallocation, and copy),
these must be registered with SoftPM to be correctly ac-
counted for.

SoftPM’s pointer detection works in two phases. At
compile time, a static analyzer based on CIL (C Interme-
diate Language) [43] parses the program’s code looking
for instructions that allocate memory or initialize point-
ers. When such instructions are found, the analyzer in-
serts static hints so that these operations are registered by
the SoftPM runtime. At runtime, SoftPM maintains an
allocation table with one entry per active memory allo-
cation. Each entry contains the address of the allocation
in the process’ address-space, size, and a list of point-
ers within the allocation. Pointers are added to this list
upon initialization which can be done either explicitly or
implicitly. A pointer can be initialized explicitly when it
appears as an l-value of an assignment statement. Sec-
ond, during memory copying or moving, any initialized
pointers present in the source address range are also con-
sidered as implicitly initialized in the destination address
range. Additionally, the source allocation and pointers
are deregistered on memory moves. When memory gets
deallocated, the entry is deleted from the allocation table
and its pointers deregistered.

Notes. Since SoftPM relies on static type information
to detect pointers, it cannot record integers that may be
(cast and) used as pointers by itself. However, develop-
ers can insert static hints to the SoftPM runtime about the
presence of additional “intentionally mistyped” pointers
to handle such oddities. Additionally, SoftPM is agnos-
tic to the application’s semantics and it is not intended to
detect arbitrary memory errors. However, SoftPM itself
is immune to most invalid states. For example, SoftPM
checks whether a pointer’s target is a valid region as per
the memory allocation table before following it when
computing the memory closure during container discov-
ery. This safeguard avoids bloating the memory closure
due to “rogue” pointers. We discuss this further detail in
§ 8.

Related work. Pointer detection is an integral part of
garbage collectors [58]. However, for languages that
are not strongly typed, conservative pointer detection is
used [12]. This approach is unsuitable for SoftPM since
it is necessary to swizzle pointers. To the best of our
knowledge, the static-dynamic hybrid approach to exact

5

pointer detection presented in this paper, is the first of
its kind. Finally, although pointer detection seems simi-
lar to points-to analysis [27], these are quite different in
scope. The former is concerned about if a given memory
location contains a valid memory address, while the lat-
ter is concerned about exactly which memory addresses
a memory location can contain.

6 Evaluation

Our evaluation seeks to address the correctness, ease of
use, and performance implications of using SoftPM. We
compare SoftPM to conventional solutions for persis-
tence using a variety of different application benchmarks
and microbenchmarks. In cases where the application
had a built-in persistence routine, we compared SoftPM
against it using the application’s default configuration.
Where such an implementation was not available, we
used the TPL serialization library [6] v1.5 to implement
the serialization of data structures. All experiments were
done on one or more 4-Core AMD Opteron 1381 with
8 GB of RAM using WDC WD5002ABYS SATA and
MTRON 64GB SSD drives running Linux 2.6.31.

6.1 Workloads
We discuss workloads that are used in the rest of this
evaluation and how we validated the consistency of per-
sistent containers stored using SoftPM in each case.

Data Structures. For our initial set of experiments we
used the DragonFly BSD [1] v2.13.0 implementation of
commonly used data structures including arrays, lists,
trees, and hashtables. We populated these with large
number of entries, queried, and modified them, creating
persistence points after each operation.

Memcachedb [3]. A persistent distributed cache based
on memcached [2] which uses Berkeley DB (BDB) [45]
v4.7.25 to persistently store elements of the cache. Mem-
cachedb v1.2.0 stores its key-value pairs in a BDB
database, which provides a native persistent key value
store by using either a btree or a hash table. We mod-
ified memcachedb to use a hash table which we make
persistent using SoftPM instead of using BDB, and com-
pared its performance to the native version using de-
fault configurations of the software. To use SoftPM with
memcachedb, we modified the file which interfaced with
BDB, reducing the LOC from 205 to 40. The workload
consisted of inserting a large number of key-value pairs
into memcachedb and performing a number of lookups,
inserts, and deletes of random entries, creating persis-
tence points after each operation.

SQLite [5]. A popular serverless database system with
more than 70K LOC. We modified it to use SoftPM
for persistence and compared it against its own persis-
tence routines. SQLite v3.7.5 uses a variety of complex

data structures to optimize inserts and queries among
other operations; it also implements and uses a custom
slab-based memory allocator. A simple examination of
the SQLite API revealed that all the database metadata
and data is handled through one top-level data structure,
called db. Thus, we created a container with just this
structure and excluded an incorrectly detected pointer
resulting from casting an int as a void*. In total,
we added 9 LOC to make the database persistent using
SoftPM which include a few more code to re-initialize a
library.

