
Revenue Driven Resource Allocation for Virtualized Data Centers

Sajib Kundu⋄ Raju Rangaswami† Ming Zhao† Ajay Gulati§ Kaushik Dutta‡

⋄Riverbed Technology †Florida International University §ZeroStack, Inc. ‡National University of Singapore

Abstract—The increasing VM density in cloud hosting services
makes careful management of physical resources such as CPU,
memory, and I/O bandwidth within individual virtualized servers
a priority. To maximize cost-efficiency, resource management
needs to be coupled with the revenue generating mechanisms of
cloud hosting: the service level agreements (SLAs) of hosted client
applications. In this paper, we develop a server resource man-
agement framework that reduces data center resource manage-
ment complexity substantially. Our solution implements revenue-
driven dynamic resource allocation which continuously steers the
resource distribution across hosted VMs within a server such
as to maximize the SLA-generated revenue from the server. Our
experimental evaluation for a VMware ESX hypervisor highlights
the importance of both resource isolation and resource sharing
across VMs. The empirical data shows a 7%-54% increase in total
revenue generated for a mix of 10-25 VMs hosting either similar
or diverse workloads when compared to using the currently
available resource distribution mechanisms in ESX.

I. Introduction

In cloud hosting data centers, tens to hundreds of virtual ma-
chines with diverse characteristics can be consolidated in one
physical server. Higher degrees of consolidation are attractive
because it optimizes the utilization of server resources. On
the downside, managing high VM density well is non-trivial.
Over-sized VMs present problems in terms of capital and
operational expenditure while under-provisioned VMs result in
violation of the service level agreement (SLA) and customer
dissatisfaction.

In Infrastructure-as-a-Service (IaaS) cloud data centers,
clients host their applications inside VMs and manage the
applications themselves. The allocation and management of
individual VM resources, on the other hand, are performed
by the cloud service providers. Clients pay rent to the service
providers for use of the server resources.

Cloud hosting services today use simple service level
agreements (SLA) whereby the clients are charged a flat fee
based on the resource capacity they are renting or buying [1].
However, this is not ideal for either clients or data center
service providers. For the customer, there is no easy way to
determine an appropriate capacity since resource needs can de-
pend on dynamic workload requirements. Consequently, they
either pay more for unnecessary resources or risk performance
violations. Data center service providers, on the other hand, use
over-provisioning to avoid the heavy penalties associated with
performance violations. Performance-based charging offers an
alternative — clients pay rent for receiving specific levels of
performance for their applications running within the hosted
VMs [17]. The service providers can adopt resource provi-
sioning schemes whereby applications are penalized/rewarded
in terms of resource allocations as per the SLA-based rev-
enue lost/generated. Performance-based charging also boosts
clients’ confidence in the cloud service since they pay only

!"#$!"%$!"&$

!'()*+,$"+-.'&/$"0&')0($

1/20*(-/$$

322'4&5/&)$

366,'-+70&$8/(90(5+&-/$

:;3#$:;3%$:;3&$

1<!#$ 1<!%$ 1<!&$=$ =$ =$>0)+,$1/?/&*/$$@$

Fig. 1. System Model for Revenue Driven Resource Allocation.

for performance required and experienced. Figure 1 presents a
deployment scenario for performance-based charging wherein
a set of co-located VMs generate a certain amount of revenue
per unit time at a given performance level.

In this paper, we propose a revenue-driven dynamic re-
source allocation solution which continuously steers the re-
source distribution across hosted VMs such as to maximize
the collective revenue generated by the VMs at any given in-
stant. This task is non-trivial because application performance
depends on multiple resource types in complex ways and the
per-application SLA curves can be quite diverse. Our previous
work on VM performance modeling builds robust application
performance models and lays the foundation for this work [16].
Since these performance models rely on the accuracy of
observed input parameters such as a VM’s storage I/O latency,
abrupt and arbitrary reallotments of resources are not possible
since doing so affects performance prediction accuracy. We
take an incremental approach to dynamic resource allocation
which relies on multiple incremental resource reallocation
steps to attain the state of maximum revenue.

We implemented our solution in the VMware ESX hy-
pervisor and evaluated it against both static and dynamic
VM-level resource allocation mechanisms offered by ESX
and the VMware vCenter Server management system. Our
experimental evaluation with servers hosting 10-25 virtual
machines highlights the importance of both resource isolation
as well as resource sharing, although these principles are
fundamentally at conflict with each other. By employing strict
isolation across 10 functionally similar VMs in a VMware
ESX server, our dynamic revenue maximization techniques
converge to revenue levels that are 10-22% higher than con-
figurations that distribute resources equally across VMs and a
7% increase over the existing work-conserving, share-based
resource distribution mechanisms available in the vCenter
Server management system [5]. Across a set of 25 functionally
dissimilar VMs, our solution, when combined with the existing

share-based resource distribution mechanisms available in ESX
hypervisors, registered 54% improvement in generated revenue
relative to a solution that uses equal allocations. We make the
following contributions in this paper:

1. We formalize the revenue-driven resource allocation prob-
lem for virtualized servers and prove it to be NP-hard.

2. We propose a practical heuristic solution which contin-
uously, but incrementally, steers the resource distribution
across hosted VMs within a server such as to maximize the
SLA-generated revenue from the VMs.

3. We evaluate our approach for the VMware ESX hypervisor
using the vCenter Server management system, demonstrating
substantial increases in total revenue generation for both
similar and diverse workloads and SLAs when compared
against using the resource distribution mechanisms available
in VMware ESX hypervisors.

