
USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 45

Write Policies for Host-side Flash Caches

Ricardo Koller,§‡ Leonardo Marmol,§ Raju Rangaswami,§ Swaminathan Sundararaman,†

Nisha Talagala,† Ming Zhao§

§Florida International University †Fusion-io ‡VMware

Abstract

Host-side flash-based caching offers a promising new
direction for optimizing access to networked storage.
Current work has argued for using host-side flash pri-
marily as a read cache and employing a write-through
policy which provides the strictest consistency and dura-
bility guarantees. However, write-through requires syn-
chronous updates over the network for every write. For
write-mostly or write-intensive workloads, it signifi-
cantly under-utilizes the high-performance flash cache
layer. The write-back policy, on the other hand, better
utilizes the cache for workloads with significant write I/O
requirements. However, conventional write-back per-
forms out-of-order eviction of data and unacceptably sac-
rifices data consistency at the network storage.

We develop and evaluate two consistent write-back
caching policies, ordered and journaled, that are de-
signed to perform increasingly better than write-through.
These policies enable new trade-off points across perfor-
mance, data consistency, and data staleness dimensions.
Using benchmark workloads such as PostMark, TPC-C,
Filebench, and YCSB we evaluate the new write policies
we propose alongside conventional write-through and
write-back. We find that ordered write-back performs
better than write-through. Additionally, we find that jour-
naled write-back can trade-off staleness for performance,
approaching, and in some cases, exceeding conventional
write-back performance. Finally, a variant of journaled
write-back that utilizes consistency hints from the appli-
cation can provide straightforward application-level stor-
age consistency, a stricter form of consistency than the
transactional consistency provided by write-through.

1 Introduction

DRAM-based caches at the host and at the net-
worked storage system have proven critical in improv-
ing storage access performance. Host-side flash is a
high-performance and high-capacity caching layer that
presents a new opportunity for improving performance
when accessing networked storage [6, 12, 13, 23]. Be-
ing able to accommodate an order of magnitude more of
the working sets of workloads, it creates the potential to
significantly improve storage access performance.

Write-through and write-back present two well-known
extremes in write policies for host-based flash caches.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 0.2 0.4 0.6 0.8 1

I/
O

 p
e

r
se

co
n

d
s

Cache miss rate

300µs network storage latency
1ms network storage latency
2ms network storage latency

10ms network storage latency

Figure 1: Performance impact of cache misses. Cache

accesses require 50µs.

Write-through synchronously commits writes to net-
worked storage and then updates the flash cache, be-
fore acknowledging the write as completed to the appli-
cation. This provides the strictest data consistency and
durability under all host-level failures thus delivering a
recovery point objective (RPO) of zero (i.e., zero data
loss). Unfortunately, even very small reductions in cache
hit rate can result in dramatic reduction in throughput,
making the the cache far less effective or even counter-
productive for write-intensive workloads. We created a
simple model for single-threaded access to storage with
a cache to illustrate this. Figure 1 shows that if a cache
access requires 50 µs and a network storage access re-
quires 2ms, then the difference in throughput between
99% hit rate and 95% hit rate is about 2x. Thus, when
writes are not cached, a potentially large amount of flash
throughput could be made unavailable to applications.

Historically, write-back caching has not been consid-
ered viable for DRAM caches because they are volatile.
Write-back caching becomes attractive with persistent
flash-based caches for a variety of performance reasons
that we explore in detail in Section 2. Write-back poli-
cies, however, have two notable drawbacks. First, since
they do not provide strict durability, they introduce data
staleness at the networked storage which translates to a
non-zero RPO for applications. Second, since conven-
tional write-back can evict dirty data out of order (rel-
ative to the original write sequence), it can render the
networked storage inconsistent after a host-level failure.
Currently available host-side flash caches largely use a
write-through policy [6, 12, 17, 23, 1]. When write-

1

46 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Application

Hypervisor

Solid State Drive

Networked Storage

T
im

e

Write-through Write-back

Eviction

Optional Read: Write:

Figure 2: Write-back and write-through policies

with a hypervisor managed flash cache.

back implementations exist, these are accompanied with
appropriate disclaimers about storage-level inconsisten-
cies after a failure [9, 35]. Network storage inconsis-
tency compromises both data availability after a flash-
cache/host failure and the correctness of network storage
level solutions such as replication and backup.

In this paper, we develop two new write policies for
host-side flash caches that provide close to full write-
back performance without compromising network stor-
age consistency. Ordered write-back is designed to work
seamlessly, requiring no changes to existing storage sys-
tems, and outperforms conventional write-through. Jour-
naled write-back relies on a logical disk [10] interface
that implements atomic write groups at the storage sys-
tem and offers significant performance gains over the or-
dered policy. Ordered write-back ensures that blocks get
evicted from the flash cache and written out to the net-
worked storage in the original write order. Journaled
write-back allows overwrites in the cache but ensures
that the networked storage atomically transitions from
one consistent point to the next. Both policies trade-off
strict durability of writes in their design and support an
eventually consistent model for the network storage. Un-
der host and/or host-flash failures, these policies do result
in data staleness (i.e., loss of recent updates) at the net-
work storage. They thus apply only to applications which
can tolerate a non-zero RPO. Journaled write-back addi-
tionally allows for a straightforward implementation of
application-level storage consistency, a stricter form of
consistency than the transactional consistency provided
by write-through.

We implemented the new ordered and journaled write
back as well as conventional write-through and write-
back in Linux and evaluated these policies for the Post-
Mark [19], TPC-C [36], Filebench [26], and YCSB [8]
benchmarks. The new policies performed significantly
better than write-through, with throughput improvements
ranging from 10% to 8x for ordered write-back and 50%
to 10x for journaled write-back across the four bench-
marks. Our sensitivity analysis illustrates the impact
of cache size and file system used on the relative per-
formance of these policies. We find that except un-
der extremely low cache sizes, ordered write-back per-
forms better than write-through and that journaled write-

back can trade-off staleness for performance, approach-
ing, and in some cases, exceeding conventional write-
back performance. Finally, our findings were largely pre-
served across the four Linux filesystems that we evalu-
ated including ext2, btrfs and three variants each of the
journaling ext3 and ext4 file systems.

2 Persistent Write Caches

Persistent host-side flash caches are different than
volatile DRAM caches in several respects. In this sec-
tion, we examine arguments in support of optimizing
writes differently in persistent caches and survey the re-
lated work in the literature.

2.1 Write Caching

Recent literature has argued in favor of managing per-
sistent host-side flash-based caches as write-through and
to optimize exclusively for reads [6, 12, 17, 35]. How-
ever, production storage workloads comprise of a sig-
nificant (often dominant) fraction of writes [5, 21, 29,
32, 37]. Recent studies also report a trend of increas-
ing writes:reads ratios in production workloads [22, 30].
This is a consequence of newer systems absorbing more
reads within larger DRAM caches at hosts while all
writes get written out to storage for durability. Employ-
ing a write-through policy thus, unfortunately, represents
a lost opportunity.