MPIMatrix Multiplication. A recoverable parallel ma-
trix multiplication that uses Open MPI v1.3.2 and check-
points state across processes running on multiple ma-
chines.

6.2 Correctness Evaluation
To evaluate the correctness of SoftPM for each of the
above applications, we crashed processes at random ex-
ecution points and verified the integrity of the data when
loaded from the SoftPM containers. We then compared
what was restored from SoftPM to what was loaded from
the native persistence method (e.g. BDB or file); in all
cases, the contents were found to be equal. Finally, given
that we were able to examine and correctly analyze com-
plex applications such as SQLite with a large number of
dynamically allocated structures, pointers, and a custom
memory allocation implementation, we are confident that
our static and dynamic analysis for pointer detection is
sound.

6.3 Case Studies
In this section, we perform several case studies including
(i) a set of SoftPM-based persistent data structures, (ii)
an alternate implementation of memcachedb [3] which
uses SoftPM for persistence, (iii) a persistent version of
SQLite [5], a serverless database based on SoftPM, and
(iv) a recoverable parallel matrix multiplication applica-
tion that uses MPI.

6.3.1 Making Data Structures Persistent

We examined several systems that require persistence of
in-memory data and realized that these systems largely
used well-known data structures to store their persistent
data such as arrays, lists, trees, and hashtables. A sum-
mary of this information is presented in Table 2. We con-
structed several microbenchmarks that create and mod-
ify several types of data structures using SoftPM and
TPL [6], a data structure serialization library. To quantify
the reduction in development complexity we compared
the lines of code necessary to implement persistence for
various data structures using both solutions. We report in
Table 3 the lines of code (LOC) without any persistence
and the additional LOC when implementing persistence
using TPL and SoftPM respectively.

6

 0

 0.5

 1

 1.5

 2

Create Query 25% 50% 75% 25% 50% 75% 25% 50% 75%

R
e
la

tiv
e
 E

xe
c.

 T
im

e List
RB Tree

Hashtable
Array

RemoveAddModify

Figure 5: Performance of individual data structure operations. The bars represent the execution time of the SoftPM

version relative to a version that uses the TPL serialization library for persistence. We used fixed size arrays which do not

support add or remove operations.

Systems Arrays Lists
Hash

Trees C
Tables

BORG [11] ! ! ! !

CDP [33] !

Clotho [21] ! !

EXCES [54] ! ! ! !

Deduplication [59] ! !

FlaZ [38] ! ! !

Foundation [48] ! !

GPAW [41] !

I/O Shepherd [24] ! !

I/O Dedup [32] ! ! !

Venti [47] !

Table 2: Persistent structures used in application and
systems software. Arrays are multidimensional in some

cases. C indicates other complex (graphs and/or hybrid)

structures were used. This summary is created based on de-

scriptions within respective articles and/or direct communi-

cation with the developers of these systems.

For each data structure we perform several operations
(e.g modify) and make the data structure persistent. Note
that the TPL version writes entire structures to disk,
whereas SoftPM writes only what was modified. For
create, SoftPM calculates the memory closure, move the
discovered data to persistent memory, and write to disk
and overhead is proportional to this work. The query

operation doesn’t modify any data and SoftPM clearly
outperforms TPL in this case. modify only changes ex-
isting data values, remove reduces the amount of data
written by TPL and involves only metadata updates in
SoftPM, and add increases the size of the data structure
increasing both the amount of data and metadata writes
with SoftPM. Figure 5 presents the execution times of
the SoftPM version relative to the TPL version. Two in-
teresting points are evidenced here. First, for add opera-
tions SoftPM outperforms TPL for all data structures ex-
cept RB Tree, this is due to balancing of the tree modify-
ing almost the entire data structure in the process requir-
ing expensive re-discovery, data movement, and writing.
Second, the remove operations for Hashtable are expen-

Data
Structure

Array

Linked List

RB Tree

Hash Table

SQLite

memcachedb

Original LOC for LOC to use
LOC Persistence SoftPM

102 17 3

188 24 3

285 22 3

396 21 3

73042 6696 9

1894 205 40

Table 3: Lines of code to make structures (or appli-
cations) persistent and recover them from disk. We

used TPL for Array, Linked List, RB Tree, and Hash Table;

SQLite and memcachedb implement custom persistence.

sive for SoftPM since its implementation uses the largest
number of pointer; removing involves a linear search in
one of our internal data structures and we are currently
working on optimizing this.