II. Background

Our approach to dynamic VM resource management builds
upon our previous work on VM performance modeling [16].
This previous work identified resource parameters for partition-
able resources (e.g. CPU, memory) and for non-partitionable
resources (e.g. storage, network) that can serve as control
knobs for administrators to distribute physical resources. It
also developed machine learning based models to robustly
characterize the non-linear impact of resource allocation on
an application VMs performance in the presence of contention
for resources by other VMs. In this section, we briefly review
this previous work and specifically discuss how the proposed
models therein were used in our work.

A. Identifying Resource Parameters

The robustness of dynamic resource allocation depends on
the successful identification of control knobs for key system
resources and on the use of accurate application performance
models. Our previous work on building robust VM perfor-
mance models [16] used the following resource parameters
that we use in this study as well. We use VMware ESX
hypervisor’s CPU Limit in MHz or CPU Share [11] for tuning
CPU allocation to any VM. For memory, we use Memory Limit
in MB or Memory Share for setting the memory allocation
for any VM. Finally, based on the observation that storage is
not easily partitionable, we use VM I/O Latency, an observed
metric, as an input parameter for the performance models.

B. Building and Using Application Performance Models

Following the process described in our previous work [16],
we built artificial neural network based performance models
for each of the applications used in this study. These models,
when used in production, predict the application performance
given a set of resource assignments. While the performance
models address how changes in resource availability impact
application performance, they do not inform the extent of
change necessary to achieve an optimization goal.

As we shall elaborate later, the distribution of multiple
types of resources across VMs in a shared cluster with the
objective of SLA-guided revenue maximization is an NP hard

problem. The optimization framework that we propose in
this paper uses performance models to maximize data-center
revenue. Our incremental resource allocation solution also
accounts for and addresses how changes to resource allocation
affect other system variables such as I/O contention. More
specifically, the pre-built application performance models are
used to determine the increase or decrease in application
performance for a given workload when a certain resource’s
availability is altered. An increase or decrease in application
performance alters the corresponding SLA-generated revenue
from the application which in turn informs how beneficial
specific resource reallocation decisions would be.

III. Dynamic Resource Allocation

We model the problem of dynamic resource allocation in
virtualized systems to explicitly take into account the influence
of both resource allocation and resource competition. The
model maps resource allocations of individual application
VMs to revenues generated in US dollars as dictated by their
respective SLA functions. Performance models are used for
performance prediction within this optimization framework.
We establish that the multi-resource reallocation problem for
application VMs is at least NP-hard and that exact solutions
are infeasible in practice.

It has been previously established that the performance
of individual virtualized applications are determined by the
resource assignments and current competition levels posed by
other applications sharing the host [15], [17]. To determine the
range of revenues generatable by a virtualized application at a
future instant, the application performance under possible fu-
ture resource assignments must be determined. The application
performance models that we discussed in the previous section
can help meet this need. However, a complete redistribution of
resources is not possible when using these models since such
redistribution would introduce large variance to the observed
VM I/O latency and thus compromise the performance predic-
tion accuracy of these models. In our solution, administrator-
defined parameters, k and δ, serve to limit the magnitude of
resource distribution by bounding the maximum allocation
change that can be made for each resource type within a
single resource reallocation operation. An application’s perfor-
mance obtained after model-based prediction is mapped to the
application-generated revenue using the application-specific
SLA curve. We assume that SLA curves can be complex, non-
linear descriptions of revenue dependent on the application
performance metric and that they are not necessarily restricted
to simple priority assignments across applications.

A. Problem Formulation

Table I lists the parameters employed in the resource allo-
cation problem formulation. The SLA-based optimal resource
allocation problem can be formally specified as follows:

”Given n application VMs (denoted as set I), m allocatable
resource dimensions (denoted as set J), current resource
allotments Ralloc, performance models PM, and SLA-based
revenue function S(R), determine a set of new resource as-
signments Ropt for the VMs which will result in maximizing
the total revenue REV generated across all VMs for certain

Parameter Description

n Number of application VMs
m Number of resource types
k Maximum number of times the resource allocation of any VM can be changed for any resource

dimension in a single resource reallocation operation
δ A vector of length m denoting the units of changes in m resource dimensions.

I Set of application VMs
J Set of resource types

Ralloc Current resource allocation vector of dimension m×n

Rtotal A vector of length m for total available resources
Ri,j Resource allocation for VM i ∈ I of resource type j ∈ J

Ropt Optimal resource allocation of vector m×n after the redistribution
S(R) A vector of n SLA functions mapping the application performance to revenue in USD
REV Revenue vector of length n
T Time interval of running reallocation algorithm.
PM A vector of length n, each member is a separate performance model for one VM App i ∈ I
Ψ(Ri,j , ∀j ∈ J) Revenue for application i ∈ I , where amount of resources allocated to application i is Ri,j , ∀j ∈ J .

TABLE I. DESCRIPTION OF SYMBOLS USED IN RESOURCE ALLOCATION PROBLEM FORMULATION.

time interval T, given that any change to resource assignment
Ri,j , i ∈ I , j ∈ J is bounded by -kδ to +kδ.”

At each interval T, the problem may be formalized as:

Maximize REV =
∑

i∈I

Ψ(Ropt
i,j , ∀j ∈ J) (1)

subject to :
∑

i∈I R
opt
i,j ≤ Rtotal

j ∀j ∈ J (2)

R
opt
i,j −Ralloc

i,j ≤ ±kδ ∀i ∈ I, j ∈ J (3)

Equation 1 maximizes the revenue across all resources.
Equation 2 restricts the total resource allocation for each
resources across all application VMs to be less than the total
available resources. Equation 3 restricts the resource allocation
change of each resource type for each application VM to a
maximum of kδ.

The revenue derived by a data center from a particular
application VM depends on the SLA and on the performance
of the application, which in turn depends on the resources
allocated to the application VM. However, all these dependen-
cies are non-linear. Finally, Ri,j , Ralloc, Rtotal and Ropt are
assumed to be integer values.

