
1Vector Repacking Algorithms for
Power-Aware Computing
Mario E. Consuegra, Giri Narasimhan, Raju Rangaswami

School of Computing and Information Sciences,
Florida International University,

Miami, FL 33140, USA.
E-mail: {mcons004,giri,raju}@fiu.edu

Abstract—In this paper we experiment with practical
algorithms for the vector repacking problem and its vari-
ants. Vector repacking, like vector packing, aims to pack
a set of input vectors such that the number of bins
used is minimized, while minimizing the changes from
the previous packing. We also consider a variant of vector
repacking that stores additional copies of items with the
goal of improving the performance of vector repacking
algorithms. In addition, our algorithms are parameterized
so that they can be effectively optimized for a variety
of resource allocation applications with different input
characteristics and different cost functions.

I. INTRODUCTION

Data centers can consume up to a hundred times
more energy than a standard office building, much
of which is unfortunately wasted because they draw
60% of their peak power demand even when they are
doing nothing. Power consumption by data centers has
displayed phenomenal growth in recent years and is
expected to grow at even faster rates [9], [8]. It is
therefore imperative for storage systems to be more
energy efficient in order to reduce unnecessary energy
expenditure, save money, and cut down our carbon
footprint.

Most data centers are provisioned for peak per-
formance, while average loads can be much more
modest. Toward the goal of lowering data center power
consumption, Barroso and Hozle [11] have proposed
the approach of “energy proportionality”. An energy-
proportional approach allows for power consumption
to vary with the usage. This approach allocates the
maximum sustainable amount of work into the minimum
number of servers possible, while powering down the
unused servers.

Resource allocation problems can be cast as vector
packing problems by representing each item (task) and
each bin (server) as a multi-dimensional vector with
dimensions for relevant parameters. (We refer to the
vector representing the item or bin as its profile.) In
the storage systems application, relevant parameters of
the profile include working set size, workload intensity

(measured in IOPS), miss rate, etc. In the VM manage-
ment application, the dimensions could represent the
requirements of the VM for resources such as CPU,
memory, bandwidth, etc. Energy-efficient computing
can be achieved by considering the problem of (vector)
packing these items into bins (servers) with the goal
of optimizing (minimizing) the total power consumed
by the servers. Server capacities in each of the cases
directly translates to bin capacities for the abstracted
multi-dimensional vector packing problem.

With the goal of optimizing the power consumption
of data centers, Amur et al. [1], Verma et al. [17]
and Thereska et al. [15] considered the problem of
storing multiple replicas of data sets and working sets.
Also, Panigrahy et al. [13], looked at the problem of
efficiently packing virtual machines (VMs) with known
static demands into servers with fixed capacitites. Using
fewer bins (i.e., servers) directly translates to lower
power consumption. Energy efficiency is thus achieved
by keeping an optimal subset of servers in the system
active while other servers are spun down or brought to
a lower energy consumption state.

a) Vector Repacking: Given that workloads are
inherently dynamic [11], we turn our attention to the
challenging vector repacking problem. While vector
packing strategies can calculate efficient packings that
use close to the minimum number of bins, these
packings may become sub-optimal as conditions change.
But computing good new packings from scratch and
repacking all items accordingly may cost a prohitively
expensive amount of movement. Here we analyze multi-
dimensional vector packing where we are required to
“repack” efficiently and where the cost of the resulting
packing is also dependent on how it differs from the
previous packing, the assumption being that repacking
requires a costly “migration” of tasks, processes, or data.
Our approaches are meaningful only when the vectors
to be packed change their profiles relatively infrequently,
thus making it worthwhile to reconsider the repacking
of the entire set of tasks.

b) Vector Repacking with Replicas: Next, we con-
sider a practical variant of the vector repacking problem.

In this variant, we assume that the system can store a
limited number of extra copies (replicas) of select (or all)
tasks, with the goal of reducing the cost of “migration”.
Here our experiments aim to study the tradeoff between
overprovisioning and the cost of task/data migration.

In sections III and IV we introduce solutions to
the two problems described above and analyze them
experimentally. The results show that our solution for
vector repacking is an effective and practical approach to
deal with problems from the areas of dynamic resource
allocation and power-aware computing. We show that
allowing for extra copies (replicas) of the entities can be
used with vector repacking approaches to find efficient
solutions that attempt to minimize migration costs. We
show results of our experiments with some real data
sets (Section V). Our conclusions are summarized in
Section VI.

II. RELATED WORK

The purpose of this section is to evaluate and select
competitive (static) vector packing algorithms that could
be useful to solve the dynamic repacking variants
introduced above. As mentioned earlier, we model the
problem of optimal placing of items such as working sets
or VMs (“items”) on disk servers or VM hosts (“bins”)
as a multi-dimensional vector packing problem. Efficient
packings into the smallest number of bins translates to
important energy savings. We assume that all bins have
homogenous capacities in all dimensions and that the
input is normalized such that the bins have a capacity
of 1 in each dimension.

The multidimensional vector packing problem has
been of interest for over three decades [12], [10] and
many sophisticated approximation algorithms have been
proposed for it. Even for d = 1, the vector packing
problem (bin-packing) is NP-hard, and there are no
approximation algorithms having an approximation ratio
of (3

2 − ε) for ε > 0 unless P = NP [3]. Hence finding
efficient and practical algorithms to solve this problem
is still a challenging task. For an excellent compilation
of the relevant work on 1-dimensional bin packing the
reader is referred to a survey by Coffman et al. [7].

For multi-dimensional vector packing Woeginger [18]
ruled out an approximation scheme even for the case
d = 2. For approximation algorithms, de la Vega and
Lueker [6] obtained a (d+ ε)-approximation algorithm;
and an improved algorithm by Bansal et al. [2] achieved
an approximation ratio of (ln d+1). Both algorithms are
deemed not practical. For the 2-dimensional case, there
is a (1

1−ρ)-approximation algorithm (for any ρ < 1)
called Hedging [5] (where ρ is the maximum length in
any component for each item). Note that Hedging can
be competitive and useful only for small ρ (e.g., ρ < 1

2),
but much simpler heuristics like First Fit perform as well
with small values of ρ. Other relevant algorithms include

generalizations of the most effective algorithms for the 1-
dimensional case (e.g., GFFD), and were considered for
the multi-dimensional vector problem considered here.
Applications of vector packing to resource allocation
problems have also been recently explored [13]. Lot
less research has been done on the vector repacking
problem. In fact, we are not aware of any relevant work
on the two variants considered in this paper.