Caches that maintain dirty blocks are referred as write-
back and caches that do not as writethrough. In case of
write-back, the write is acknowledged immediately after
the write to the cache. With write-through, writes are first
committed to network storage and then to the cache be-
fore completion is acknowledged to the guest. Figure 2
illustrates these policies for a hypervisor-managed flash-
based cache. As noted earlier, the I/O latency and peak
I/O throughput implication of having one policy versus
the other is significant (Figure 1). This translates to sig-
nificantly reduced network storage provisioning require-
ments with write-back caching for production workloads
that are typically bursty [22, 29, 15]

2.2 The Significance of Write-back

A write-back caching policy offers critical performance
benefits. First, it significantly lowers write latencies and
improves write throughput (per Figure 1); write bursts, if
any, get absorbed in the cache, making the best possible
use of the high-performance flash layer. Consequently,
networked storage can be provisioned for average (in-
stead of peak) write I/O volume. Second, since write-
back allows for overwrites (coalescing) in the cache,
it reduces the volume of write I/O traffic to the net-
worked storage system for workloads with write locality.
Third, since application writes are effectively decoupled
from network storage writes, higher levels of I/O paral-
lelism (than available in the application I/O stream) be-

2

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 47

Figure 3: Transaction response times and through-

put for TPC-C with 2GB of RAM and 25 warehouses.

seq seq rnd rnd

write read read write

Local SSD 82 93 177 66
iSCSI RAID HDD 891 593 4813 5285

Table 1: Access times in microseconds for local PCI-e

SSD vs. networked RAID HDD storage.

come possible when writing to networked storage; stor-
age systems perform better at higher levels of I/O paral-
lelism [4, 7, 11, 16, 33, 34]. Fourth, reads that miss the
flash cache experience less I/O contention at the network
storage due to write coalescing at the cache layer; the
read cache can thus be populated with the changes in the
working set more quickly as workload phases change.
Finally, since the cache is effective for both reads and
writes, cache resizing can potentially serve as a storage
QoS control knob (e.g., for I/O latency control) for all
workloads including those that are write-intensive.

To quantify the write-back performance advantage, we
ran the TPC-C OLTP benchmark which mimics the oper-
ations of a typical web retailer including creating and de-
livering orders, recording payments, checking order sta-
tus and monitoring inventory levels configured with 10
warehouses [36]. We configured a RAID5 storage array
of 8 7200 RPM disks over iSCSI to be the network store
and an OCZ PCI-e flash-based SSD as the storage cache
on the host. SSD random writes were 80 times faster than
the networked iSCSI store. Other aspects of the perfor-
mance difference are summarized in Table 1.

Figure 3 depicts median response times for the 4 types
of TPC-C transactions. Having a write-back cache thus
reduces the average response time by at least 75X across
the transaction types. Throughput measured as TpmC
(new order transactions/minute) showed an increase of
3X with write-back compared to the write-through cache.
It is important to point out here that the available SSD

Consistency

Staleness

Per f ormance

Write-back

Write-through

Figure 4: Trade-offs in conventional write caching

policies.

throughput was not stressed in write-back mode at the
queue depths offered by the workload. For many en-
terprise applications, lower worst-case performance and
lower performance variance are as important as average-
case performance. The new write-back caching policies
that we develop in this paper target both these metrics by
mimicking the basic behavior of synchronous and low-
latency local flash updates and asynchronous network
storage updates in conventional write-back.

2.3 Performance, Consistency, and Staleness

Write policies make different trade-offs with respect to
data consistency, data staleness, and performance as indi-
cated in Figure 4. Conventional write-through and write-
back represent merely two extreme points in a spec-
trum of possible trade-offs. Write-through provides strict
durability of writes, i.e., does not introduce any data stal-
eness. On the other hand, write-back fundamentally al-
ters the notion of data durability for applications and in-
troduces both data inconsistency and staleness.

Interestingly, this dilemma has parallels in the re-
mote mirroring for disaster recovery literature. Asyn-
chronous remote mirroring solutions ensure data consis-
tency but introduce data staleness at the target storage
system [31, 18, 20, 38]. Key to this argument is the lower
cost of data loss after a disaster event when using asyn-
chronous (akin to write-back) mirroring relative to the
cost of the high-speed, WAN links necessary to imple-
ment fully synchronous (akin to write-through) mirror-
ing to the remote site. While some applications, like fi-
nancial databases, may require a recovery point objective
(RPO) of zero, it has been pointed out that other appli-
cations such as non-critical filers and document servers
and even online retailers can tolerate non-zero RPO [20].
With such applications, the performance cost of zero data
staleness can become prohibitive and trading-off data
staleness for performance becomes attractive [20, 31].

48 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

Flash-based caches that are backed by slower disk based
storage, although representing an entirely different prob-
lem domain, present a similar trade-off: the cost of pro-
visioning for peak write bursts at the networked storage
to provide strict data durability versus losing some data
under host failures due to weak durability. Designing
write caching policies that explore the entire spectrum
of available trade-offs is key to ensuring that individual
applications get to make the trade-offs optimal for their
needs.

3 Consistent Write-back Caching

Conventional write-back caching is not employed in a
production environment because it can compromise data
consistency at the network storage system. In this sec-
tion, we explore alternate write caching policies that pre-
serve the core advantages of write-back, low latency and
write coalescing, while providing a usable notion of con-
sistency for the network storage. In designing these new
policies, we defined the following goals that allow bridg-
ing the performance and consistency gap between the
two extremes of write-through and write-back:

• Goal I: At the very minimum, ensure point-in-time

consistency at the network storage so that the net-
work storage always represents a consistent version
of the data, albeit at some point-in-time in the past.

• Goal II: Turn network storage updates into back-
ground operations, thereby providing lower laten-
cies and higher throughput for foreground writes.

• Goal III: Preserve and/or increase parallelism of
writes to the network storage.

• Goal IV: Benefit from write coalescing to effi-
ciently utilize cache space and to reduce write ac-
tivity at the network storage.

With write-back caches, the network storage receives
updates when dirty blocks from the cache are evicted.
Key to the two policies that we explore next is controlled
eviction to ensure so as to not compromise data consis-
tency at the networked storage. Further, in designing
these policies, we trade-off data staleness for achieving
a significantly higher level of performance than write-

through. By ensuring a minimum of point-in-time con-
sistency at the network storage, the network storage can
be used immediately after a host-level failure that renders
the SSD unusable.

3.1 Ordered Write-back

Ordered write-back is based on the simple idea that the
original order in which data blocks were updated in the
cache can be preserved during eviction. The network
storage system is then consistent because it always re-
flects a valid state as imposed by the storage manage-
ment layer such as an operating system or hypervisor.

P1

P2

Write 1 Write 2

Write 3 Write 4 Write 5

T
im

e
T

im
e

Solid State Drive (SSD) cache

Storage (disk)

Total Ordering

Figure 5: Totally Ordered Write Back.

1

3

2

4

5

Figure 6: Dependency graph. Each node represents a

write.

To maintain the original order of writes during eviction,
ordered write-back stores the ordering of write I/O op-
erations and the actual data written. Older copies of all
data blocks must be preserved in the cache until each of
they are written back.