6.3.2 Comparing with Berkeley DB

memcachedb is an implementation of memcached which
periodically makes the key value store persistent by writ-
ing to a Berkeley DB (BDB) [45] database. BDB pro-
vides a persistent key value store using a btree (BDB-
Btree) or hash table (BDB-HT), as well as incremen-
tal persistence by writing only dirty objects, either syn-
chronously or asynchronously. We modified mem-
cachedb to use a hash table which we make persistent
using SoftPM instead of using BDB. In Figure 6 we com-
pare the operations per second achieved while changing
the persistence back-end. SoftPM outperforms both vari-
ants of BDB by upto 2.5X for the asynchronous versions
and by 10X for the synchronous.

6.3.3 Making an in Memory Database Persistent

SQLite is a production-quality highly optimized server-
less database, it is embedded within many popular soft-
ware such as Firefox, iOS, Solaris, and PHP. We imple-
mented a benchmark which creates a database and per-
forms random insert, select, update, and delete trans-
actions. We compare the native SQLite persistence to
that using SoftPM; transactions are synchronous in both
cases. Figure 7 shows that SoftPM is able to achieve 55%

7

 0

 10000

 20000

 30000

 40000

 50000

 60000

BDB-BTree

BDB-HT

SoftPM

O
p

e
ra

tio
n

s/
S

e
c

Persistence Backend

Sync HDD
Sync SSD

Async HDD
Async SSD

Figure 6: Performance of memcachedb using differ-
ent persistent back-ends. The workload randomly adds,

queries, and deletes 512 byte elements with 16 byte keys.

The dashed line represents a memory only solution.

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

T
ra

n
sa

ct
io

n
s/

se
c

of Rows (x1000)

SoftPM
Vanilla

Figure 7: SQLite transactions per second comparison
when using SoftPM and the native file persistence.

to 83% higher transactions rate depending on the size of
the database. We believe this is a significant achieve-
ment for SoftPM given two facts. First, SQLite is a
large and complex code base which includes a complete
stand alone database application and second, SQLite’s
file transactions are heavily optimized and account for
more than 6K LOC. Further analysis revealed that most
of SoftPM’s savings arise from its ability to optimize
I/O operations relative to SQLite. The reduction in per-
formance improvement with a larger number of rows in
the database is largely attributable to a sub-optimal con-
tainer discovery implementation; by implementing incre-
mental discovery to include only those pointers within
dirty pages, we expect to scale performance better with
database size in future versions of SoftPM. Figure 8
shows a breakdown of the total overhead including I/O
time incurred by SoftPM which are smaller than the time
taken by the native version of SQLite. Finally, all of this
improvement was obtained with only 9 additional LOC
within SQLite to use SoftPM, a significant reduction
relative to its native persistence implementation (6696
LOC).

6.3.4 Recoverable Parallel Matrix Multiplication

To compare SoftPM’s performance to conventional
checkpointing methods, we implemented a parallel ma-
trix multiplication application using Cannon’s algo-
rithm [25]. We evaluated multiple solutions, includ-

SoftPM

Vanilla

 0% 20% 40% 60% 80% 100%

Pointer Tracking Discovery I/O Other

Figure 8: Breakdown of time spent in the SQLite
benchmark for 100K rows.

 1

 1.1

 1.2

 1.3

 1.4

 100 200 300 400 500 600 700 800E
xe

c.
 T

im
e

 W
.R

.T
 N

o
 C

h
e

ck
p

o
in

t
Matrix Size (MB)

SoftPM (sync)
SoftPM (async)

Serialization
No checkpoint

Figure 9: Contrasting application execution times for
MPI matrix multiplication using 9 processes.

ing a no checkpoint non-recoverable implementation, a
serialization-based implementation which serializes the
matrices to files, and sync and async versions of SoftPM,
in all cases a checkpoint is made after calculating each
sub-matrix. For the file-based checkpointing version we
added 79 LOC to serialize, write the matrix to a file, and
recover from the file. In the SoftPM version, we added 44
LOC, half of them for synchronization across processes
to make sure all processes restored the same version after
a crash.

Figure 9 compares the total execution time across
these solutions. Synchronous SoftPM and the serializa-
tion solution have similar performance. Interestingly, be-
cause of unique ability of overlapping checkpoints with
computation, the asynchronous version of SoftPM per-
forms significantly better than either of the above, in fact,
within a 1% difference (for large matrices) relative to the
memory-only solution.

6.4 Microbenchmarks
In this section, we evaluate the sensitivity of SoftPM per-
formance to its configuration parameters using a series
of microbenchmarks. For these experiments, we used
a persistent linked list as the in-memory data structure.
Where discussed, SoftPM represents a version which
uses a SoftPM container for persistence; TPL represents
an alternate implementation using the TPL serialization
library. Each result is averaged over 10 runs, and except
when studying its impact, the size of a chunk in the SID

8

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 20 40 60 80 100

T
im

e
 (

se
cs

)

% Locality

SoftPM (m)
SoftPM (a/r)

TPL (m)
TPL (a/r)

Figure 10: Impact of locality on incremental persis-
tence. Two different sets of experiments are performed:

(m) where only the contents of the nodes are modified, and

(a/r) where nodes are added and removed from the list. In

both cases the size of the list is always 500MB.