We assume that the input to all variants of the vector
packing problem includes a set of d-dimensional vectors
within the unit d-dimensional cube, representing the d-
dimensional profiles of n items that need to be packed.
In other words, v̄i = (vi1, vi2, . . . , vid), where vij ≤ 1
for j = 1, . . . , d. The (static) vector packing problem
is to partition S into a minimum set of subsets of S
(bins), {S1, S2, . . . , Sm}, such that

∑
v̄i∈Sk

v̄i ≤ 1̄, for
k = 1, . . . ,m, where 1̄ is the d-dimensional vector of
all 1’s.

Based on prior work, there is strong evidence that off-
line algorithms for (static) vector packing perform better
(both theoretically and in practice) than their on-line
counterparts. Thus for the 1-dimensional case, First-fit
decreasing (FFD) performs better than First-fit (FF).
Similar behavior has been observed for vector packing
in higher dimensions. For practical vector packing in 1-
dimensions, it is well known that FF and Best-fit (BF) [7]
and their off-line counterparts, FFD and BFD, strike
the best balance between their time complexity and
performance in terms of number of bins. Stillwell et
al. [14] showed FFDSum to be a good choice for resource
allocation algorithms for virtualized service platforms.
Generalizing BF and BFD for vector packing can be
done in many ways. For d ≥ 2, Panigrahy et al. [13]
proposed an algorithm called FFD-EL2, which finds
the bin with the closest L2-distance between the vector
profile of the item and the remaining space in the bin
(represented as d-dimensional vector). Their experiments
showed FFD-EL2 to be the most competitive among the
vector packing algorithms. In summary, generalizations
of FF and BF for higher dimensions seemed to be the best
candidates for applying to the vector repacking problems.
However, our experiments led to some surprising results
as shown below.

III. VECTOR REPACKING

In practice, finding optimal or near-optimal placements
of entities on servers is not the end of the story.
When profiles of entities change, placements have to
be modified, resulting in costly data migration between
servers. Vector repacking is the problem that requires
the simultaneous optimization of the number of bins as
well as the amount of changes from a previous packing
(i.e., migrations). The migration cost is modeled as a
function of the difference between the previous packing
and a new packing. More formally, we have:

2

Instance: A set of vectors S = {v̄1, . . . , v̄n}, rep-
resenting the d-dimensional profiles of the n items
to be repacked, a partition of S, B = {S1, . . . , Sm},
representing the previous packing, and a cost function
f : (B,B′) → R(0,1] that assigns a cost to the change
of packing from B to B′.

Problem: Find a packing B′ = {S′1, . . . , S′m} such that
f(B,B′) is minimized.

Note that we make the following assumptions. We
assume that the cost function f(B,B′) is a combination
of two costs – the cost of the packing B′ (i.e., it depends
on the number of bins in B′) and the migration cost.
We assume that the cost of migrating a specific item
depends on its size, which is assumed to be one of
the dimensions of vector profile representing the item
(say, dimension 1). For example, the cost of migrating
VMs is proportional to its memory footprint, while in
storage systems, migration costs are proportional to
the size of the working-set. We assume that the total
migration cost for the whole repacking is simply the
sum of the migration costs of individual items. In other
words, other consequences of the migration (e.g., loss
in computational time of a VM during the migration)
are assumed to have minimal impact and negligble cost.
Finally, we assume that the migration cost for a specific
item depends only on the vector describing the item and
not on the source or the destination of the move. For
the applications in question, these assumptions are quite
reasonable.

c) Applications: For resource allocation applica-
tions where one would like to assign tasks to servers,
it is possible that a task may need to be migrated to
a different server because its profile may change over
a period of time. For example, a VM may become
more or less compute intensive or memory intensive;
in storage systems, a workload may have the miss rate
characteristics change [17]. In the analogy of vector
packing, it is possible that the bin may not be able to
pack the same set of vectors as the parameters of the
entities change, requiring migration of the entities from
one bin (server) to another [16]. Here we run experiments
simulating the scenario where a given set of data items
is represented by a set of d-dimensional vectors. Our
algorithms assume an initial packing for the items (by
applying one of the static vector packing algorithms).
Then as their profiles change the given placements may
become untenable and new placements may be required,
which involves data movement, whose cost is assumed
to be proportional to the size of the migrated item. In
the following experiments we study algorithms that aim
to find a packing of data sets into a (approximately)
minimum number of servers as the load varies over time
while incurring a (approximately) minimum migration
cost.

A. In Search of the Best Vector Repacking algorithms
d) The Repack Algorithm: For the vector repacking

problem, the naive algorithm is to simply repack from
scratch without using any information from the prior
packing. The problem with the naive approach is that it
can lead to a prohitively large movement cost. Smarter
heuristics must try to incur less movement cost to
achieve new good packings. We propose a generalized
heuristic that can be easily and dynamically tuned to
accomodate different user demands and trade-off choices.
This generalized heuristic for vector repacking has the
following three stages:
• The first stage involves vector eviction, where

bins whose capacities have been exceeded are
identified and selected vectors are evicted.

• The second stage involves placement of the
evicted vectors, which are packed either into one
of the existing bins with adequate resources or
into new bins.

• The third and final stage involves a packing
reduction step, where the entire contents of bins
are considered for repacking into other bins; bins
emptied in this manner are then closed.

The last stage takes care of consolidating underutilized
bins where the goal is to see if the bin could be
done away with entirely. As mentioned earlier, in our
experiments, the total data movement cost of these
operations was simply modeled as the sum of the first
dimension of all the relocated items (i.e., size dimension).