Theorem 1. The resource allocation problem is at least NP-
hard.

Proof: Let us assume that the function Ψ is a lin-
ear summation function as follows Ψ(Ropt

i,j , ∀j ∈ J) =∑
j∈J AjR

opt
i,j , ∀i ∈ I , where Ajs are constants. Let us also

assume, δ = ∞. Then the resource allocation problem reduces
as follows:

Maximize
∑

i∈I

∑

j∈J

AjR
opt
i,j (4)

subject to :
∑

i∈I R
opt
i,j ≤ Rtotal

j ∀j ∈ J (5)

The above problem is the INTEGER KNAPSACK problem,
an established NP-Complete problem [13]. Since the INTEGER

KNAPSACK problem can be reduced to a specific reduced
instance of the resource allocation problem in polynomial
time, we can conclude that this reduced subset problem of the
resource allocation problem is NP-Complete. Consequently,
with the additional constraints of Equation 3, the resource
allocation problem is at least NP-hard.

B. How Expensive is Exhaustive Search?

Exhaustive search techniques may be applied to the resource
allocation problem to find the most optimal solution. For
many NP-hard problems, the small input size allows trivial,
exact solutions in practice via exhaustive search; we examine
if this is true for the problem under consideration. Per our
problem formulation, each resource reallocation can assume
2k different values, k positions for increments, and k positions
for decrements. Comparing 2k different possible changes in
revenue values for each of the n VMs and for each of the
m resource types to find Ropt will incur an asymptotic time-
complexity of O((2k)mn) which is infeasible even for small
n and k. If we assume that m = 4, n = 10, and k = 5; the
time taken to run brute-force search will take O(1040) time
units. Alternate, efficient heuristic solutions are thus needed
for realistic deployment.

C. Other Heuristic Solutions

Both the resource allocation problem and the class of classic
knapsack optimization problems have a common objective of
determining a set of items to include in a sack of finite weight
with a goal of maximizing the total value of the sacked items
and with the constraint that the sum of all weights should be
less than or equal to the capacity of the sack. Specifically,
the total available capacity of any type of resource informs
the capacity of the sack and the resource assignments of
individual items provide the weights of the items selected to
place in the sack and whereby the revenue from each VM
is the value of each item. Maximizing total knapsack value
maps to maximizing total revenue for the resource allocation
problem. Given this similarity, we can consider applying
heuristic solutions from the class of knapsack problems to the
resource allocation problem.

However, despite its similarity to knapsack, the revenue
maximization problem has several distinguishing character-
istics. First, it is multi-dimensional with m resource types,
which substantially increases the size of the solution search
space. Second, because SLA-based revenue functions can be
nonlinear, solutions to linear knapsack problems cannot be
used as-is to solve our problem. Third, and the most important
distinguishing feature, is that for the sake of system stability,
any solution to the resource allocation problem must employ
incremental resource adjustments, instead of reallocating re-
sources from scratch, and such resource change is constrained
according to Equation 3. This additional constraint makes
resource allocation substantially more challenging precluding
existing solutions to multi-dimensional, nonlinear knapsack
problems [7]. Furthermore, the reduction of an instance of the
dynamic resource allocation problem to a complex variant of
knapsack is possible only by eliminating Equation 3. With the
addition of Equation 3, the problem becomes unsolvable using
existing approximation algorithms for the known knapsack
family of problems.

IV. A Heuristic Solution

In this section, we present a dynamic resource allocation
algorithm for revenue maximization with an acceptable time
complexity. Given a current set of resource assignments for
a pool of application VMs, the algorithm attempts to find
a new set of allocations for each resource to maximize the
total revenue generated at current application demand. In our
current implementation, the algorithm runs periodically to
make resource changes in an incremental fashion, with the goal
of converging to a state of higher revenue at any given time.
Periodic execution helps in multiple ways: it allows settling
time for the resource changes that were made at the end of the
previous execution and also allows capturing stable workload
behavior [14]. Algorithm 1 lists the steps formally while
Table II describes the parameters used. We quantify the effect
of incremental changes using δP

g
i,j and δPl

i,j which denote the
gain or loss in revenue as the assignment of resource type j
for application VM i is increased or decreased respectively by
an amount δ.

Let us assume that the current resource allocation of
resource type j for VM i is r which provides a revenue of p dol-
lars. The application performance model predicts application
output for an allocation of r ± δ which is subsequently mapped
by Si to find the corresponding revenue pδ . The difference
between pδ and p indicates the gain or loss for a δ increment
or decrement, defined as δP

g
i,j or δPl

i,j . We assume that δP
g
i,j

≥ 0, i.e., increasing resource allocation to a VM always results
in no change or an increase in performance and consequently
no change or an increase in revenue for the VM. On the other
hand, δPl

i,j ≤ 0, i.e., taking away resources can not cause an
increase in revenue.

The algorithm uses an iterative, greedy approach to revenue
maximization. In each execution, it transfers resources from
the VM that offers the least reduction in revenue due to a
reduction in those resources to the most revenue-generating
VM. In doing so, it also chooses the resource type for which
the relative gain is maximized. Since in each execution, the
algorithm makes incremental changes that increase overall rev-
enue, subsequent periodic executions of the algorithm move the

overall resource allocation state towards one that maximizes
revenue for the system.