 0

 1

 2

 3

 4

 5

512KB 1MB 2MB 4MB 8MB 16MB 32MB
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

T
im

e
 (

se
cs

)

S
ID

 M
e

ta
d

a
ta

 S
iz

e
 (

M
B

)

Chunk Size

100%
75%
50%
25%

SID Metadata

Figure 11: Impact of chunk size on persistence point
time. A list of size 500MB is made persistent and individual

lines depict for a specific fraction of the list modified.

layer is set to 512KB. To make the linked list persistent,
SoftPM and TPL add 5 and 28 LOC, respectively.

Incremental Persistence. Usually, applications modify
only a subset of the in-memory data between persistence
points. SoftPM implements incremental persistence by
writing only the modified chunks, which we evaluated
by varying the locality of updates to a persistent linked
list, shown in Figure 10. As expected, TPL requires ap-
proximately the same amount of time regardless of how
much data is modified; it always writes the entire data
structure. The SoftPM version requires less time to cre-
ate persistence points as update locality increases.

Chunk Size. SoftPM tracks changes and writes con-
tainer data at the granularity of a chunk to create per-
sistence points. When locality is high, smaller chunks
lead to lesser data written but greater SID metadata over-
head because of a bigger chunk indirection map and free
chunk bitmap. On the other hand, larger chunks im-
ply more data written but less SID metadata. Figure 11
shows the time taken to create persistence points and the
size of the SID metadata at different chunk sizes.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 2 4 6 8 10 12P
e
rt

si
st

e
n
ce

 P
o
in

t
T

im
e
 (

se
cs

)

Number of Processes

TPL
SoftPM

Figure 12: Time to create persistence points for mul-
tiple parallel processes. Every process persists a list of

size (1GB/number-of-processes).

Parallel Persistence Points. The SID layer optimizes
the way writes are performed to the underlying store, e.g.
writing to disk drives semi-sequentially. Figure 12 de-
picts the performance of SoftPM in relation to TPL when
multiple processes create persistence points to different
containers at the same time. We vary the number of pro-
cesses, but keep the total amount of data persisted by all
the processes a constant. The total time to persist using
SoftPM is a constant given that the same amount of data
is written. On the other hand, the time for TPL increases
with the number of threads, because of lack of optimiza-
tion of the interleaving writes to the different container
files at the storage level.

Percentage of Pointers in Data. Creating a persistence
point requires computing a transitive memory closure,
an operation whose time complexity is a function of the
number of pointers in container data. We varied the
fraction of the memory (used by the linked list) that is
used to store pointers (quantified as “percentage pointers
in data”) and measured the time to create a full (non-
incremental) persistence point.

We compare performance with a TPL version of the
benchmark that writes only the contents of the elements
of the list to a file in sequence without having to store
pointers. A linked list of total size 500MBwas used. Fig-
ure 13 shows the persistence point creation times when
varying the percentage pointers in data. SoftPM is not
always more efficient in creating persistence points than
TPL, due to the need to track and store all the pointers
and the additional pointer data and SoftPM metadata that
needs to be written to storage. The linked list represents
one of the best case scenarios for the TPL version since
the serialization of an entire linked list is very simple and
performs very well due to sequential writing. We also
point out here that we are measuring times for register-
ing pointers in the entire list, a full discovery and (non-
incremental) persistence, a likely worst case for SoftPM;
in practice, SoftPM will track pointers incrementally and

9

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40 45 50
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

T
im

e
 (

se
cs

)

L
im

a
 M

e
ta

d
a

ta
 S

iz
e

 (
M

B
)

Percentage Pointers in Data

SoftPM
TPL

Lima Metadata

Figure 13: Time to persist a linked list and LIMA
metadata size, varying percentage of pointers in data.
The total size is fixed at 500MB and node sizes are varied

accordingly.

persist incrementally as the list gets modified over time.
Further, for the complex programs we studied the per-
centage pointers in data is significantly lower; in SQLite
this ratio was 4.44% and for an MPI-based matrix mul-
tiplication this ratio was less than 0.04%. Finally, the
amount of SoftPM metadata per pointer can be further
optimized; instead of 64 bit pointer locations (as we cur-
rently do), we can store a single page address and multi-
ple 16 bit offsets.