Repack requires the choice of a (static) vector packing
algorithm, which is then applied to obtain an initial
packing of the items; in subsequent intervals it again
uses a vector packing algorithm to decide how to evict
items from overloaded and under-filled bins, and uses
it again to decide where to repack them. We tested
Repack using the off-line version in which all items to
be packed are preordered in decreasing order of sum of
all dimensions. We measured the quality of the algorithm
in terms of number of bins and migration cost. Note
that the migration cost is a function of the total size of
all the items to be repacked.

For simple packing, previous work had already shown
that all the versions of BF and FF have comparable
performance in practice. Along with the versions of
BF, we also implemented Next-fit (NF). The results on
the number of bins were exactly as expected, i.e., BF
resulted in far fewer bins than NF. However, we made
a curious yet crucial observation. We noticed that NF
resulted in considerably less migration cost than BF. If
the number of bins were the only criterion, then BF and
FF are clear winners. Since in the dynamic setting the
cost is measured in both the number of bins used as well
as the migration cost, it means that the NF algorithm has
some merit. Thus, BF and NF represent two extremes –
NF is a fast algorithm and produces packings that are
more expensive in terms of the number of bins used,

3

while BF is a slower O(n log n) algorithm and achieves
better packings. Note that the Worst-Fit (WF) algorithm
and NF have been shown to have the same worst-case
performance ratio. The NF packing algorithm has a
smaller running time than WF and hence offers a better
option as an extreme deviation from BF than WF can
offer.

In the dynamic case achieving very good packings
produces allocations that can become infeasible with
higher probability once the values of the items change
over time. NF has the advantage of incurring relatively
low migration costs. The observation could be explained
by the fact that because NF does not generate tight
(efficient) packings when some of the items change their
profiles there is higher probability that the bins will
continue to have enough capacity to hold them since
they have more slack. The result is that there is less
need to migrate, and thus the migration cost is reduced.
The take-home message was that tighter packings will
lead to higher migration costs.

For different applications of the vector repacking
problems there may be different acceptable trade-offs
between the movement cost and the packing cost.
Furthermore the dimensions of the items being repacked
might follow different distributions in different situations.
In order for Repack to be tunable and easily adaptable
to different situations we must be able to emphasize
movement cost or packing cost as needed for each
different scenario in order to minimize cost. For this we
need a parameter that can allow the Repack algorithm
to target different levels of “tightness” of the packings.
We identify two candidate parameters for this. One of
them is to limit the amount of choices of open bins for
each item when applying vector packing heuristics. The
other one is two impose a slack space on each bin.

e) The Hybrid Vector Packing Algorithm: We pro-
pose two families of algorithms. First, we propose a
family of algorithms which we will refer to as k-bounded
BF (on-line) and k-bounded BFD (off-line), for different
values of k. We abbreviate these algorithms as kBF and
kBFD. NF can be described as an algorithm that looks
at one bin and decides whether or not to place the next
item in it (or to open a new bin). In contrast, BF can be
thought of as an algorithm that looks at all open bins
and decides on the best choice of a bin where the item
is to be placed (or opens a new bin). The k-bounded BF
looks at a fraction k of the bins to decide on the best
choice of a bin to place the next item. When k = 0%,
the algorithm is same as NF and when k = 100%, i.e.,
equals the number of bins currently open, the algorithm
is the same as BF. The second family of algorithms we
propose will be referred to as k-MaxLevel BF (online)
and k-MaxLevel BFD (offline). These vector packing
algorithms fill each bin up to no more than k percent
of their capacities along each dimension.

We studied the use of kBF, kBFD, k-MaxLevel BF

and k-MaxLevel BFD with Repack to characterize the
effect of the packing algorithm on the trade-off between
the migration cost of repacking at each dynamic interval
and the number of bins used. We tested Repack with
kBF and kBFD for k = 0%, 10%, 20%, . . . , 100%. and
Repack with k-MaxLevel BF and k-MaxLevel BFD for
k = 50%, 60%, . . . , 100%

 7

 8

 9

 10

 11

 12

 13

 14

 15

 68 70 72 74 76 78 80 82 84 86 88

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

0

50

100

 BFD

0

50
100

BF

(a)

 0

 2

 4

 6

 8

 10

 12

 65 70 75 80 85 90 95 100

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

50

100

 Max Level BFD

50

100

Max Level BF

(b)

Fig. 1: (a) The effect of varying k on the performance
of kBF and kBFD. Note that k = 0% and k = 100%
correspond to NF and BF respectively. (b) The effect
of varying k on the performance of kMaxLevel BF and
kMaxLevel BFD.

Figure 1 highlights the tradeoff between the packing
efficiency and the migration cost as k is varied. Here
we tested Repack with its kBF, kBFD, kMaxLevel BF,
and kMaxLevel BFD versions on 100 test cases each
with 100 items, 4 dynamic intervals and values from the
uniform distribution U(0, 1]. The first observation is that
the tradeoff is non-existent for the kBFD version but is

4

manifested in the kBF, kMaxLevel BF and kMaxLevel
BFD versions. With kBFD both the number of bins and
the migration cost go down with increase in k. The
behavior of the kBFD version, for which in each vector
packing operation the input is sorted in decreasing order
of some measure of the item, is explained as follows.
As k increases, it is no surprise that the number of bins
becomes smaller since every item has more choices of
bins to be placed. (In fact, the reason for the decrease
in the number of bins also applies to the on-line case.)
For the kBFD, at the start when the items are “large”,
the bins are packed loosely. Then because the items are
packed in decreased order of size then the last bins to
be opened contain more items than the bins that were
opened earlier, since the bigger items are placed in the
first bins to be opened and take more space. The smaller
items are packed together more tightly and in larger
numbers than the larger items with the kBFD algorithm.
When the items’s demands change, the bins that contain
more items will overflow with higher probability. As k
increases, the algorithm packs the last k bins less tightly
(since it has more choices) causing lower migration
costs from these k bins in the next interval. We have
already argued that as bins get packed less tightly, the
migration costs start to drop. In the on-line case, since
the items appear in random order, all bins are packed to
roughly the same level of tightness. Therefore, for the
on-line case, fewer bins translates very simply to greater
migration costs. Our experiments (see Figs 15 and 16
in the Appendix) support the above arguments. Another
interesting observation is that the biggest drop in number
of bins happens when we go from k = 0% to k = 10%.
This is not surprising since having a few choices is
always better than no choices. However, the marginal
gain of more choices starts to drop as the number of
choices increases.