Algorithm 1 MaxRevenue: Revenue Maximization Algo-
rithm

1: while (1) do
2: MaxNetProfit = 0
3: ICi,j = 0 /* ∀i, j */
4: DCi,j = 0 /* ∀i, j */
5: for j = 1 to m do
6: Call FindMaxMinVM() to get MaxGainj ,

MinLossj , VMl, VMg

7: Call CompareGainAndLoss()
8: CheckReshuffle() /* Alter, if necessary, the re-

source winner and/or loser VMs by checking against
multiple increments/decrements */

9: if MaxNetProfit > 0 then
10: RVMgg,Rmax

+ = δ
11: ICVMgg,Rmax

+ = 1
12: RVMlg,Rmax

− = δ
13: DCVMlg,Rmax

+ = 1
14: else
15: /* No gain in net profit and the algorithm stops */
16: break

Algorithm 2 FindMaxMinVM : Find VMs with maximum
and minimum gain respectively

1: OUTPUT: MaxGainj , MinLossj , VMl, VMg

2: MaxGainj = 0
3: MinLossj = ∞
4: for i = 1 to n do
5: /* Finding the VM whose gain is maximum */
6: if δP

g
i,j > MaxGainj and ICi,j < k then

7: MaxGainj = δP
g
i,j

8: VMg = i
9: /* Finding the VM whose loss is minimum */

10: if δP l
i,j < MinLossj and DCi,j < k then

11: MinLossj = δP l
i,j

12: VMl = i
13: return MaxGainj , MinLossj , VMl, VMg

Algorithm 3 CompareGainAndLoss

1: INPUT: MaxGainj , MinLossj , MaxNetProfit,
VMg , VMl

2: OUTPUT: VMgg , VMlg , Rmax

3: if VMg 6= VMl and MaxGainj + MinLossj >
MaxNetProfit then

4: MaxNetProfit = MaxGainj +MinLossj
5: VMgg = VMg

6: VMlg = VMl

7: Rmax = j

The main algorithm (MaxRevenue Algorithm 1) im-
plements an incremental reallocation of resources across ap-
plication VMs. This algorithm is run each time a resource
redistribution across VMs is considered; this could be either
periodic or based on administrator initiation. The algorithm
MaxRevenue identifies the VMs offering the maximum gain
and minimum loss for δ change of all resource types j (the

Parameter Description

i Index for application VMs
j Index for resource types
δP

g
i,j Gain in revenue for application VM i as resource allocation of type j is increased by δ keeping all other resource

dimensions constant

δPl
i,j Loss of revenue for application VM i as resource allocation of type j is reduced by δ keeping all other resource

dimensions constant
MaxGainj Maximum Gain obtained for resource type j
MinLossj Minimum Loss incurred for resource type j
MaxNetProfit Maximum net profit obtained globally i.e. across all VMs and all resource dimensions
VMg VM whose gain is maximum for a specific j
VMl VM whose loss is minimum for a specific j
VMgg VM whose gain is maximum for some j and which is globally selected as a candidate for allocating more resources
VMlg VM whose loss is minimum for some j and which is globally selected as a victim for taking away resources
Rmax Resource type for which the net profit is maximized
ICi,j Number of times the resource allocation of type j for VM i is incremented
DCi,j Number of times the resource allocation of type j for VM i is decremented

TABLE II. DESCRIPTION OF SYMBOLS USED IN THE HEURISTIC SOLUTION.

 4

 5

 6

 7

 8

 9

 10

 11

 25 30 35 40

R
e

v
e

n
u

e
 p

e
r

h
o

u
r

($
)

Allocation level for Rj (%)

VM A
VM B

Fig. 2. Sub-optimal allocation with multiple δ increments of resource Rj .

for loop at line 5 of Algorithm 1). In line 6, the algorithm
invokes FindMaxMinVM (Algorithm 2) to identify the VM
that offers the minimum loss of revenue due to loss of δ amount
of resource j and the VM that provides the maximum gain in
revenue for the addition of the same amount.

Our approach is based on making potentially multiple
changes to resource allocation across multiple iterations, with
only a small, incremental (δ) resource allocation change within
a single iteration. This enables the algorithm to partition
resources at a fine granularity and consider a large number
of resource reallocation possibilities. This also allows the
redistribution of a resource from a single donor VM to multiple
recipient VMs and from multiple donor VMs to a single
recipient VM. However, one disadvantage is that the allocation
result achieved at each iteration due to a δ change may not
be cumulatively optimal, i.e., for multiple δ change. This is
illustrated in Figure 2 which depicts the change in revenue for
two hypothetical VMs A and B as their allocation for resource
Rj changes. Let us assume that the current allocation level
of Rj for both VM A and VM B are 30% which generates
a revenue of 5$/hr for both VMs. Let us further assume for
simplicity that δ=5 and k=2; these values will typically be
different in a real setting with k being greater and δ being
either larger or smaller depending on the accuracy of the model
w.r.t. modeling the impact of the specific resource. During
its next execution, the algorithm would determine in the very
first iteration that VM A offers a greater increase in revenue
(2$/hr) for a δ (5%) increment in Rj allocation from 30% to
35% than VM B which offers a lower increase (1$/hr) for the
same increment. In the second iteration, once again VM A
offers a greater increment (2$/hr) for an increment from 35%
to 40%, while VM B offers only (1$/hr) for an increment

of 5% from 30% to 35% of Rj . However, if we make the
allocation granularity more coarse grained in the first iteration
(say 2δ) then the 10% allocation recipient would have been
VM B which offers a greater cumulative increase in revenue
(5$/hr) as opposed to VM A (4$/hr).

The CheckReshuffle function addresses the above
shortcoming. It compares the sum of all changes determined as
piece-wise optimal in previous iterations with the entire reallo-
cation made as a single unit made at once (i.e., effectively in-
creasing the size of the allocation unit). If CheckReshuffle
establishes that the larger granularity allocation of a single
resource is more beneficial than incremental δ reallocations, it
modifies the VMs assigned for maximum gain and minimum
loss during the current iteration.