An intuitive approach to store the original order of
writes is as a list of blocks sorted by completion time.
However, this approach does not allow utilizing paral-
lelism of block writes as available in the original stream.
Particularly, writes cannot be sent in parallel even when
they are issued in parallel without any dependencies. For
example, Figure 5 shows two processes P1,P2 issuing
some I/Os in parallel. If we used a totally ordered list
of blocks we would miss the fact that the I/Os within
each of the sets {1,3}, {2,4}, and {5} can be issued in
parallel.

An alternate approach is to utilize actual dependency
information between I/O requests. Ideally, an applica-
tion or file system could provide the cache with accurate
dependency information. The current version of our so-
lution developed for the block layer interface is designed
to work seamlessly within operating systems or hypervi-
sors. It constructs the dynamic dependency graph online
based on the conservative notion of completion-issue or-
dering invariants. A completion-issue ordering invariant
requires that if the completion time of block A is ear-
lier than the issue time of block B in the original request
stream, then B is dependent on A, otherwise it is not.
Following this invariant, a cache can evict all the inde-
pendent blocks in parallel regardless of the ordering of
their completion times.

3.1.1 Write Dependency Graphs

Each node of the dependency graph represents a write
I/O operation and contains information about the current
location of the block(s) written in the SSD cache as well

4

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 49

1

3

2

4

5

Set 1 Set 2

Solid State Drive (SSD) cache

Storage (disk)

Ordering

Figure 7: Dependency-induced eviction in ordered

write-back. Eviction of node 5 requires the parallel eviction

of nodes in set 1, followed by those in set 2, and then node 5

itself.

as their permanent location in the network storage sys-
tem. An edge represents a completion-issue ordering de-
pendency. As an example, let us assume we have the
following sequence of I/O issue and completion events:
I1, I2,C1,C2, I3, I4,C3,C4, I5. Figure 6 shows the related
dependency graph. Ii represent an issue event for a write
to block i and Ci represents its completion.

To construct and maintain this graph online, nodes
are inserted and modified for I/O issue and completion
events. The graph is initialized with an empty set C. For
an issue operation to block X:

1. Add an incomplete node X to the set C.
2. Add a link from all completed nodes in C to X.

For a completion operation of block X:

1. Mark node X as completed.

Notice that we use the observed completions and is-
suing of the writes to construct the dependency graph.
This approach is conservative and may be overestimate
dependencies, that is, some dependencies may not be re-
quired by the storage management layer. For instance,
if 1000 I/Os were meant to be issued independently, we
could evict all of them in parallel as well. However, if
one of them was completed before another was issued,
then we would have to maintain this dependency even
though it was not necessary: the application did not wait
for the completion of the first write. True dependencies
can only be informed by the storage management layer.

Before evicting a dirty block from the cache, the or-
dered write-back policy ensures that any dirty block(s)
that this eviction candidate depends upon and are them-
selves independent of each other are first evicted in par-
allel. It performs such dependency-induced evictions re-
cursively until all dirty blocks in the dependency chain
are evicted. The evicted nodes are then deleted from the
dependency graph. In Figure 7, evicting node 5 would re-
quire first evicting the nodes in set 1 in parallel followed
by eviction of set 2 before node 5 can be evicted.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 8: Optimization to reduce the memory re-
quirement for maintaining write dependencies.

3.1.2 Optimizations

Issue and completion operations are computationally in-
expensive but memory usage, especially the number of

links, can grow up to n2

4 links for a cache size of n blocks.
This undesirable property was a significant source of in-
efficiency in preliminary versions. We found a simple
and effective optimization to drastically reduce this link
complexity with the use of dummy nodes. The opti-
mization inserts dummy nodes after a fixed number of
nodes to absorb all completion-issue ordering dependen-
cies due to any nodes representing past write comple-
tions. Figure 8 shows the original dependency graph with
independent sets {1,2,3,4} and {5,6,7,8} to the left and
the optimized graph on the right hand side with the ad-
ditional dummy node D. Notice how the optimization
reduces the number of edges from 16 to 8. Our solu-
tion does not explicitly detect high dependency situations
such as in Figure 8 but rather simply inserts a dummy
node after every 100 I/O completions. Therefore, if the
dependency graph does not call for this optimization be-
cause of a low link complexity, the optimization intro-
duces a 1% link complexity overhead, but in the best case
this optimization can reduce the number of links by or-
ders of magnitude (e.g., 1002 links to only 200). In prac-
tice, this heuristic resulted in excellent memory savings
for the workloads we evaluated our system with.

In summary, ordered write-back caching meets a sub-
set of our original goals: I, II, and III. It is unable to co-
alesce writes in the cache due to the need to preserve the
original stream of writes when evicting to network stor-
age. Next, we discuss an improved write caching policy
that succeeds in meeting all the four goals.

3.2 Journaled Write-back

Ordered write-back implements consistency by enforc-
ing the same ordering of updates to networked storage
during cache eviction as in the original write stream.
However, this approach has two drawbacks: first, each
block write must be destaged to networked storage and
second, all dirty copies of the same block must be main-
tained in the cache thus wasting precious cache space.
Journaled write-back addresses both drawbacks by al-
lowing write coalescing in the cache.

5

50 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

1 2 1

1 2 cmt

Host-side journal

SSD cache

Storage (disk)

Atomic Checkpointing

1 2 1

1 2 cmt

3 3 3

3 cmt

SSD cache

Storage (disk)

1 2 1

1 2 cmt

3 3 3

3 cmt

Storage-side journal

SSD cache

Storage (disk)

Atomic Checkpointing

Figure 9: Journaled write-back. Committing two transactions (left, center) and checkpointing to networked storage (right).

The shaded strips represent transaction commit markers that also contain metadata identifying the permanent addresses of various

blocks in the transaction.

3.2.1 Consistency via Journaling

Journaled write-back moves the storage from one consis-
tent state to the next which typically reflects a collection
of updates at once instead of a single one. The basic idea
is to use grouping of batches of updates in the persis-
tent cache within journal transactions and checkpointing
these transactions atomically to networked storage. This
is supported by a journal for grouping all updates within
the host-side SSD cache within journal transactions; re-
cent updates are always made to the current transaction
within the host-side journal. Once the current transac-
tion reaches either a pre-defined size or age whichever
is met first, it is committed and a new transaction is cre-
ated and marked as current. Commit markers include
metadata indicating block addresses in networked stor-
age for individual entries in the transaction to be used
at checkpointing time. Transactions are checkpointed to
networked storage in the background. Figure 9 illustrates
the process of committing and checkpointing two trans-
actions which include updates to {1,2} and {3}. The
first transaction includes two updates to block 1 and one
to block 2; the second includes three updates to block 3;
however, each update is reflected only as a single copy
within each committed transaction. These transactions
are then atomically checkpointed to networked storage
so that networked storage always represents a consistent
version of the data at some point-in-time.1

The host-side journal can have several un-
checkpointed transactions allowing transaction commit
rate to be independent of transaction checkpointing rate.
We found this decoupling extremely useful for support-
ing write bursts using host-side flash while limiting the
amount of data loss under failure modes that do not
render the SSD unusable. The networked storage can be
provisioned for the average write bandwidth and IOPS
usage instead of the peak. Most importantly, this design
allows further decoupling of the SSD performance
from networked storage performance by allowing write
coalescing within individual transactions to reduce the

1Addressing cross-host data dependencies at the network storage (if
any) is outside the scope this work.

write I/O traffic at networked storage. Finally, since
checkpointing is an eager process that frees up cache
space, writes do not typically block for cache evictions.