The real merit of on-line kBF is that it is possible
to “exploit the tradeoff” and optimize the cost of the
algorithm by picking the value of k that balances the
packing cost and the migration cost, thus providing finer
control on the combined total cost.

Using kMaxLevel BF and BFD with Repack shows
even a finer relationship between the movement cost
and the packing cost as k is changed. In contrast to
kBF and kBFD, the MaxLevel versions keep all bins
open, and hence all bins are packed more evenly, so the
packings produced are less likely to overflow once the
items change profile since the load is likely to increase
more evenly among all bins (see Fig 17 in the Appendix).
One disdavantage of the kMaxLevel versions compared
to kBF and kBFD is that since kMaxLevel looks at more
choices than kBF and kBFD for smaller k it takes more
time to compute a new packing. These behaviors stay
consistent with tests in higher dimensions (see Figure 13
and 14 in the Appendix).

f) Experiments with Other Distributions:: As
pointed out by Panigrahy et al. [13], practical resource
allocation applications vary widely in terms of how
heterogeneous they are in their resource requirements.
It is therefore important to perform comprehensive
experiments with different distributions under a variety
of correlations across dimensions. The following set of
experiments were inspired by the work of Panigrahy et
al. [13] and Caprara and Toth [4].

The Repack algorithm was tested on 100 different
simulated data sets each with 100 items. In each test
case, the initial vectors were randomly generated using
values from U(0, 1] and distributions from Caprara and
Toth [4]. Then for each of 4 intervals the values of
these vectors were changed in all dimension (except
the first dimension, which we refer to as the static
size dimension), again generating values from different
uniform distributions. This is consistent with what is
likely to happen in storage systems where working
sets do not change significantly in size over a small
time interval [17]. We use the following 8 interest-
ing distributions from Caprara and Toth [4]. Distribu-
tions Caprara 1 through 6 correspond to U [0.1, 0.4],
U [0, 1], U [0.2, 0.8], U [0.05, 0.2], U [0.025, 0.1], and
U [0.133, 0.667], respectively. Distribution Caprara 7
corresponds to U [0.133, 0.667] for odd dimension i and
to U [vi − 0.067, vi + 0.067] for dimension i+ 1, where
vi is the value sampled for dimension i. Lastly, Caprara
8 corresponds to U [0.133, 0.667] in dimension i and
U [0.733 − vi, 0.867 − vi] in dimension i + 1. Thus
distributions Caprara 7 (and 8) correspond to a positively
(resp., negatively) correlated distributions.

The behaviors observed under some of the above
distributions suggest that the choice for best version of
Repack can change drastically from one distribution to
the other. In Figure 2, which shows the results on the
Caprara 6 distribution, we can see that if the objective
was to minimize the movement cost while keeping the
number of bins under 60 bins then the kBF version of
Repack with k ≈ 10 would be the best choice. Results in
the rest of the distributions can be seen in the Appendix
(see Section VII-A).

IV. VECTOR REPACKING WITH REPLICAS

In many resource allocation applications (e.g., storage
management and VM management), migration of tasks is
often prohibitively expensive. In the previous section we
saw how to compensate for it by picking the right value
of k in the kBF packing algorithm. Another way to lower
or even eliminate data migration costs is to replicate and
over-provision the resources at the start [17]. The storage
of redundant copies of the items on different servers is a
technique already used in storage systems for achieving
higher fault tolerance and robustness. (However, here
we argue that it also results in lower migration costs.)
For example, in Verma et al. [17], the system selects

5

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 52 54 56 58 60 62 64 66

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack under distribution 6 in 2D

0

50

100

 BFD

0

50
100

BF

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 50 55 60 65 70 75 80 85 90 95 100

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack under distribution 6 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(b)

Fig. 2: Performance of Repack with input vectors from
the distributions (a) Caprara 6 with kBF and BFD and
(b) Caprara 6 with kMaxLevel.

one of the copies of each item to be its active copy.
Other copies remain on different servers as inactive.
When a server exceeds its capacity, then the system
may select one or more of the items whose active copy
is on that server, and deactivate it. For each of the
deactivated copies, the system then has to choose one of
the inactive copies (on a different server) and make it
active, thus effectively shifting the load corresponding to
that item from one server to another. However, this does
not mean that the migration cost can be totally eliminated.
When an item switches to a different active copy then
synchronization of the copies may be needed since only
the active copy is involved in computation and may have
undergone some changes. Synchronization is the process
of ensuring that the copies are consistent. In the worst

case, synchronization costs can be as high as migration
costs. However, it is estimated that synchronization costs
are on the average considerably lower than migration
costs. Thus the replication approach, attempts to tradeoff
overprovisioning, replication, and copy synchronization
costs with that of migration costs.

We considered the effect of over-provisioning re-
sources to store replicas of entities with the goal of
lowering data migration costs in the event that parameters
(such as workload intensity) of entities change. We
developed an algorithm called Replicas that creates
multiple copies (replicas) of each item and strategically
places the copies on different servers. When the profiles
of the entities change, the algorithm adapts by just
selecting a different active copy of the multiple copies
without moving the item to a different location. The
synchronization associated with switching the active
copy involves reconciling the fraction of the item “dirtied”
since the last update of that replica.

A. The Replicas Algorithm
The Replicas algorithm assumes the choice of a vector

packing heuristic used in assigning tasks/items to servers.
It consists of two parts: REPLICA ALLOCATION (see
Algorithm 1), and ACTIVE REPLICA SELECTION (see
Algorithm 2). Given the ordering and packing strategies,
and given α, the over-provisioning factor, REPLICA
ALLOCATION makes repeated scans of the n items (using
the order determined by the given ordering strategy) and
places the replicas in M(1 + α) bins using the given
packing strategy, where M is the number of bins needed
by that algorithm to pack one copy of all items. Note
that the cost of Algorithm 2 is the cost of data movement
involved in placing replicas in bins and the number of
bins needed.