In its final section, (lines 9-16), the Algorithm 1 checks
if the MaxNetProfit is greater than 0, i.e., there exists an
additional revenue benefit from resource redistribution. Upon
success, the resource transfers and other manipulations occur
from lines 10 to 13 and the outer while loop is executed once
again. Otherwise, the algorithm is unsuccessful in finding a
better resource assignment than what was identified during
the last iteration and it stops by breaking from the outermost
while loop. The actual resource distribution only occurs after
the algorithm finishes its entire execution, i.e., after having
identified potentially multiple source and target VMs and
multiple types for resources.

V. Implementation

We developed our system based on VMware’s virtualization
stack for servers and server management. For building per-
formance models, VM workloads were first run in a staging
host identical to the target ESX server used for deploying the
VMs. Performance models are recorded in a central resource
allocator (CRA), a dedicated machine in our implementation.
The CRA runs the resource allocation algorithm and provides
reallocation hints. Application VMs running on the staging
host and target ESX server access virtual disks in a network
storage system over NFS.

Performance data from individual virtual machines are
collected and transmitted to the CRA. VM applications need to
report this information that is consumed by our system either

!"# !"# !"#!"#

$%&'#()*+# $%&'#()*+#

,-.#

/0*)1230#4))5#

6708+02#%02602#

708+295#

20*)1230#

955)39+)2#

:445'39;)8#402<)2=9830#

/
0
*)
1
23
0
#9
55
)
39
;
)
8
##

>
0
3'
*'
)
8
*#

:
4
4
5?
#@
/
%
##

+)
#3
51
*+
0
2#

0*A+)4B6*3*'%+9+#

>9+9#

751*+02#)<#4(?*'395#*02602*#

:
4
4
5?
#2
0
*)
1
23
0
##

9
55
)
39
;
)
8
*#
+)
#!
"
*#

Fig. 3. Cluster-wide revenue driven dynamic resource allocation setup.

through files or console. We found that this was straightforward
for the benchmark workloads we used since they reported
performance data to file/console by default. Each ESX host
runs the esxtop tool to collect per-VM level as well as host-
level performance data. We used vscsiStats [4] on each ESX
host which reports storage I/O latency statistics for each
VMDK. These are transmitted to the CRA, which in turn
makes resource reallocation decisions every five minutes.

The resource allocation process is shown in Figure 3.
Initially, the available CPU and memory in the target server are
divided among the running VMs either equally or in proportion
to the application-specified SLA weights or priority values.
VMs continuously report the application performance to the
CRA. After a five minute epoch elapses at the CRA, the SLA
functions are consulted to transform the observed application
performance to corresponding revenue values in USD. The
revenue maximization algorithm is then run using the model-
predicted revenue data and a new set of resource assignments
for the pool of VMs are generated. The new assignments are
informed to the vCenter Server which implements the new
allocations. The VMs run for another five-minute epoch and
the whole process repeats.

A. Resource Assignment Mechanisms

An ESX host provides several control knobs for managing
resource assignments to individual VMs. Irrespective of the
resource assignment mechanism (i.e., limits or shares), dy-
namic resource allocation works as discussed earlier. Limit,
reservation, and share can each be used to control the al-
location of CPU and memory to VMs [11]. Limit places an
upper bound on the amount of resource a VM can consume;
reservation guarantees a certain minimum amount of resource
to a VM at any time. Share allows ESX to dynamically vary the
resource allocated to a VM between its reservation and limit
values, in proportion to specified priority values and based on
actual demand. The work-conserving nature of shares makes
it attractive for resource distribution. On the other hand, while
limits are non-work-conserving, they provide strict resource
isolation across the VMs.

While shares and limits provide useful controls, it is
unclear how per-VM limits or shares should be configured to
maximize revenue. Our dynamic resource allocation solution
addresses this gap. Although our algorithm is intended to
use resource limits, we adapted it to use shares as well by

mapping each suggested limit to a corresponding share value
by dividing the resource assignment with the total capacity
of the resource. Thus, we were able to evaluate four distinct
schemes: (i) Share Reservation: shares are used in combina-
tion with some reservation for both CPU and memory; (ii)
Share noReservation: shares are used without any reservation
for both CPU and memory; (iii) Limit Reservation: limits are
used with reservations for both CPU and memory; and (iv)
Limit noReservation: limits are used without any specified
reservations.

B. Cluster-wide Scaling

Our solution for dynamic resource management works within a
single server by observing and utilizing the fine-grained impact
of resource reallocation decisions. However, our solution can
be applied at cluster scale by employing the ”resource pool”
abstraction in virtualized cluster management solutions such as
the vCenter Server (see Figure 3). The VMs are administered
using VMware vCenter Server [5]. The concept of resource
pool restricts allocations to the resource pool but a resource
pool could include either a single ESX host or a group of
ESX hosts. It can thus provide straightforward application of
our resource management mechanisms to multiple hosts [11].
VMs are placed on the resource pool with a condition that the
sum of reservations on any resource dimension to the pool of
VMs is not to exceed the reservation on the pool.

The advantage of using resource pools is that it aggregates
physical resources from multiple hosts creating the illusion
of a single virtual server. In other words, a resource pool is
constructed using a cluster and the cluster in turn is comprised
of multiple physical machines. This resource virtualization
achieves transparent migration of the pooled VMs between the
hosts in the cluster at run-time. Migration may occur either as
a result of a certain allocation assignment to a particular VM
being deemed unsupportable by the current server or due to
internal load balancing operations [11].