For atomic checkpoints of journal transactions to net-
worked storage, journaled write back implements an
atomic group write interface, similar to that of the log-
ical disk [10, 14] using an additional journal which we
refer to henceforth as the storage-side journal. In our im-
plementation, the storage-side journal is an in-memory
journal intended for use with NVRAM. Such NVRAM is
typically available within medium to high-end networked
storage arrays. The NVRAM-based in-memory journal
eliminates the need to incur additional storage I/Os for
atomic group updates.

3.2.2 Storage Crash Consistency

Checkpointing from the point of view of the host starts
with a checkpoint start command, a list of blocks and
their data to be written, and a checkpoint end command.
The start command is interpreted by the storage by start-
ing a journal entry in NVRAM. Next, the list of block
updates are then staged in the journal entry but not made
accessible upon reads. Reads to these block addresses
prior to the end command reception will return the pre-
vious versions of the blocks. The end command atom-
ically makes the list of block updates available to hosts
and marks the entry as checkpointed. The updated blocks
are written out to storage in the background; once done,
the NVRAM journal entry is deleted. In case of host-
level failures that renders the SSD unusable, the host-
side journal is simply discarded. The in-memory journal
at networked storage ensures that it remains in a stale but
consistent state. If the SSD is accessible after the host-
level crash, the host-side journal is replayed by check-
pointing the un-committed transactions.

3.2.3 Dual Staleness Control

There are two possible states that the system could be in
after a host-side crash: (i) the host-side cache is not ac-
cessible upon recovery either because the host-side SSD
has failed or because uptime requirements forces the use
of alternate hardware or (ii) the host-side cache is acces-
sible upon recovery. If the host cache is not accessible,

6

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 51

Policy Description

WT Write-through: write to disk, write to SSD,
and then notify completion to application or
guest VM

WB Write-back: write to SSD, on-demand eviction
from SSD; SSD-to-disk block mapping stored
persistently on SSD

WB-0 Ordered write-back: algorithm presented in
Section 3.1

WB-J Journaled write-back: algorithm presented in
Section 3.2

WB-Jh Journaled write-back with application consis-

tency hints: algorithm presented in Section 3.2
with journal transactions created based on ap-
plication declared consistency points

Table 2: Write policy descriptions.

the latest state of the storage is the one in networked stor-
age. If the host cache is accessible, the latest state of
the storage is a combination of networked storage and
the host-side cache contents. Two distinct staleness out-
comes become possible in these two cases. In the former
case, staleness is determined by how often the host-side
journal transactions are checkpointed: frequent check-
points leads to lower staleness. Only data within trans-
actions that were checkpointed prior to failure will be
available at networked storage. For the latter case, let us
assume that transaction commits occur more frequently
than checkpoints. In this situation, networked storage
staleness after host-side journal replay of un-committed
transactions is determined by how often transactions are
committed: frequent commits leads to lower staleness.
The last few updates to the host would be lost if the last
transaction containing these updates was not committed
to the host journal.

4 Consistency Analysis

The write policies discussed in the paper differ in the
consistency properties they provide. For a single write
policy, consistency properties vary based on the pre-
sumed failure mode of the system. We start by creating a
taxonomy of the write policies and the consistency prop-
erties, and discuss the typical failure modes that host-side
caches would be subject to. Following this, we address
where in the consistency spectrum each of the write poli-
cies lie under a specific failure mode.

4.1 Consistency and Failure Modes

Table 2 summarizes the caching policies discussed in
this paper. While the first four have been discussed ear-
lier, we introduce a fifth policy, a variant of the jour-
naled write-back that defines block groups to checkpoint
aligned with application-defined consistency points to fa-
cilitate application-level consistency. This functional-
ity is typical of many enterprise applications that notify

Failure Description

VM or Appli-
cation

Guest VM or application crashes and will
be restarted on the same host

Hypervisor or
OS

Hypervisor or bare-metal OS crash and ap-
plications will be restarted on the same
host

SSD or Host Hardware failure that renders the SSD
and/or host unusable; applications need to
be restored on a different host

Network stor-
age

Network storage fails; must be restored
from a mirror or from a recent storage-
level snapshot/backup

Table 3: Failure modes.

operating systems of consistent states (e.g., for volume
snapshots/backup). We discuss application-level consis-
tency in more detail later in this section.

Next, we discuss the data consistency properties that
are useful to applications. There are several useful no-
tions of consistency that can be afforded to applications
and operating systems by a block-level caching layer
that interposes on a storage system. Point-in-time con-

sistency (PiT-C) ensures that data read after a system
crash or failure reflects a consistent version of the stor-
age contents at some point-in-time in the past. Such
consistency allows for data staleness due to loss of re-
cent updates. Transactional consistency (Tx-C) ensures
that data read after a system crash or failure always re-
flects the most recent update. This is the typical notion
of consistency provided by storage systems that are ex-
pected to not lose any updates. Application-level con-

sistency (App-C) ensures that data read after a system
crash reflects a state that is semantically consistent with
the application. Application-level consistency relies on
hints from the application to define consistency points
in storage state. Providing such consistency can en-
able applications to recover to a state that the applica-
tion can readily utilize to resume correct execution after
a crash. Finally, application-group consistency (AppG-

C) ensures that data read after a crash or failure is con-
sistent across a group of applications (from the applica-
tion’s standpoint) that are semantically related. Contrast-
ing these policies at a high level, point-in-time consis-
tency is weaker than transactional consistency, while the
application-level and application-group consistency are
stricter than transactional consistency. However, there
is additional subtlety here. When classifying these con-
sistency levels in terms of both strictness and staleness,
transactional consistency has no staleness but consistent
states defined by it may not make sense from the ap-
plication’s point of view. Its utility depends on the ap-
plication’s ability to make sense of the partial content.
Point-in-time consistency has more staleness, but could
be functionally equivalent to transactional consistency
from the application’s point of view since neither pro-

7

52 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

(e)�WB�Jh

T
x

�C

A
p

p
�C

P
iT

�C

T
x

�C

A
p

p
�C

P
iT

�C

T
x

�C

A
p

p
�C

P
iT

�C

T
x

�C

A
p

p
�C

P
iT

�C

T
x

�C

A
p

p
�C

Cache/Host�Failure

VM�/App�Crash

Hypervisor/OS�Crash

(b)�WB(a)�WT (d)�WB�J(c)�WB�O

P
iT

�C

Figure 10: Consistency grid for write policies under different failure modes. White cells denote consistency property

is not met after recovery from crash/failure; patterned cells indicate otherwise.

vide application-level consistency. Particularly, applica-
tions like databases and file systems which are able to
recover from storage crashes through careful combina-
tions of logging and write ordering can be restored read-
ily from a point-in-time consistent storage. These appli-
cations, however, may not be able to from storage left
over from a write-back cache failure since their on-disk
log and other data structures will likely be corrupted by
the unordered updates. Application-level consistency al-
ways makes sense to an application, but it renders stor-
age more stale than transactional consistency and less or
more stale than point-in-time consistency.