Algorithm 1 Replicas: REPLICA ALLOCATION

Require: V : list of n entities;
α: over-provisioning factor;
A: vector packing subroutine

initialize B to array of n empty bins
PACKONECOPYOFALL(B, V, p, q)
add dα ·Me new empty bins to B
while (there is space to store more replicas) do

PACKREPLICAS(B, V, p, q)
end while

Once replicas have been strategically placed as shown
above, Algorithm ACTIVE REPLICA SELECTION is used
to determine which of the multiple replicas of each
item is to be the “active” replica. (All other replicas are
made inactive and are left in standby mode for possible
later activation.) Note that Algorithm ACTIVE REPLICA
SELECTION is also invoked after significant changes in

6

the resource need profiles of the items. In storage system
applications, this would be done at periodic intervals or
after significant changes in load intensities [17]. For a
relatively modest cost of storing multiple replicas, the
advantage of switching active replicas is that capacity
constraints of servers can be achieved with minimal data
movement. Note that replicas are placed strategically and
the choice of active replicas is made in a manner such
that servers with no active replicas can be “turned off” or
put in lower energy states to reduce power consumption.

Algorithm 2 Replicas: ACTIVE REPLICA SELECTION

Require: V : list of n entities; α: over-provisioning
factor; A: vector packing subroutine with q: ordering
rule for items;
E = � // initialize set of emergency bins
O = � // initialize subset of active bins
for all (i ∈ V sorted according to q) do
C = set of active bins with a replica of item i
SELECTACTIVECOPY(i, C,A)
if (no such bin) then

SELECTACTIVECOPY(i, C,A)
if (b is such a bin) then
O = O ∪ {b} //set bin b as active

else
PACKSINGLEITEM(i, E,A)

end if
end if

end for

Algorithm ACTIVE REPLICA SELECTION maintains
a list of currently chosen active replicas. Bins/servers
that contain at least one active replica from that list
are called “active” bins/servers. Initially there are no
active replicas or bins. Items are scanned in the order
determined by the ordering rule q. If replicas of that item
are found in active bins (C), then one of those replicas
is chosen as the active copy using the criteria from the
vector packing subsroutine, A. If none of the replicas
are in active bins, then an attempt is made to find one
from the set of inactive bins (C). If none of the active or
closed bins with replicas can accommodate the item, then
the item is packed in one of the emergency bins using
algorithm A, and the item and the bin are made active.
Note that the total cost of Algorithm ACTIVE REPLICA
SELECTION is the movement cost (data movement)
needed to place replicas in emergency bins (equal to
the aggregate size of all the items placed in emergency
bins), the synchronization cost of items with changed
active replicas, and the total number of bins used. The
emergency bins are discarded at the beginning of the
next ACTIVE REPLICA SELECTION application in the
subsequent interval.

B. Experiments

We tested the Replicas algorithm on 100 data sets and
100 items, each item represented by two-dimensional
vectors with randomly generated values from U [0, 1],
and with 4 iterations of changes in the second dimen-
sion (load). Since switching between copies incurs a
synchronization cost, we studied the viability and cost
of replication with different dirty ratios. (Dirty ratio is
the percentage of the item “dirtied” or modified since
the last time a replica was made. In other words, it
is the percentage difference between the original copy
and its replica on another server.) As in Repack, we
tested Replicas using kBF, kBFD, kMaxSizeBF, and
kMaxSizeBFD versions of Replicas. As expected, higher
dirty ratios resulted in higher movement costs. We
carefully examined the performance of Replicas with a
moderate dirty ratio of no more than 12.5%.

Figure 3 (a) shows that a setting of k ≈ 30−−50% is
the best option for Replicas kBFD and Replicas kBF. in
terms of lowering the number of bins, while k = 100%
was the best option for lowering the movement cost.
Figure 3 (a) shows that for most values of k, Repack
dominates Replicas in performance when α = 0. (How-
ever, we will see later that the performance of Replicas
can be improved by increasing the overprovisioning.)
Fig. 3 (a) shows the number of bins decreasing as k
grows from 0 to 50% and then increasing as k grows
from 50 to 100%. This is caused by the large difference
in the number of emergency bins used used by Replicas
kBF and kBFD with different values of k, as shown in
Fig. 4. When k is small these two variants of Replicas
almost exclusively use emergency bins. Hence only when
k > 50%, we start to see more competitive behavior.

Fig. 3 (b) shows the kMaxLevel BF and BFD versions
of Replicas and Repack. Here we can see that higher k
results in better packings while incurring more movement
cost, while lower k results in worse packing while
decreasing movement cost. All the solutions shown in
3 (b) perform similarly for this case.

Fig. 5 shows the performance of Repack and Replicas
with an overprovisioning factor of α = 1. Note that the
x-axis of the graphs represents the number of active
bins, even though the number of bins employed to hold
all replicas is dα ·Me. Replicas takes advantage of the
existence of copies to decrease movement cost, thus
showing that the overprovisioning factor is an effective
way to reduce movement cost. Fig. 5 (a) shows that for
higher values of k, the movement cost reduces almost 5-
fold, with only a minor increase in number of active bins.
Fig. 5 (b) shows that the performance of the kMaxLevel
versions of Replicas changes very little with respect to
k, dominates the Repack versions for lower values of
k, and exhibits almost a 5-fold reduction in movement
cost for higher values of k.

An overprovisioning factor of α = 1 gives Replicas its
best performance in terms of movement cost. Increasing

7

7.3

12.0

19.8

32.5

53.5

88.0

144.8

66.5 70.0 73.5 77.3 81.3 85.4 89.8

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

0

50

100

 Replicas BFD

0

50

100

Replicas BF

0
50100

Repack BFD

050100

Repack BF

(a)

1.0

1.6

2.7

4.4

7.3

12.0

19.8

66.5 70.0 73.5 77.3 81.3 85.4 89.8 94.4 99.3

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

50

100

 Replicas Max Level BFD

50

100

Replicas Max Level BF

50

100

Repack Max Level BFD

50

100

Repack Max Level BF

(b)

Fig. 3: Performance of the different versions of Replicas
with overprovisioning factor α = 0 and Repack for dif-
ferent values of k. Experiments used uniform distribution
in 2D, and a maximum dirty ratio of 12.5%

α more does not produce any visible gains over α = 1.
Smaller overprovisioning factors do not improve over
α = 1, though they still offer advantages over Repack
for some cases (see Fig. 6 showing experiments with
α = 0.75).