VI. Evaluation

In this section, we demonstrate how starting with an initial
configuration VM resource assignments, at each iteration,
changes to resource assignments that ultimately converge to
an increase in total revenue for the data center can be realized.
To evaluate the effectiveness of the proposed revenue driven
dynamic resource allocation framework, we compare it against
solutions that use existing mechanisms in the ESX hypervisor
for dividing allocations based on relative VM priority, e.g.,
VM shares.

A. Testbed and Workloads

We used an AMD-based Dell PowerEdge 2970 server with
dual sockets and six 2.4 GHz cores per socket and 32 GB of
physical memory, running the VMware ESXi- 5.1 hypervisor,
as the target host system to run virtual machines. All the VMs
ran Ubuntu-Linux-10.04. The virtual machine disks (VMDKs)
were placed in a 1.2 TB RAID-0 LUN using four disk drives
hosted by a networked storage server. ESX mounted these
VMDKs at the host using NFS. The central resource allocator
was run on a dedicated Dell PowerEdge T105 machine with

 450

 500

 550

 600

 650

 700

 0 1 2 3 4 5 6

R
e
v
e
n
u
e
 (

U
S

D
)

Iteration Count

Share_Reservation
Share_noReservation

Limit_Reservation
Limit_noReservation

Fig. 4. Incremental change in revenue when started with equal resource
allocations. Resource reallocation iterates until revenue generation stabilizes.

 450

 500

 550

 600

 650

 700

 0 2 4 6 8 10

R
e
v
e
n
u
e
 (

U
S

D
)

Iteration Count

Share_Reservation
Limit_Reservation

Fig. 5. Incremental change in revenue when the initial resource allocations
to VMs are assigned proportionally to respective SLA weights. Resource
reallocation iterates until revenue generation stabilizes.

a quad-core AMD Opteron processor (1.15GHz×4), 8 GB of
physical memory, and a 7.2k RPM disk running Ubuntu-Linux-
10.10.

For the workloads, we used two profiles each of RUBiS [3]
(Browsing and Bidding) and Filebench [2] (Webserver and
Fileserver); these workloads consume multiple physical re-
sources (CPU, Memory and I/O) at the same time in a complex
manner [16]. We configured the RUBiS-Browsing workload
to 1000 clients and the RUBiS-Bidding workload to run 400
clients simultaneously. Both reported average throughput as
requests/sec, which was used as the application performance
metric when evaluating candidate solutions. We configured the
Filebench Webserver and Fileserver workloads each with a
fileset of total size 10GB and to use 32 threads. Application
performance for both was recorded as operations/sec.

B. System Configuration

We trained models with data points separated from each other
in the parameter space at coarse granularity as described in
our previous work [16]. Choice of δ, the smallest granularity
of resource movement, proved to be an important one. From
preliminary experiments, we found that choosing a very small
value lead to prediction inaccuracy. On the other hand, since
the performance models use the current observed VM storage
I/O latency to predict the application performance for next
iteration, it is important that the stability of I/O latency is
ensured when resource changes are made. Thus, the combined
value, kδ — the maximum resource change suggested by the

resource allocation algorithm, should be bounded to ensure the
stability of the VM storage I/O latency. We empirically chose
δ, to be 100 MHz for CPU and 64 MB for memory, both of
which worked well for the RUBiS and Filebench workloads we
evaluated with. Similarly, we chose the value of k as 2. In other
words, in each epoch of the resource allocation procedure, a
VM was allowed to have a maximum change of 200 MHz of
CPU and 128 MB of memory from its previous assignment.

When using reservations, we set each VM to have at least
200 MHz CPU and 256 MB of memory. For configurations that
did not use reservations, these values were set at zero. When
using shares, we set the limit of each VM to the capacity of the
target resource pool thereby forcing SLA-based prioritization
in resource partitioning. When using limits, all the VMs were
initialized with equal shares. Further, the sum of per-resource
limits of the VMs was set to be equal to the capacity of the
resource pool. SLAs were chosen as simple weight values to
transform the normalized application performance metrics to
US Dollars. While more complex SLAs are often employed
in practice, these SLAs only affect the revenue generation
mechanism within our framework and not the performance
prediction accuracy. Consequently, we anticipate the findings
with more complex SLAs would be similar when our solution
is compared to alternate solutions that do not model the impact
of resource allocation on revenue generated.

C. Benefits of Isolation

To evaluate the utility of limit-based resource isolation, we
used 10 VMs each running an identical instance of the
Filebench Webserver [2] workload. Since our servers were
large multi-core systems with large amounts of memory, for
this experiment, we created a resource pool in the target server
to restrict the total available resource capacity for these VMs to
simulate the contention effects seen under high consolidation.
The capacity of the resource pool was capped at 4 GHz for
CPU and 4GB for memory; these values were chosen based on
our preliminary measurements of in-memory working sets of
the workload so that there is moderate storage I/O activity
per-VM under equal allocation. The performance obtained
from each VM is mapped to revenue in USD as Revenue =
Performance × SLA weight, where SLA weight of each VM is
assigned a value between 1 to 6.