Consistency properties are relevant, and are typically
evaluated, under specific system failure states. Assuming
that the host is virtualized, Table 3 lists potential failure
modes that the write policies must account for. Of these,
addressing network storage failures is beyond the scope
of this work. Other non-failure scenarios are also worth
examining. For instance, in case of virtualized guests,
the VM migration operation can be designed to preserve
existing consistency properties. The VM migration op-
eration can be made to flush the SSD cache prior to mi-
gration or, alternatively, can be augmented to migrate the
state of the SSD cache to the target host’s SSD cache, if
available. Finally, failure of the VM migration process
can be considered equivalent to a hypervisor or OS fail-
ure from the standpoint of consistency.

4.2 Consistency with Write Caching

Given the taxonomy above, we now evaluate the con-
sistency guarantees afforded to applications by each of
the write policies under each of the failure modes. Con-
sistency is evaluated with respect to the application ac-
cessing networked storage via the host. First, no policy
provides application-group consistency under any fail-
ure mode — achieving such consistency requires col-
laboration across hosts, which lies outside the scope of
this work. Figure 10 provides a consistency grid that
maps the remaining consistency properties achievable
under the three failure modes by each of the caching poli-
cies. Write-through (WT) provides transactional consis-
tency under all failure modes but does not readily pro-
vide application-level consistency. Conventional write-

Consistency

Staleness

Per f ormance

WB

WB-J

WB-OPiT-C

Tx-C WT

App-C

WB-Jh

AppG-C

Figure 11: Trade-offs in write caching policies, old

and new, under cache/host failures. PiT-C, App-C, and

AppG-C are only reference points along the consistency axis

and any write policy implementing these consistency properties

will incur non-zero staleness.

back (WB) does not provide any consistency properties
under cache/host failure. We assume that, for perfor-
mance reasons, the WB and WB-O policies do not syn-
chronously update metadata in the SSD cache when data
blocks are cached. Thus, neither is able to provide trans-
actional consistency under hypervisor/OS crashes. WB-
0 and WB-J both add point-in-time consistency under
hypervisor/OS crash and cache/host failure. The jour-
naled write-back policy with application hints about con-
sistency points is the only policy that provides the more
powerful and useful application-level consistency prop-
erty. The fact that it does not provide transactional con-
sistency under many failure modes is not a failing but
a feature; after failures, the storage is always left in a
state that is consistent with respect to the application.
This last application-defined consistent state is likely to
be more stale than the transactionally-consistent, current
state of storage. Figure 11 summarizes the consistency
properties of the caching policies under hypervisor/OS
crash and cache/host failures, the key differentiators for
the new write policies in contrast to conventional write-
back and write-through.

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 53

5 Evaluation

The goals of our evaluation are three-fold. First, we eval-
uate metrics of performance for the new write-back poli-
cies, ordered and journaled, and compare them to the
conventional write-through and write-back. Second, we
study their sensitivity to the major factors that impact
the performance of these write policies, including (1) the
size of the cache, (2) the size of the journal in the case
of write-back journaled, and (3) the file system that was
used when running the benchmarks. Lastly, we evaluate
the staleness-performance trade-off made possible by the
journaled write-back policy by developing cost models
for performance and data loss.

5.1 Evaluation Setup and Workloads

Implementation Notes. We implemented a generic
cache layer as a module for the Linux kernel 3.0.0 on the
host side. This cache implements write-through, write-
back and the two new write policies proposed. The cache
operates on 4 KB blocks and uses the ARC replacement
algorithm [28] that adapts to workloads dynamically and
captures both recency and frequency of accesses. For
the journaled write-back implementation, we modified
the Enterprise iSCSI Target (storage server end-point for
iSCSI) [3] implementation. We added an in-memory
DRAM-based journal (implemented using NVRAM in
practice) and exported a logical disk interface so that the
host can specify atomicity of a group of writes during
checkpointing.
Testbed setup. The host was running at 2Ghz and con-
figured to run with 512MB to 4GB of memory depending
on the working set size of the individual workloads. A
120 GB OCZ REVODRIVE PCI-express SSD attached
to the host was used as the host-side cache. The backing
store was configured as a RAID 1 array using two 1TB
7.2 RPM disks over iSCSI. The measured performance
for these storage devices can be found in Table 1. The
ext3 file system was configured to use ordered write-back
journaling (unless otherwise mentioned), and the work-
load was run on top of the bare metal host, i.e., without
any virtualization layer. Prior to running each experi-
ment, all memory caches were cleared. We report aver-
age numbers across three runs of each experiment.
Workloads. We evaluated the write policies using
the PostMark, Filebench-fileserver, TPC-C, and YCSB
benchmarks with the ext3 file system (unless otherwise
mentioned). PostMark is a file system benchmark that
simulates a file server running electronic mail. We con-
figured PostMark to generate a 5:5 mix of 4K reads-
vs-appends and creates-vs-deletions over a set of 10000
small files of 100KB each. File buffering was enabled
and the machine was configured to run with 512MB of
memory. The average working set size for this workload
is 2 GB. Filebench-fileserver is a Filebench [26] person-

ality that simulates a server hosting the home directo-
ries of a set of users. Each user is simulated by a thread
which reads, writes, appends, deletes, creates files on its
respective directory. We used the default fileserver con-
figuration with a RAM of size 1GB. The average work-
ing set size for this workload is 1.5 GB. TPC-C is an
OLTP workload that simulates an online retailer. Vir-
tual users perform delivery and monitoring over product
orders. The workload creates multiple threads that per-
form transactions over a database. We used the TPCC-
UVa [24] implementation and configured it to use 50
warehouses and 1GB of RAM. The average working
set size for this workload is 9 GB. Finally, YCSB is a
framework for comparing the performance of key-value
stores. It consists of a multi-threaded client that con-
nects to a given data serving system, MemcacheDB in
our case, and generates various types of workloads. We
studied how the throughput of MemcacheDB is affected
by the different write policies with four of the built-in
YCSB workload configurations, A, B, and F, consist-
ing of mix of 50:50 reads:writes, 95:5 reads:writes, and
50:50 reads:writes with read-write-modify behavior re-
spectively. The YCSB client was configured to used 4
threads and records of size 1 KB. The host memory con-
figuration for the YCSB benchmarks was adjusted in pro-
portion to the size of the workload working-sets to intro-
duce adequate I/O activity at the storage system. Finally,
unless otherwise mentioned, the journaled write-back ex-
periments used a host-side journal of size 400MB for all
the workloads.

5.2 Performance evaluation

In this first experiment, our goal was to quantify the
relative performance of the write policies across all the
benchmarks. We ran benchmarks against each of the four
write policies: write-though, write-back, ordered-write-
back, and journaled-write-back, with a fixed cache and
journal size. The host-side flash cache size was config-
ured to be close to the working set size for each of the
workloads (approximately 80%) so that cache effects can
be observed upon workload execution.