V. EXPERIMENTS WITH REAL TRACE DATASETS

We finally tested our suite of algorithms on a storage
systems application. Real trace data was generated from
accesses to the university storage system. This enabled
us to compare Replicas with the best existing algorithm
called SRCMap to manage replicas in storage systems.

We used the same traces that were used to test the
performance of SRCMap by Verma et al. [17]. The traces

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

N
o
n

E
m

e
rg

e
n
c
y
 B

in
s

Number of Emergency Bins

Replicas: NonEmergency Bins vs. Number of Emergency Bins

0

50

100

 BFD

0

50

100

BF

Fig. 4: k-bounded Replicas with overprovisioning factor
α = 1 with kBF and kBFD. Experiments used uniform
distribution and dirty ratio of 12.5%.

included all I/O data requests over a period of 480 hours
to 8 independent data volumes residing on 8 different
disks. The algorithms we tested performed REPLICA
ALLOCATION every 24 hours and ACTIVE REPLICA
SELECTION every 1 hour long interval. The SRCMap
heuristic also performed these two tasks at the same
intervals of time. The traces were used to infer data
about the average load intensities of each data volume
over each period of one hour length. These values were
then used as the realistic input that represents dynamic
workload profiles of the data sets over each interval of
one hour. Also for each data volume, the working set
of the volume was determined by aggregating all data
I/O requests to that volume.

We ran the experiments with 8 data volumes each with
load capacity levels of 125, 196, 196, 196, 196, 196, 145,
and 145 IOPS respectively. Each data volume set
aside 20% percent of its storage capacity as replica
space to hold working set copies of other vol-
umes. The data volumes had storage capacities of
270, 7.8, 7.8, 10, 10, 20, 170, and 170 GBs respectively.
Each disk Di ∈ [Dn] has a working set Vi. Every hour
each Vi ∈ [Vn] is assigned a new average workload value
for the length of the interval. Every 24 hours Vi ∈ [Vn]
is assigned a new working set size value for the length of
the 24 hours interval. Each working set Vi is replicated by
storing its copies on multiple disks from [Dn]. Every 24
hours both Replicas and SRCMap apply their REPLICA
ALLOCATION algorithm, and every hour they both apply
their ACTIVE REPLICA SELECTION algorithm. Replicas
was run with over-provisioning factor of α = 0 for fair
comparison to SRCMap which does not assume more
than n servers. We measured the movement cost by
finding the percentage of the total data that had to be

8

1.0
1.6
2.7
4.4
7.3

12.0
19.8
32.5
53.5
88.0

144.8

66.5 70.0 73.5 77.3 81.3 85.4 89.8

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

0

50

100

 Replicas BFD

0

50

100

Replicas BF

050100

Repack BFD

050100

Repack BF

(a)

1.0

1.6

2.7

4.4

7.3

12.0

66.5 70.0 73.5 77.3 81.3 85.4 89.8 94.4 99.3

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

50
100

 Replicas Max Level BFD

50
100

Replicas Max Level BF

50

100

Repack Max Level BFD

50

100

Repack Max Level BF

(b)

Fig. 5: Comparing performance of k-bounded Replicas
with overprovisioning factor α = 1 and Repack for (a)
kBF and kBFD and (b) kMaxLevel BF and kMaxLevel
BFD. Experiments used uniform distribution and dirty
ratio of 12.5%.

moved during the synchronization operations required
when switching primary target for any working set Vi.

The SRCMap heuristic makes two assumptions that
required us to modify Replicas in order to offer a more
fair comparisson between the two solutions:

• Each working set Vi has its main copy stored in
the primary storage section of disk Di. Then each
disk Di serves all requests to Vi whenever it is
active, even if another active disk Dj has a replica
of working set Vi. Hence Replicas was modified
so that in the ACTIVE REPLICA SELECTION stage
of any item Vi it always selects the target Di if
this server is selected to be active.

4.4

7.3

12.0

19.8

32.5

53.5

88.0

144.8

66.5 70.0 73.5 77.3 81.3 85.4 89.8

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

0

50

100

 Replicas BFD

0

50

100

Replicas BF

050100

Repack BFD

0
50100

Repack BF

(a)

1.0

1.6

2.7

4.4

7.3

12.0

66.5 70.0 73.5 77.3 81.3 85.4 89.8 94.4 99.3

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack: Movement Cost vs. Number of Bins

50

100

 Replicas Max Level BFD

50

100

Replicas Max Level BF

50

100

Repack Max Level BFD

50

100

Repack Max Level BF

(b)

Fig. 6: Comparing performance of k-bounded Replicas
with overprovisioning factor α = 0.75 and Repack
for (a) kBF and kBFD and (b) kMaxLevel BF and
kMaxLevel BFD. Experiments used uniform distribution
and dirty ratio of 12.5%.

• SRCMap assumes that in the worse case, each
server Di would be active and able to service
the demands of its volume Vi. For this reason no
emergency hosts were set up in Replicas.

We call this modified version of Replicas as ReplicasWS.
Table I compares the performance of SRCMap with

versions of ReplicasWS using different vector packing
(VP) strategies. These use k-bounded EL2 or EL2DSum.
We show results for k = 0, 50, and 100. The movement
cost of the ReplicasWS algorithms was much lower
than that of SRCMap. The ReplicasWS versions using
NF (labeled “ReplicasWS 0-EL2” in table I) kept
active all the servers (total of 8) most of the time while

9

incurring the lowest movement cost. The kEL2DSum
and kEL2 variations of ReplicasWS for k = 50 and
k = 100 incurred negligible movement cost while using
almost half the number of bins as comapred to NF.
The ReplicasWS algorithms with higher k used fewer
bins on the average. In particular, ReplicasWS kEL2
with k = 100 used the least number of bins and was
the only ReplicasWS algorithm to use fewer bins than
SRCMap with a movement cost of less than half of that
of SRCMap. These experiments suggest strongly that
the best algorithm to pick can change with different
distributions and objectives.