7 Related Work

Persistence techniques can be classified into system-

managed, application-managed, and application-

directed. System-managed persistence is usually
handled by a library with optional OS support. In
some solutions, it involves writing a process’s entire
execution state to persistent storage [23, 26, 13]. Other
solutions implement persistently mapped memories for
programs with pointer swizzling at page fault time [51].
While transparent to developers, this approach lacks the
flexibility of separating persistent and non-persistent
data required by many applications and systems soft-
ware. With application-managed persistence [19, 44],
application developers identify and track changes to
persistent data and build serialization-based persistence
and restoration routines. Some hybrid techniques
implemented either as persistent memory libraries and
persistent object stores have combined reliance on
extensive developer input about persistent data with
system-managed persistence [14, 20, 36, 34, 46, 50].
However, these solutions involve substantial develop-
ment complexity, are prone to developer error, and in
some cases demand extensive tuning of persistence
implementations to the storage system making them
less portable. For instance, ObjectStore[34] requires
developers to specify which allocations are persistent
and their type by overloading the new operator in

C++ [4].

Application-directed persistence provides a middle
ground. The application chooses what data needs to
be persistent, but a library implements the persistence.
The earliest instances were persistent object storage sys-
tems [16] based on Atkinson’s seminal orthogonal per-
sistence proposal [8]. Applications create objects and ex-
plicit inter-object references, and the object storage sys-
tem (de)serializes entire objects and (un)swizzles refer-
ence pointers [42]. Some persistent object systems (e.g.,
Versant Persistent Objects [7], SSDAlloc [9], Dali [29])
eliminate object serialization but they require (varying
degrees of) careful development that includes identify-
ing and explicitly tagging persistent objects, identifying
and (un)swizzling pointers, converting strings and arrays
in the code to custom persistent counterpart types, and
tagging functions that modify persistent objects.

Recoverable Virtual Memory (RVM) [50] was one of
the first to demonstrate the potential for memory-like in-
terfaces to storage. However, its approach has some key
limitations when compared to SoftPM. First, RVM’s in-
terface still requires substantial developer involvement.
Developers must track all persistent data, allocate these
within RVM’s persistent region, and ensure that depen-
dence relations among persistent data are satisfied (e.g.,
if persistent structure a points to b, then b must also be
made persistent). Manually tracking such relations is te-
dious and error-prone. Further, developers must specify
the address ranges to be modified ahead of time to op-
timize performance. These requirements were reported
to be the source of most programmer bugs when using
RVM [39]. Second, RVM’s static mapping of persis-
tent memory segments makes it too rigid for contem-
porary systems that demand flexibility in managing ad-
dress spaces [37, 53]. In particular, this approach is
not encouraged in today’s commodity operating systems
that employ address-space layout randomization for se-
curity [53]. Finally, RVM is also restrictive in dynami-
cally growing and shrinking persistent segments and lim-
its the portability of a persistent segment due to its ad-
dress range restrictions.

The recent Mnemosyne [56] and NV-Heaps [15]
projects also provide persistent memory abstractions
similar to SoftPM. However, there are at least two key
differences. First, both of the solutions are explicitly de-
signed for non-volatile memories or NVM (e.g., phase-
change memory) that are not yet commercially avail-
able. Most significantly, these devices are intended to
be CPU accessible and byte addressable which elimi-
nates copying data in/out of DRAM [17]. Thus, the
focus of these systems is on providing consistent up-
dates to NVM-resident persistent memory via transac-
tions. On the other hand, SoftPM targets currently avail-
able commodity technology. Second, neither of these

10

systems provide the orthogonal persistence that SoftPM
enables; rather, they require the developer to explicitly
identify individual allocations as persistent or not and
track and manage changes to these within transactions.
For instance, the NV-Heaps work argues that explicit
tracking and notification of persistent data ensures that
the developer does not inadvertently include more data
than she intends [15]. We take the converse position
that besides making persistence vastly simpler to use,
automatic discovery ensures that the developer will not
inadvertently exclude data that does need to be persis-
tent for correctness of recovery, while simultaneously re-
taining the ability to explicitly exclude portions of data
when unnecessary. Further, SoftPM’s design, which re-
lies on interposing on application memory allocations,
ensures that pointers to library structures (e.g., files or
sockets) are reset to NULL upon container restoration by
default, thus relieving the developer of explicitly exclud-
ing such OS dependent data; such OS specific data is
typically re-initialized upon application restart. Finally,
feedback about automatically discovered persistent con-
tainers from SoftPM can help the developer in reasoning
about and eliminating inadvertently included data.

Single level persistent stores as used in the Grasshop-
per operating system [18] employ pointer swizzling to
convert persistent store references to in-memory ad-
dresses at the page granularity [55, 57] by consulting
an object table within the object store or OS. Updates
to persistent pointers are batch-updated (swizzled) when
writing pages out. SoftPM fixes pointer addresses when
persistent containers get loaded into memory but is free
of swizzling during container writing time.