Figure 12 presents relative throughput for each of the
write policies across all the benchmark workloads nor-
malized based on the throughput with the write-through
policy. Write-through performs the worst across all poli-
cies. As explained in previous sections, the write-back
versions are expected to perform significantly better due
to superior write coalescing in the cache and background
destageing of dirty data to storage. Further, across most
workloads, journaled write-back does better than ordered
write-back, approaching and even improving upon con-
ventional write-back performance in some cases. Jour-
naled write-back improves upon ordered write-back by
allowing for write coalescing in the cache. In one

9

54 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

 0

 100

 200

 300

 400

 500

FB PM TPC-C A B F

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

500 592 766

WT WB WB-O WB-J

Figure 12: Normalized throughput for Filebench-

fileserver (FB), PostMark (PM), TPC-C, and YCSB

workloads-A, B, and F.

case (YCSB-F), ordered write-back performs the best,
even surpassing both conventional and journaled write-
back variants. This occurs due to two reasons: (i) un-
like conventional write-back, ordered write-back bene-
fits from dependency-induced batching of evictions from
the cache, and (ii) journaled write-back was configured
with a small journal in this experiment relative to the
workload’s working-set leading to too many evictions
relative to ordered and conventional write-back. Finally,
journaled write-back can sometimes perform better than
conventional write-back because it benefits from eager,
grouped checkpointing for destageing dirty data whereas
conventional write-back destages dirty data only on de-
mand. Later in this section, we demonstrate how the
performance with the journaled write-back policy can be
tuned to meet write-back performance depending on ap-
plication staleness tolerance.

5.3 Sensitivity Analysis

The performance of the write policies are sensitive to the
size of the cache, the size of the journal, and the differen-
tial shaping of application I/O traffic induced by different
file systems. We used the Filebench-fileserver and Post-
Mark workloads to better understand the performance
sensitivity of the write policies to these factors.

5.3.1 Sensitivity to Cache Size

We ran Filebench-fileserver using each of the write poli-
cies under several cache sizes. Journaled write-back was
configured to limit the journal size, and as a result, the
maximum staleness at the network storage to 100 MB.
Figure 13(a) shows fileserver throughput performance in
operations per second. Filebench-fileserver is a write in-
tensive workload and therefore insensitive to cache size
in the case of reads. We see that that write-through
performance is similar across all cache sizes since all
writes must be written synchronously to network stor-
age. The other policies have two dominant trends. For
cache sizes greater than 1.5GB, we observe the expected

 0

 0.5

 1

 0.5 1 1.5 2 2.5

F
ra

ct
io

n
 o

f
w

ri
te

 a

llo
ca

tio
n
s

Cache size in GB

(c) Write allocations

 0

 1

 2

 3

N
e
tw

o
rk

 s
to

ra
g
e

 w
ri
te

 v
o
lu

m
e
 in

 G
B

(b) Network storage write volume

 0

 200

 400

 600

 800

 1000

 1200

O
p
e
ra

tio
n
s

 p
e
r

se
co

n
d

(a) Workload performance

WB
WB-J

WB-O
WT

Figure 13: Filebench-fileserver performance for all

four write policies at different cache sizes.

trend across the write policies. All three write-back poli-
cies perform better than write-through. Write-through,
as shown in Figure 13(b), has the highest write vol-
ume to network storage. The write-back policies coa-
lesce writes, reducing the write volume to network stor-
age. Among the write-back variants, ordered write-back
has lower relative performance, 800 compared to 1000
operations per second for conventional write-back. A
write-allocation indicates an operation whereby a write
requires additional space in the cache. Since all writes
in case of ordered write-back need to be made to a new
location to avoid overwriting previous versions of the
block, they all require write-allocation (Figure 13(c)).
Write-allocations can be expensive; if eviction is neces-
sary to allocate and if the block selected to be evicted
is dirty, a write to network storage becomes necessary.
This affects the performance of ordered write-back neg-
atively the effects of which can also be observed in Fig-
ure 13(b): more write traffic to network storage in the
case of ordered write-back.

The second trend occurs at cache sizes less than 1.5GB
of cache size where write-through and journaled write-
back perform significantly better than the other two poli-
cies. For small cache sizes, most cache writes induce
write-allocation and the resulting dirty block evictions
from the cache in case of the write-back policy variants
dominate cache behavior which negatively affects perfor-
mance with these policies. Interestingly, write-through

10

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 55

 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

 0 100 200 300 400 500

T
ra

n
sa

ct
io

n
s

p
e
r

se
co

n
d

Staleness (journal size in MB)

WB-J WT WB

Figure 14: PostMark performance with 1.5GB of SSD

cache for varying staleness set as the maximum num-

ber of dirty pages.

does well since all write-allocations in write-through are
”free”; they do not induce additional writes to network
storage as all the cached blocks are always clean. In
the case of journaled write-back, the write-allocations
are relatively less expensive than the other write-back
variants because the eviction of dirty data is batched
and therefore more efficiently written to network storage.
Next, we evaluate the sensitivity of journaled write-back
policy to the host-side journal size.

5.3.2 Sensitivity of WB-J to Journal Size

Journaled write-back does not need to store copies of
old blocks and therefore has minimal overhead relative
to conventional write-back. The reason why it performs
worse than write-back in some of the previous experi-
ments is that it limits the amount of staleness by restrict-
ing the size of the host-side journal. Reducing the jour-
nal size increases the probability of cache evictions dur-
ing transaction commits. To evaluate the sensitivity of
journaled write-back performance to the allowable stal-
eness of storage, we conducted an experiment where we
fix the cache size to 1.5GB and vary the allowable stale-
ness (host-side journal size). Figure 14 depicts how per-
formance can be tuned to span a significant portion of
the range between write-through and write-back by vary-
ing the staleness tolerance for the PostMark benchmark.
A larger journal allows for greater write coalescing and
batching of write traffic to the network storage and thus
aids performance, but it also results in greater staleness
at the network storage after a host-level failure. The
journal size is an ideal knob to achieve an application-
defined performance/staleness trade-off using the jour-
naled write-back policy.

5.3.3 Sensitivity to the File System Type

File systems alter write ordering and impose additional
synchronous write requirements. In this regard, file sys-
tem designs vary significantly. The host-side cache oper-
ates at the block layer (either within the OS or hypervi-

 0

 100

 200

 300

 400

 0 0.3 0.6 0.9 1.2 1.5

ext3-data

Cache size in GB

ext3-ordered ext3-writeback

ext4-data

WT
WB

WB-O
WB-J

ext4-ordered ext4-writeback

ext2Btrfs

Figure 15: PostMark transactions per second under

different file systems. The axis ranges are indicated in

the bottom-left plot and are the same across all the sub-plots.

Notice that ext*-writeback and ext*-ordered are referring to a

journaling mode and not to the cache’s write policy.

sor) and alters the I/O stream created by the file system
operating at some layer above it. It is therefore important
to evaluate how the performance afforded to applications
by individual filesystems are impacted due to this addi-
tional layer and policies within it.

We studied 4 different file systems, ext2, ext3, ext4,
and btrfs. Ext2 is a file system based on the traditional
Berkeley FFS [27]. Ext3 implements a journaling layer
on top of ext2 whereby metadata (and optionally, data)
writes are initially directed to a journal, and later check-
pointed to their final location within the ext2 on-disk
structure. We evaluated all three journaling modes of
ext3: writeback and ordered, where only the metadata
is journaled, and data, where both data and metadata are
journaled. Figure 15 depicts performance for the Post-
Mark benchmark for all write policies as we change the
underlying file system at various sizes of the host-side
SSD cache. This set of experiments revealed a set of in-
teresting insights about how these file system designs are
impacted by an SSD caching layer operating below them.
We discuss these next.