Algorithm Avg # Active Hosts Movement Cost
± Std Dev ±Std Dev

ReplicasWS 0-EL2 7.88 ± 0.94 0.07 ± 1.00
ReplicasWS 0-EL2DSum 3.71 ± 1.19 0.34 ± 1.00

ReplicasWS 50-EL2 3.14 ± 0.56 0.41 ± 2.00
ReplicasWS 50-EL2DSum 2.79 ± 1.05 0.44 ± 2.00

ReplicasWS 100-EL2 2.10 ± 0.86 1.08 ± 5.00
ReplicasWS 100-EL2DSum 2.47 ± 1.07 0.48 ± 2.00

SRCMap 2.35 ± 0.71 2.23 ± 8.21

TABLE I: Comparing Replicas to SRCMap

VI. CONCLUSIONS

This paper considers resource allocation problems
with dynamic (but infrequent) changes in their profiles.
Such problems have enormous practical relevance in this
era of cloud computing where data centers and super-
computers store operate over large amounts of data and
service large amounts of work incurring high energy
costs.

Many important dynamic resource allocation problems
can be cast as a vector repacking problem. We have
proposed the Repack algorithm to address the vector
repacking problem; it allows for “incremental” repacking
to reduce the cost of migrations due to repacking.

We also considered a variant of the vector repacking
problem that allows for a limited amount of extra bins
to store multiple copies (replicas) of items. Experiments
show that a small number of extra bins and multiple
copies improves the performance in terms of packing
efficiency as well as migration costs. Our experiments
show that Replicas is a practical tool for resource alloca-
tion and power-aware computing for systems that store
entities with dynamically (but infrequently) changing
characteristics. All our experiments were confirmed with
synthetic data sets produced from a collection of different
realistic distributions, and with real traces from real
systems.
Acknowledgments: This work was partly supported by
NSF Grant CNS 1018262 and a NSF Graduate Research
Fellowship DGE-1038321 for MEC. The authors thank
Ricardo Koller and Luis Useche for providing the trace
data sets used in our experiments.

REFERENCES

[1] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan, “Robust and flexible power-proportional storage,”
in Proceedings of the 1st ACM symposium on Cloud computing,
ser. SoCC ’10. New York, NY, USA: ACM, 2010, pp. 217–228.

[2] N. Bansal, A. Caprara, and M. Sviridenko, “Improved approxi-
mation algorithms for multidimensional bin packing problems,”
in Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 697–708.

[3] N. Bansal, A. Lodi, and M. Sviridenko, “A tale of two dimen-
sional bin packing,” Annual IEEE Symposium on Foundations
of Computer Science, vol. 0, pp. 657–666, 2005.

[4] A. Caprara and P. Toth, “Lower bounds and algorithms for the
2-dimensional vector packing problem,” Discrete Appl. Math.,
vol. 111, August 2001.

[5] S. Y. Chang, H.-C. Hwang, and S. Park, “A two-dimensional
vector packing model for the efficient use of coil cassettes,”
Comput. Oper. Res., vol. 32, pp. 2051–2058, August 2005.

[6] W. F. de la Vega and G. S. Lueker, “Bin packing can be solved
within 1+ ε in linear time.” Combinatorica, pp. 349–355, 1981.

[7] J. E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approxi-
mation algorithms for bin packing: a survey,” in Approximation
Algorithms for NP-Hard problems, D. S. Hochbaum, Ed. PWS
Publishing Co., Boston, MA, USA, 1997, 1997, pp. 46–93.

[8] EPA, “EPA Report to Congress on Server and Data Center
Energy Efficiency,” U.S. Environmental Protection Agency, Tech.
Rep., 2007.

[9] J. G. Koomey, “Worldwide electricity used in data centers,”
Environmental Research Letters, vol. 3, no. 3, 2008.

[10] L. T. Kou and G. Markowsky, “Multidimensional bin packing
algorithms,” IBM J. Res. Dev., vol. 21, pp. 443–448, September
1977.

[11] U. H. L. A. Barroso, “The case for enrgy-proportional comput-
ing,” Computer, vol. 40, pp. 33–37, 2007.

[12] K. Maruyama, S. K. Chang, and D. T. Tang, “A General Pack-
ing Algorithm for Multidimensional Resource Requirements,”
International Journal of Computer and Information Sciences,
vol. 6, no. 2, pp. 131–149, 1977.

[13] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics
for vector bin packing.” Microsoft Research, Tech. Rep., 2011.

[14] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova,
“Resource allocation algorithms for virtualized service hosting
platforms,” Journal of Parallel and Distributed Computing,
vol. 70, no. 9, pp. 962–974, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731510000997

[15] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: a power-
proportional, distributed storage system,” Microsoft Research,
Tech. Rep., 2009.

[16] P. S. V. Sundaram, T. Wood, “Efficient data migration in self-
managing storage systems,” in Proceedings of ICAC 06, 2006,
pp. 297–300.

[17] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “Srcmap:
energy proportional storage using dynamic consolidation,” in
Proceedings of the 8th USENIX conference on File and storage
technologies, ser. FAST’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 20–20.

[18] G. J. Woeginger, “There is no asymptotic ptas for two-
dimensional vector packing,” Inf. Process. Lett., vol. 64, pp.
293–297, December 1997.

10

VII. APPENDIX

A. Experiments with Repack on a variety of input
distributions

Fig. 7, 8, and 9 show the performance of Repack using
kBF and kBFD under 6 different distributions: Caprara
1, 3, 5, 6, 7, and 8. The performance of Repack using
kMaxLevel BF and kMaxLevel BFD under the same 6
distributions are presented in Fig. 10. 11, and 12.