Finally, Java objects can be serialized and saved to
persistent storage, from where it can be later loaded and
recreated. Further, the Java runtime uses its access to the
object’s specification, unavailable in other lower-level
imperative languages that SoftPM targets.

7.1 SoftPM: A New Approach

SoftPM implements application-directed persistence and
differs from the above body of work in providing a solu-
tion that: requires little developer effort, works with cur-
rently available commodity storage, is flexible enough
to apply to modern systems, and enables memory to
be ported easily across different address space config-
urations and applications. Unlike previous solutions in
the literature, SoftPM automatically discovers all the
persistent data starting from a simple user-defined root
structure to implement orthogonal persistence. SoftPM’s
modular design explicitly optimizes I/O using chunk
remapping and tuning I/Os for specific storage devices.
Further, SoftPM’s asynchronous persistence allows over-
lapping computation with persistence I/O operations. Fi-

nally, unlike most previous solutions, SoftPM imple-
ments persistence for the weakly typed C language, typ-
ically used for developing systems code using a novel
approach that combines both static and dynamic analysis
techniques.

8 Discussion and Future Work

Several issues related to the assumptions, scope, and cur-
rent limitations of SoftPMwarrant further discussion and
also give us direction for future work.

Programmer errors. SoftPM’s automatic discovery of
updated container data depends on the programmer hav-
ing correctly defined pointers to the data. One concern
might be that if the programmer incorrectly assigned a
pointer value, that could result in corrupt data propagat-
ing to disk or losing portions of the container. This is a
form of programmer error to which SoftPM seems more
susceptible to. However, such programmer errors would
also affect other classes of persistence solutions includ-
ing those based on data structure serialization since these
also require navigating hierarchies of structures. Never-
theless, SoftPM does provide a straightforward resolu-
tion when such errors get exercised. While not discussed
in this paper, the version of SoftPM that was evaluated in
this paper implements container versioning whereby pre-
viously committed un-corrupted versions of containers
can be recovered when such errors are detected. Addi-
tionally, we are currently implementing simple checks to
warn the developer of unexpected states which could be
indicators of such errors; e.g., a persistent pointer points
to a non-heap location.

Container sharing. Sharing container data across
threads within a single address-space is supported in
SoftPM. Threads sharing the container would have to
synchronize updates as necessary using conventional
locking mechanisms. Sharing memory data across con-
tainers within a single address-space is also supported in
SoftPM. These containers can be independently check-
pointed and each container would store a persistent copy
of its data. However, sharing container data persistently
is not supported. Further, in our current implementation,
containers cannot be simultaneously shared across pro-
cess address-spaces. In the future, such sharing can be
facilitated by implementing the SoftPM interface as li-
brary system calls so that container operations can be
centrally managed.

Non-trivial types. SoftPM currently does not handle
pointers that are either untyped or ambiguously typed.
This can occur if a programmer uses a special integer
type to store a pointer value or if a pointer type is part
of a union. These can be resolved in the future with ad-
ditional hints to SoftPM’s static translator from the pro-
grammer. Additionally, the runtime could hint to SoftPM

11

about when a union type resolves to a pointer and when
it is no longer so.

Unstructured data. The utility of SoftPM in simplify-
ing development depends on the type of the data that
must be made persistent. Unstructured data (e.g., au-
dio or video streams) are largely byte streams and do not
stand to benefit as much from SoftPM as data that has
structure containing a number of distinct elements and
pointers between them. Specifically, unstructured data
tends not to get modified in place as much as structured
data and consequently they may not benefit from the in-
cremental change tracking that SoftPM implements.

9 Conclusion

For applications and systems that rely on a portion of
their state being persistent to ensure correctness for
continued operation, the availability of a lightweight
and simple solution for memory persistence is valuable.
SoftPM addresses this need by providing a solution that
is both simple and effective. Developers use the existing
memory interfaces as-is, needing only to instantiate per-
sistent containers and container root structures besides
requesting persistence points. They thus entirely bypass
the complex requirements of identifying all persistent
data in code, tracking modifications to them, and writing
serialization and optimized persistence routines specific
to a storage system. SoftPM automates persistence by
automatically discovering data that must be made persis-
tent for correct recovery and ensures the atomic persis-
tence of all modifications to the container; storage I/O
optimizations are modularized within SoftPM making it
conveniently portable. Recovery of persistent memory is
equally simple; SoftPM returns a pointer to the container
root via which the entire container can be accessed. We
evaluated SoftPM using a range of microbenchmarks,
an MPI application, SQLite database, and a distributed
memcachedb application. Development complexity as
measured using lines of code was substantially reduced
when using SoftPM relative to custom-built persistence
of the application itself as well as persistence using an
off-the-shelf serialization library. Performance results
were also very encouraging with improvements of up
to 10X, with SoftPM’s asynchronous persistence feature
demonstrating the potential for performing at close to
memory speeds.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Paul Barham, whose feedback substantially improved
our work. We are also grateful to Michail Flouris,
Haryadi Gunawi, and Guy Laden for sharing the details
of the persistent data structures they used in their sys-
tems. This work was supported by NSF grants CNS-