The first broad trend we draw is that across all the file
system variants, we notice that the write-back caching
policy variants outperform the write-through policy for
cache sizes that are sufficiently large so as to accom-
modate a sizable fraction of the workload’s working set
size (2GB in this case). Second, the ordered write-back
caching policy provides performance superior to write-
through beyond a certain cache size for all file systems,

11

56 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

and that this improvement is larger for journaling file sys-
tems. Journaling file systems introduce additional data
writes and this increases the size of the write dependency
graph. Thus, ordered write-back is worse than write-
through at small cache sizes; it maintains multiple copies
of the dirty blocks in the cache thereby affecting its cache
hit ratio. Third, we also notice that since data mode jour-
naling introduces significant additional writes to storage,
it incurs a significant performance penalty relative to ext2
and the other journaling modes for both ext3 and ext4.

Considering ext3 relative to ext2 and with write-back
caching, for a cache size of 1.5 GB, the ext2 obtains
the highest throughput of 300 transactions-per-second in
contrast to 190 for ext3-data and 290 for ext3-writeback.
The amount of metadata operations is not significant and
thus the performance of ext3-writeback and ext3-ordered
are not significantly impacted.

Ext4 is an extension of ext3 designed to address the
limits placed by ext3’s data structures (e.g. file system
size and file sizes) as well as to improve ext3’s perfor-
mance further [2]. The most relevant of the new features
in ext4 are delayed and multi-block allocation which im-
prove the contiguous allocation of disk blocks. Given
that SSDs are designed for random accesses, large con-
tiguous allocations are not expected to significantly ben-
efit workloads cached in the SSD. Looking at Figure 15,
we observe that for cache sizes above 0.6GB, the write-
back policy performs similarly in ext3 and ext4. Addi-
tionally, write-through performs largely similarly in ext3
and ext4 for all journaling modes. An outlier here is ext4-
ordered, where the journaled write-back performs better
than regular write-back. We believe this is due to the con-
tiguous allocation feature in ext4. Journaled write-back
checkpoints transactions, batching the appends of a large
number of files to network storage. By using ext4 at the
disk-based network storage, we increase the chances of
aggregating sequentially writes to disk and therefore in-
creasing overall performance. Evictions in conventional
write-back are unable take advantage of this behavior be-
cause these evictions do not occur in batches.

The last file system we studied is btrfs which is a copy-
on-write file system designed for scalability and relia-
bility [25]. Btrfs has a similar behavior to the extended
file systems for large cache sizes: the write-back policies
perform better than write-through. An interesting obser-
vation here is that write-through performs similarly with
btrfs and ext2 but the gap between write-through and the
write-back policies is about 50% smaller in case of btrfs.
In other experiments (not shown), we found that the Post-
Mark workload performs similarly with disk drives when
using btrfs and ext2, but worse with SSDs when using
btrfs compared to ext2. We did not use any of the SSD
optimizations offered by the more recent versions of btrfs
in any of our experiments.

5.4 Trading Staleness for Performance

The work of Keeton et al. [20] explored several disaster-
tolerant storage solutions and demonstrated that a trade-
off can be made evaluating the solution implementation
costs (including both the necessary storage and network
facilities) and the cost of data loss after a disaster. It
argued that for an application that can tolerate non-zero
RPO (e.g., a filer storing non-critical documents; a web
server where data can be replaced from other sources;
or social-network data that can tolerate negligibly prob-
abilistic losses), the optimal storage solution is not nec-
essarily one that provides the strongest durability (e.g.,
synchronous remote mirroring with a network link suffi-
ciently provisioned for the peak write bandwidth) simply
because the implementation cost often far exceeds the
cost of a small amount of data loss. A similar argument
applies when evaluating host-side write caching policies.

For an application requiring a RPO of zero, write-
through must be employed but the network link and
back-end storage must also have sufficient bandwidth to
satisfy the short-term burst write rate. For other applica-
tions, write-back caching can be used to lower the cost of
the network and storage hardware. The hardware would
need to support only the long-term average write rate if
using ordered write-back, or the rate of unique writes
in a write-back window if using journaled write-back.
Hence, the optimal write policy can be determined by
considering the cost of potential data loss and the cost
of network and storage hardware necessary to support a
certain peak data access rate. While both the ordered and
journaled write-back policies support such a trade-off,
we now present a case-study with the journaled write-
back policy which provides a straightforward knob (the
journal size) to trade-off different amounts of staleness
for performance.

For the journaled write-back policy, we note that a
quantitative cost-benefit analysis can be performed to de-
termine the optimal write-back journal size, w, by trad-
ing data loss and associated cost against the applica-
tion performance generated revenue. The former can
be determined through an offline profiling process that
maps w to the application performance; the latter can be
specified by the application user or system administrator
(e.g., [20]). Ultimately, both can be expressed in terms
of dollars as part of the service-level agreement (SLA),
so the problem becomes finding the optimal write-back
journal size w∗ as follows: w∗ = argmaxw(Revenue(w)−
DataLossPenalty(w)).

To illustrate this cost-benefit analysis, we consider an
example using the Postmark benchmark to mimic the op-
erations of a news server storing non-critical news items
where a limited amount of data staleness is tolerable af-
ter server (host) failure. For the revenue model, we as-
sume that the revenue generated from this application

12

USENIX Association 11th USENIX Conference on File and Storage Technologies (FAST ’13) 57

-300

-200

-100

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700

R
e

ve
n

u
e

/P
e

n
a

lty
/N

e
t

P
ro

fit
 (

1
0

0
0

x$
)

Journal Size (MB)

Data loss penalty: P(J)=100eJ/56.9

QoS-based revenue: R(T)=(T-130)1000
Net profit

Figure 16: Trade-off between application QoS-based

revenue and data loss penalty as the journal size used

with journaled write-back caching is varied.

is a linear function of benchmark throughput to reason-
ably reflect a fixed $ revenue generated per transaction
per second. Based on the performance-staleness profile
of this application (Figure 14), we can then derive its
revenue as a function of the journal size. For the data
loss penalty model, we assume that the data loss penalty
is an exponential function of the data staleness (journal
size) to reflect the exponential cost of losing customer
base due to an inadequately consistent service. Further,
the function accounts for probability of system crashes
and failures that lead to data loss. Both the revenue and
data loss penalty models are illustrated in Figure 16 as
functions of the journal size. The difference between
these two functions, i.e., the net profit generated from
the service, is also shown; the optimal journal size is
around 650MB. Although the exact shapes of the rev-
enue and penalty functions used here are assumed rather
arbitrarily, they can be determined in practice based on
the SLA specifications and the combined probability of
data loss under various failure modes. This example
clearly demonstrates how a more profitable trade-off can
be made between performance-generated revenue and
data loss penalty after a failure by finding the optimal
journal size.