Our experiment was initialized with resources being dis-
tributed equally among the VMs. Figure 4 shows how the total
revenue from 10 functionally identical filebench webserver
VMs changes with our algorithm after each iterations separated
by five minutes. We compare the four resource assignment
mechanisms (described in §V-A) when they are combined with
our dynamic resource allocation solution. Successive iterations
monotonically drive the system from a state of lower revenue
to a state of higher revenue. Limit noReservation provides
a 22% increase in revenue with respect to the initial place-
ment. Share noReservation provides a 10% revenue increment.
Overall, however, the limit-based approach provides much
higher revenue (18% higher) than the share-based approach.
This result highlights the utility of isolating assignments in
combination with the greedy heuristic to automatically increase
the revenue of virtualized data centers. Starting from a different
initial configuration where resources are assigned proportion-
ally to the application-specified SLA weights, we observed a

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 300 500 700 900

C
P

U
 (

M
H

z
)

Time (Sec)

(a) Low priority VM using shares

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 500 900 1300 1700

C
P

U
 (

M
H

z
)

Time (Sec)

Consumed CPU
Suggested CPU

(b) Low priority VM using limits

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 300 500 700 900

C
P

U
 (

M
H

z
)

Time (Sec)

(c) High priority VM using shares

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 400 700 1000 1300 1600

C
P

U
 (

M
H

z
)

Time (Sec)

(d) High priority VM using limits

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 400 700 1000 1300

C
P

U
 (

M
H

z
)

Time (Sec)

(e) Low priority VM using shares

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 500 900 1300 1700 2100

C
P

U
 (

M
H

z
)

Time (Sec)

(f) Low priority VM using limits

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 400 700 1000 1300

C
P

U
 (

M
H

z
)

Time (Sec)

(g) High priority VM using shares

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 500 900 1300 1700 2100

C
P

U
 (

M
H

z
)

Time (Sec)

(h) High priority VM using limits

Fig. 6. Actual CPU consumption versus suggested CPU allocation for two VMs across multiple iterations of the resource allocation algorithm. The chosen
VMs have the lowest and the highest SLA weights respectively. Suggested allocations are applied to the VMs using either shares or limits. The upper set of
subfigures (a, b, c, and d) represent the small scale experiment and the lower set of subfigures (e, f, g, and h) represent the large-scale 25 VM experiment.

gain of 7% (Figure 5). Here too, using limits provided higher
revenue than using shares.

To understand why using work-conserving shares led to
relatively poor outcome when compared to using isolating
limits, we analyzed the CPU utilization over time of the VMs
with the lowest and the highest SLA weights respectively
(Figures 6(a)-(d)). We compared these with the CPU allocation
suggested by our algorithm. We see that shares allow the
allocations of the VMs to fluctuate arbitrarily irrespective
of the suggested assignments as demand varies. Despite the
low priority VM achieving higher performance, it did so
by transitorily reducing the allocations of the higher priority
(and thus higher revenue generating) VM which ultimately
affected total revenue negatively. Although per-VM shares
were tailored to match their respective SLA weights, the
functionally identical nature of the VMs left little room for
the hypervisors to use up transitorily under-utilized resources
without negatively affecting the performance of higher priority
VMs. Moreover, the similar workloads are similarly CPU,
memory, and I/O bound and increase the contention for shared
resources, thereby motivating isolation-based implementation
of prioritization. Thus, limit-based allocation which enforces
such isolation delivers much higher total from multiple hosted
VMs. In both allocation methods, the overall CPU utilization
of the cluster were equal or lower than the configured CPU
capacity of the resource pool.

D. Benefits of Work Conserving Behavior

As a next step, we wanted to understand the effects of resource
limits and shares when VM activity is more diverse. We ran
a larger-scale experiment with 25 VMs with a diverse mix
of 7 filebench-webserver VMs, 6 filebench-fileserver VMs, 6
RUBiS-Browsing and 6 RUBiS-Bidding VMs. The CPU and
memory capacity of the resource pool were set at 10 GHz and
10 GB respectively and the initial configuration set up VMs

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7

R
e
v
e
n
u
e
 (

U
S

D
)

Iteration Count

Share_noReservation
Limit_noReservation

Fig. 7. Large-scale experiment with 25 VMs with dissimilar workload types.
Resource reallocation iterates until revenue generation stabilizes.

with equal allocations. As before, the SLA weight of each VM
is assigned a value between 1 to 7.

We start the system with an equal allocation of re-
sources across VMs. Figure 7 reports a 34% increase
in revenue compared to initially observed revenue when
using Limit noReservation and 54% increase when using
Share noReservation. Moreover, the final revenue state ob-
tained using shares is 27% more than when using limits, quite
unlike our observations with similarly behaving VMs.

To investigate why shares delivered higher revenue in this
experiment, we performed a comparative analysis of CPU
consumption. We chose a filebench-webserver VM and a
RUBiS-browsing VM with higher and lower SLA weights
respectively. Figures 6 (e)-(h) reveal that actual CPU consumed
by the VM with higher SLA weight while using limits is often
less than the allocated amount. Further, we note that the CPU
bound RUBiS browsing VM utilizes the unused CPU cycles
while using shares even though it has lower SLA weight.
These observations suggest that filebench-webserver is not
CPU demanding during the entire runtime. Since the pool of

VMs in this experiment is diverse, they are less likely to be
similarly resource bound. Since limit is not work-conserving,
the unused CPU cycles cannot be used by any other CPU
bound VM (e.g. RUBiS-browsing VM). Share, being work-
conserving, can reallocate the unused CPU cycles to another
VM as necessary which helps increase the total revenue.

When using shares, the total CPU utilization of the cluster
matched the capacity of the resource pool. When using limits,
the average total CPU utilization of the cluster was 90% of
the capacity of the resource pool. When we repeated the 25
VMs experiment with initial shares assignment proportional
to VM SLA weights, the total revenue increased by 29%
compared to initial revenue. But, we did not see any significant
gain from the initial total revenue using limit based allocation
process when initial resource assignments were based on SLA
weights. The final revenue state achieved by using shares
was 30% higher than that achieved by limits. These findings
underscore the benefits of work conservation when running
diverse workloads.

E. Summary of Results

Isolation based allocations provide higher revenue when work-
loads are similarly resource consuming and the total resource
pool capacity is limited. On the other hand, work-conserving
allocation mechanisms deliver substantial gain when the total
resource pool capacity is large and the workload mix is
diverse. These results highlight the effectiveness of revenue-
based dynamic resource allocation system, which irrespective
of the underlying control knobs (share or limit), drives the data
center revenue to a significantly higher level.