0747038 and CCF-093796. Jorge Guerra was supported
in part by an IBM PhD Fellowship.

References

[1] DragonFlyBSD. http://www.dragonflybsd.org/.

[2] memcached. http://memcached.org/.

[3] memcachedb. http://memcachedb.org/.

[4] ObjectStore Release 7.3 Documentation.

http://documentation.progress.com/output/ostore/7.3.0/.

[5] SQLite. http://www.sqlite.org/.

[6] tpl. http://tpl.sourceforge.net/.

[7] Versant. http://www.versant.com/.

[8] M. P. Atkinson. Programming Languages and Databases.

In VLDB, 1978.

[9] A. Badam and V. S. Pai. Ssdalloc: Hybrid ssd/ram mem-

ory management made easy. In Proc. of NSDR, 2009.

[10] D. Barry and T. Stanienda. Solving the java object storage

problem. Computer, 31(11):33–40, 1998.

[11] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-

tak, R. Rangaswami, and V. Hristidis. BORG: Block-

reORGanization and Self-optimization in Storage Sys-

tems. In Proc. of USENIX FAST, 2009.

[12] H.-J. Boehm and M. Weiser. Garbage collection in an

uncooperative environment. Software Practice and Expe-

rience , 18(9):807–921, September 1988.

[13] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and

M. Schulz. Application-level Checkpointing for Shared

Memory Programs. SIGARCH Comput. Archit. News,

32(5):235–247, 2004.

[14] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L.

McAuliffe, J. F. Naughton, D. T. Schuh, M. H. Solomon,

C. K. Tan, O. G. Tsatalos, S. J. White, and M. J. Zwill-

ing. Shoring up persistent applications. In Proceedings

of ACM SIGMOD, 1994.

[15] J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta,

R. Jhala, and S. Swanson. Nv-heaps: Making persistent

objects fast and safe with next-generation, non-volatile

memories. In Proc. of ASPLOS, 2011.

[16] W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J.

Bailey, and R. Morrison. POMS - A Persistent Object

Management System. Software Practice and Experience,

14(1):49– 71, 1984.

[17] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In Proc. of SOSP, 2009.

[18] A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lind-

ström, J. Rosenberg, and F. Vaughan. Grasshopper: An

Orthogonally Persistent Operating System. Computer

Systems, 7(3):289–312, 1994.

[19] E. N. Elnozahy and J. S. Plank. Checkpointing for

Peta-Scale Systems: A Look into the Future of Practical

Rollback-Recovery. IEEE TDSC, 1(2):97–108, 2004.

[20] J. L. Eppinger. Virtual Memory Management for Trans-

action Processing Systems. PhD thesis, Carnegie Mellon

University, 1989.

[21] M. D. Flouris and A. Bilas. Clotho: Transparent Data Ver-

12

sioning at the Block I/O Level. In Proc. of IEEE MSST,

2004.

[22] E. Gal and S. Toledo. Algorithms and data structures for

flash memories. ACM Computing Surveys, 37(2):138–

163, 2005.

[23] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and

K. Davis. Transparent, Incremental Checkpointing at

Kernel Level: a Foundation for Fault Tolerance for Par-

allel Computers. In Proc. of the ACM/IEEE SC, 2005.

[24] H. S. Gunawi, V. Prabhakaran, S. Krishnan, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. Improving File Sys-

tem Reliability with I/O Shepherding. In Proc. of ACM

SOSP, 2007.

[25] H. Gupta and P. Sadayappan. Communication efficient

matrix-multiplication on hypercubes. Proc. of the ACM

SPAA, 1994.

[26] P. H. Hargrove and J. C. Duell. Berkeley Lab Check-

point/Restart (BLCR) for Linux Clusters. In Proc.of Sci-

DAC Conference, 2006.

[27] M. Hind. Pointer analysis: Haven’t we solved this prob-

lem yet? In PASTE’01, pages 54–61. ACM Press, 2001.

[28] D. Hitz, J. Lau, and M. Malcolm. File system design

for an nfs file server appliance. In Proc. of the USENIX

Technical Conference, 1994.