6 Conclusion

For decades, write caching policies have been monopo-
lized by the two extremes of transactionally consistent
but low-performing write-through and high-performing
but inconsistent write-back. However, the spectrum of
possible write policies is significantly richer, offering
a variety of trade-offs across performance, consistency,
and staleness dimensions. Exploring this spectrum is
even more relevant now with the availability of high-
performance, persistent host-side caches. In this paper,
we develop new write caching policies that strike new
and useful trade-offs in this spectrum. Ordered write-
back provides point-in-time consistency with significant

improvement in performance over conventional, transac-
tionally consistent, write-through. Journaled write-back
relies on an extended, but straightforward storage inter-
face modification to provide point-in-time consistency
and superior performance than the ordered mode. Jour-
naled write-back also provides a simple knob to trade-off
data staleness for performance that allows it to achieve
close to write-back performance. Further, a variant of
journaled write-back that uses application level consis-
tency hints can provide application-level consistency, a
stronger type of consistency than the transactional con-
sistency that conventional write-through provides. The
flexibility afforded by these new write policies enable
write caching mechanisms that are better tailored to the
needs of individual applications.

Acknowledgments

The authors thank the anonymous reviewers and shep-
herd, Xaiosong Ma, for their thoughtful feedback. Irfan
Ahmad, James Lentini, and Jiri Schindler provided valu-
able input as well. This work was supported by NSF
grants CNS-1018262 and CNS-0747038 and a NetApp
Faculty Fellowship.

References

[1] Bcache. http://bcache.evilpiepirate.org.
[2] Ext4 (and Ext2/Ext3) Wiki.

http://ext4.wiki.kernel.org.
[3] IET: The iSCSI Enterprise Target Project.

http://iscsitarget.sourceforge.net.
[4] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.

Davis, M. Manasse, and R. Panigrahy. Design
Tradeoffs for SSD Performance. In Proc. of Usenix
ATC, Boston, MA, June 2008.

[5] M. Bhadkamkar, J. Guerra, L. Useche, S. Bur-
nett, J. Liptak, R. Rangaswami, and V. Hris-
tidis. BORG: Block-reORGanization and Self-
optimization in Storage Systems. Proc. of USENIX

FAST, February 2009.
[6] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Con-

dict, J. Kimmel, S. Kleiman, C. Small, and
M. Storer. Mercury: Host-side flash caching for the
data center. In Proc. of IEEE MSST, April 2012.

[7] P. M. Chen and E. K. Lee. RAID: High-
Performance, Reliable Secondary Storage. ACM

Computing Surveys, 26(2), June 1994.
[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-

ishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In Proc. of ACM SoCC, 2010.

[9] J. Corbett. A bcache update.
http://lwn.net/Articles/497024/.

[10] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The
Logical Disk: A new approach to improving file
systems. In Proc. of ACM SOSP, 1993.

13

58 11th USENIX Conference on File and Storage Technologies (FAST ’13) USENIX Association

[11] C. Dirik and B. Jacob. The performance of pc solid-
state disks (ssds) as a function of bandwidth, con-
currency, device architecture, and system organiza-
tion. In Proc. of ISCA, 2009.

[12] EMC. VFCache.
http://www.emc.com/storage/vfcache/ vf-
cache.htm, 2012.

[13] Fusion-IO. ioTurbine.
http://www.fusionio.com/systems/ioturbine/,
2012.

[14] R. Grimm, W. C. Hsieh, M. F. Kaashoek, and
W. de Jonge. Atomic recovery units: Failure atom-
icity for logical disks. In Proceedings of the IEEE
International Conference on Distributed Comput-

ing Systems, 1996.
[15] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and

R. Rangaswami. Cost Effective Storage using Ex-
tent Based Dynamic Tiering. In Proc. of USENIX
FAST, February 2011.

[16] A. Gulati, I. Ahmad, and C. Waldspurger. PARDA:
Proportional Allocation of Resources for Dis-
tributed Storage Access. In Proc. of USENIX FAST,
February 2009.

[17] E. V. Hensbergen and M. Zhao. Dynamic policy
disk caching for storage networking. Technical Re-
port Report (RC24123), IBM Research, November
2006.

[18] M. Ji, A. Veitch, and J. Wilkes. Seneca: Remote
mirroring done write. In Proc. of USENIX Annual
Technical Conference, June 2003.

[19] J. Katcher. PostMark: A New File System Bench-
mark. Technical Report TR3022. Network Appli-

ance Inc., October 1997.
[20] K. Keeton, C. Santos, D. Beyer, J. Chase, and

J. Wilkes. Designing for disasters. In Proc. of

USENIX FAST, 2004.
[21] R. Koller and R. Rangaswami. I/O Deduplication:

Utilizing Content Similarity to Improve I/O Perfor-
mance. In Proc. of USENIX FAST, pages 211–224,
February 2010.

[22] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and Analysis of Large-Scale Net-
work File System Workloads. In Proc. of USENIX

ATC, 2008.
[23] A. Leventhal. Flash storage memory. Commun.

ACM, 51:47–51, July 2008.
[24] D. R. Llanos. Tpcc-uva: An open-source tpc-c im-

plementation for global performance measurement
of computer systems. ACM SIGMOD Record, De-
cember 2006. ISSN 0163-5808.

[25] C. Mason. The btrfs filesystem. The Orcale coop-

eration, 2007.
[26] R. McDougall. Filebench:application level file sys-

tem benchmark.

[27] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S.
Fabry. A fast file system for unix. ACM Trans.
Comput. Syst., 2(3):181–197, Aug. 1984.

[28] N. Megiddo and D. Modha. ARC: A self-tuning,
low overhead replacement cache. In Proc. of
USENIX FAST, pages 115–130, 2003.

[29] D. Narayanan, A. Donnelly, and A. Rowstron.
Write Off-Loading: Practical Power Management
for Enterprise Storage. Proc. of the USENIX FAST,
Feb 2008.

[30] D. Narayanan, A. Donnelly, and A. Rowstron.
Write Off-Loading: Practical Power Management
for Enterprise Storage. In Proc. of USENIX FAST,
2008.

[31] H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. Snapmirror: File sys-
tem based asynchronous mirroring for disaster re-
covery. In Proc. of USENIX FAST, January 2002.

[32] D. Roselli, J. R. Lorch, and T. E. Anderson. A
comparison of file system workloads. In Proc. of

USENIX ATC, 2000.
[33] C. Ruemmler and J. Wilkes. An Introduction to

Disk Drive Modeling. Computer, 2:17–28, 1994.
[34] M. Seltzer, P. Chen, and J. Ousterhout. Disk

Scheduling Revisited. In Proc. Winter 1990

USENIX Technical Conference, 1990.
[35] M. Srinivasan. Flashcache : A

Write Back Block Cache for Linux.
https://github.com/facebook/flashcache/blob/master/
doc/flashcache-doc.txt.

[36] Transaction Processing Performance
Council (TPC). TPC Benchmarks.
http://www.tpc.org/information/benchmarks.asp.

[37] A. Verma, R. Koller, L. Useche, and R. Ran-
gaswami. SRCMap: Energy Proportional Storage
using Dynamic Consolidation. In Proc. of USENIX

FAST, pages 267–280, February 2010.
[38] H. Weatherspoon, L. Ganesh, T. Marian, M. Bal-

akrishnan, and K. Birman. Smoke and mirrors:
Reflecting files at a geographically remote location
without loss of performance. In Proc. of USENIX

FAST, 2009.

14