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 30 30.5 31 31.5 32 32.5 33 33.5

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 1 in 2D

0

50

100

 BFD

0

50

100

BF

(a)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 68 70 72 74 76 78 80 82 84 86 88

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 3 in 2D

0

50
100

 BFD

0

50
100

BF

(b)

Fig. 7: Performance of Repack using kBF and kBFD
on distributions: (a) Caprara 1, (b) Caprara 3

 4.7

 4.75

 4.8

 4.85

 4.9

 4.95

 5

 5.05

 5.1

 14.6 14.7 14.8 14.9 15 15.1 15.2

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 4 in 2D

0

50

100

 BFD

0

50
100

BF

(a)

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

 3.7

 3.75

 3.8

 3.85

 3.9

 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 5 in 2D

0

50

100

 BFD

0

50100

BF

(b)

Fig. 8: Performance of Repack using kBF and kBFD
on distributions: (a) Caprara 4, (b) Caprara 5

Fig. 13 shows the performance of Repack using kBF
and kBFD with 4 and 8-dimensional inputs. Fig. 14
shows the performance of Repack using kMaxLevel BF
and kMaxLevel BF with 4 and 8-dimensional inputs.

11

 10

 11

 12

 13

 14

 15

 16

 17

 52 54 56 58 60 62 64

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 7 in 2D

050

100

 BFD

050100

BF

(a)

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 55 56 57 58 59 60 61 62 63 64 65

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 8 in 2D

0

50
100

 BFD

0

50100

BF

(b)

Fig. 9: Performance of Repack using kBF and kBFD
on distributions: (a) Caprara 7 (b) Caprara 8

 7

 8

 9

 10

 11

 12

 13

 14

 15

 30 35 40 45 50 55 60 65 70 75

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 1 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 65 70 75 80 85 90 95 100

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 3 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(b)

Fig. 10: Performance of Repack using kMaxLevel BF
and kMaxLevel BFD on distributions: (a) Caprara 1,
(b) Caprara 3

12

 4.5

 5

 5.5

 6

 6.5

 7

 14 16 18 20 22 24 26 28 30 32

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 4 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(a)

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 7 8 9 10 11 12 13 14 15

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 5 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(b)

Fig. 11: Performance of Repack using kMaxLevel BF
and kMaxLevel BFD on distributions: (a) Caprara 4,
(b) Caprara 5

 2

 4

 6

 8

 10

 12

 14

 16

 50 55 60 65 70 75 80 85 90 95 100

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 7 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 55 60 65 70 75 80 85 90 95 100

M
o

v
e

m
e

n
t

C
o

s
t

Number of Bins

Repack under distribution 8 in 2D

50

100

 Max Level BFD

50

100

Max Level BF

(b)

Fig. 12: Performance of Repack using kMaxLevel BF
and kMaxLevel BFD on distributions: (a) Caprara 7 (b)
Caprara 8

13

 2

 4

 6

 8

 10

 12

 14

 82 84 86 88 90 92 94 96 98 100

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack under Uniform distribution in 4D

050100

 BFD

0

50

100

BF

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack under Uniform distribution in 8D

0

50100

 BFD

0

50
100

BF

(b)

Fig. 13: Experiments with Repack for 4 and 8 dimen-
sional inputs

 0

 2

 4

 6

 8

 10

 12

 14

 82 84 86 88 90 92 94 96 98 100

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack under Uniform distribution in 4D

050

100

 Max Level BFD

050

100

Max Level BF

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100

M
o
v
e
m

e
n
t
C

o
s
t

Number of Bins

Repack under Uniform distribution in 8D

050

100

 Max Level BFD

050

100

Max Level BF

(b)

Fig. 14: Experiments with Repack for 4 and 8 dimen-
sional inputs

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e

v
e
l

Bin Index

Average level of bins after kBFD packing

 BFD k = 0
 BFD k = 30

 BFD k = 70
 BFD k = 100

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e

v
e

l

Bin Index

Average level of bins after kBF packing

 BF k = 0
 BF k = 30

 BF k = 70
 BF k = 100

(b)

Fig. 15: Figures show average levels to which bins are
filled after the initial packing with Repack (a) kBFD
and (b) kBF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e

v
e
l

Bin Index

Average level of bins after first dynamic interval with kBFD packing

 BFD k = 0
 BFD k = 30

 BFD k = 70
 BFD k = 100

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e
v
e
l

Bin Index

Average level of bins after first dynamic interval with kBF packing

 BF k = 0
 BF k = 30

 BF k = 70
 BF k = 100

(b)

Fig. 16: Figures show average levels to which bins are
filled with Repack (a) kBFD and (b) kBF after the
first dynamic interval when their profiles are randomly
changed. As seen in the graph (a), the level in bins with
higher index increases disproportionally compared to
bins with lower index (which are opened first).

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e

v
e

l

Bin Index

Average level of bins after kMaxLevelBFD packing

 MaxLevelBFD k = 50
 MaxLevelBFD k = 65

 MaxLevelBFD k = 85
 MaxLevelBFD k = 100

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e

v
e

l

Bin Index

Average level of bins after kMaxLevelBF packing

 MaxLevelBF k = 50
 MaxLevelBF k = 65

 MaxLevelBF k = 85
 MaxLevelBF k = 100

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e
v
e
l

Bin Index

Average level of bins after first dynamic interval with kMaxLevelBFD packing

 MaxLevelBFD k = 50
 MaxLevelBFD k = 65

 MaxLevelBFD k = 85
 MaxLevelBFD k = 100

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

L
e
v
e
l

Bin Index

Average level of bins after first dynamic interval with kMaxLevelBF packing

 MaxLevelBF k = 50
 MaxLevelBF k = 65

 MaxLevelBF k = 85
 MaxLevelBF k = 100

(d)

Fig. 17: Figures on the top row show average levels
to which bins are filled after the initial packing with
Repack (a) kMaxLevel BFD and (b) kMaxLevel BF.
Figures on the bottom row show average levels to which
bins are filled with Repack (c) kMaxLevel BFD and (d)
kMaxLevel BF after the first dynamic interval when their
profiles are randomly changed. As seen in the graphs
on the bottom row, the levels in most bins change more
evenly compared to kBFD

16