[29] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silber-

schatz, and S. Sudarshan. Dali: A high performance main

memory storage manager. In Proc. of VLDB, 1994.

[30] S. V. Kakkad and P. R. Wilson. Address translation

strategies in the texas persistent store. In Proceedings of

theUSENIX Conference on Object-Oriented Technologies

& Systems, 1999.

[31] A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash-

memory based File System. In USENIX Technical, 1995.

[32] R. Koller and R. Rangaswami. I/O deduplication: Uti-

lizing content similarity to improve i/o performance. In

Proc. of USENIX FAST, 2010.

[33] G. Laden, P. Ta-Shma, E. Yaffe, M. Factor, and S. Fien-

blit. Architectures for controller based cdp. In Proc. of

USENIX FAST, 2007.

[34] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The

objectstore database system. Commun. ACM, 34:50–63,

October 1991.

[35] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner:

Mining Block Correlations in Storage Systems. In Proc.

of USENIX FAST, 2004.

[36] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gru-

ber, U. Maheshwari, A. C. Myers, M. Day, and L. Shrira.

Safe and efficient sharing of persistent objects in thor. In

Proceedings of ACM SIGMOD, 1996.

[37] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn.

Archipelago: trading address space for reliability and se-

curity. SIGARCH Comput. Archit. News, 36(1):115–124,

2008.

[38] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris,

and A. Bilas. Using transparent compression to improve

ssd-based i/o caches. In Proc. of EuroSys, 2010.

[39] H. M. Mashburn, M. Satyanarayanan, D. Steere, and

Y. W. Lee. RVM: Recoverable Virtual Memory, Release

1.3. 1997.

[40] C. Morrey and D. Grunwald. Peabody: the time travelling

disk. In Proc. of IEEE MSST, 2003.

[41] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-

space grid implementation of the projector augmented

wave method. Phys. Rev. B, 71(3):035109, Jan 2005.

[42] E. B. Moss. Working with persistent objects: To swizzle

or not to swizzle. IEEE TSE, 18(8):657–673, 1992.

[43] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer.

CIL: Intermediate language and tools for analysis and

transformation of C programs. In Compiler Construction,

Lecture Notes in Computer Science, 2002.

[44] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.

Varela, R. Riesen, and P. C. Roth. Modeling the Impact of

Checkpoints on Next-Generation Systems. IEEE MSST,

2007.

[45] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.

In Proceedings of the USENIX Annual Technical Confer-

ence, 1999.

[46] J. S. Plank, M. Beck, and G. Kingsley. Libckpt: transpar-

ent checkpointing under Unix. In Proc. of the USENIX

ATC, January 1995.

[47] S. Quinlan and S. Dorward. Venti: A New Approach to

Archival Storage. In Proc. of USENIX FAST, 2002.

[48] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive

content-addressed storage in foundation. In Proc. of

USENIX ATC, 2008.

[49] M. Rosenblum and J. Ousterhout. The Design And Im-

plementation of a Log-Structured File System. In Proc.

of ACM SOSP, 1991.

[50] M. Satyanarayanan, H. Mashburn, P. Kumar, D. C. Steer,

and J. Kistler. Lightweight Recoverable Virtual Memory.

Proc. of the ACM SOSP, 1993.

[51] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An

efficient, portable persistent store. In Proceedings of the

Intl Workshop on Persistent Object Systems, September

1992.

[52] V. Sundaram, T. Wood, and P. Shenoy. Efficient Data

Migration in Self-managing Storage Systems. In Proc. of

ICAC, 2005.

[53] The PaX Team. PaX Address Space Layout

Randomization (ASLR). Available online at:

http://pax.grsecurity.net/docs/aslr.txt.

[54] L. Useche, J. Guerra, M. Bhadkamkar, M. Alarcon, and

R. Rangaswami. EXCES: EXternal Caching in Energy

Saving Storage Systems. In Proc. of IEEE HPCA, 2008.

[55] F. Vaughan and A. Dearle. Supporting large persistent

stores using conventional hardware. In In Proc. Interna-

tional Workshop on POS, 1992.

[56] H. Volos, A. J. Tack, and M. Swift. Mnemosyne:

Lightweight persistent memory. In Proc. of ASPLOS,

2011.

[57] S. J. White and D. J. DeWitt. A performance study of al-

ternative object faulting and pointer swizzling strategies.

In Proc of VLDB, 1992.

[58] P. R.Wilson. Uniprocessor garbage collection techniques.

In Proc. of ISMM, 1992.

[59] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bot-

tleneck in the Data Domain Deduplication File System.

Proc. of USENIX FAST, Feb 2008.

13

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory

	Software Persistent Memory
	Software Persistent Memory