VII. Related Work

Previous work on resource allocation in virtualized environ-
ments falls into two broad categories: (a) application-specific
solutions that employ domain knowledge, and (b) dynamic
reallocation of a specific resource type.

A. Application-specific Solutions

Aboulnaga et al. [22] proposed automatic virtual machine
configuration for database workloads. Their virtualization de-
sign advisor uses application-specific information about the
database workloads to reduce the execution cost for each VM
hosting a database instance. Dutta et al. optimized storage
I/O utilization by monitoring the usage of various database
elements [9]. In contrast to these works that rely on expert
knowledge about the database, our approach is application-
agnostic and relies only on coarse-grained performance data
reported by the application. ActiveSLA [24] suggested a
framework for admission control of individual queries in cloud
database systems where admission decisions are guided by
SLAs and expected profits. In contrast, we formally model
the application-independent version of the dynamic resource
reallocation problem and compare it against known allocation-
based optimization problems. We also develop and evaluate an
efficient resource allocation algorithm that provides a widely
applicable heuristic solution.

B. Resource-specific Solutions

Recent work on adaptive control of virtualized resources in
data centers [19] describes an approach for handling multi-
tier applications with the high-level goals of (i) guaranteed
application-level QoS, (ii) high-resource utilization across all
physical nodes, and (iii) QoS differentiation during resource
contention. However, this previous work only considers CPU
allocation and it is not clear how effective the proposed
approach would be when used to manage other resource types.

CloudScale [21] is an automatic elastic resource scaling
system for multi-tenant cloud services. It is designed to mini-
mize Service Level Objective (SLO) violations while optimiz-
ing physical resource and energy usage. Unlike CloudScale
which only addresses CPU demand, we demonstrate and ac-
count for the fact that several applications depend on multiple
resource types for achieving their performance objective [16].
Salomie et al. [20] proposed application level ballooning
(ALB) that extended the conventional memory ballooning
technique to better control applications that manage their
own memory. In Ginkgo [10], authors utilize application level
and system level data to measure memory requirements and
distribute memory across virtualized applications at run-time
to achieve administrator defined objectives. Ben-Yehuda et
al. [6] developed a bidding system (Ginseng) where memory is
awarded or deducted based on the willingness of the customer
VM to pay for contested memory. ALB, Gingko, and Ginseng,
all being memory allocation and controlling mechanisms, focus
on managing one resource for performance control. In this
work, we address the problem of partitioning multiple resource
types that impact application performance for data center
revenue maximization using a unified solution that can account
for an application’s dependence across multiple resource types.

Pesto [12] and Cake [23] focus on storage resource pro-
visioning to meet administrator-specified storage SLOs. Xu et
al.’s work [25] considered the profit-driven resource optimiza-
tion problem and formalized it as an instance of the continuous
knapsack problem which they solved using a greedy allocation
algorithm. In comparison, our work recognizes and illustrates
the discrete nature of VM resource allocation and the need for
incremental resource reallocation in order to ensure system
stability and performance prediction accuracy.

Q-cloud [17] aims to mitigate performance interference
caused by co-located VMs so that clients get the same per-
formance as will be achieved by running the application in a
dedicated system. The models used in Q-cloud assume a degree
of linearity in resource consumption vs. performance. Subse-
quently, however, we have shown that application performance
depends on resource availability in a non-linear fashion [16].
The most important difference of our work lies in our goals.
We are not simply interested in performance interference
removal but also envision a market or revenue driven approach
where application VMs are rewarded or penalized based on
their respective performance-based SLAs.

Recently, Bryant et al. proposed a micro-elastic server
called Kaleidoscope [8] to dynamically create worker VM
clones to satisfy the increased demand in a target VM. How-
ever, this work does not address how the physical resources
should be distributed to VMs according to their respective
SLAs. We view Kaleidoscope as a complementary solution that

satisfies instantaneous load spikes in user VMs. On the other
hand, our revenue driven approach delivers effective resource
partitioning when the loads on the VMs are stable and the
resource allocation decision is guided by the SLAs.

Finally, autoControl [18] addresses: (i) CPU as well as
disk I/O resources, (ii) service level objectives within the
contention differentiation metric, and (iii) the restriction of
hosting a particular tier in a specific node. Our work differs
from autoControl in our handling of memory resources and
in our explicit objective of total revenue maximization across
a data center whereby we address the fundamental tension
between the cloud service provider and client.

VIII. Conclusions

Optimal management of data center resources is a crucial yet
cumbersome task. While promising to relieve administrative
complexity, virtualization has also compounded the resource
management problem by enabling high degrees of workload
consolidation within a single host. In this paper, we designed,
built, and evaluated a novel revenue driven dynamic resource
allocation solution which partitions the available physical
resources among a pool of VMs with the goal of attaining
high SLA-based revenue for the data center operators. Perfor-
mance models were integrated with a hill-climbing algorithm
that performs incremental resource reallocation to achieve the
objective of maximizing SLA-based revenue. We demonstrated
that our solution can be built upon the existing mechanisms for
resource assignment such as resource shares, limits, and reser-
vations in a straightforward way. We evaluated our approach
using an ESX host and a networked storage server hosting
the virtual disks, demonstrating that both resource isolating
limits and work-conserving shares are relevant depending on
whether VM behavior is homogeneous across the host. Our
results indicate that the proposed dynamic resource allocation
solution drives the system to substantially higher revenue levels
in comparison to static partitioning of the available resources
as well as when per-VM shares are configured in proportion
to SLA weights.

Acknowledgments

We thank the anonymous reviewers for their feedback which
helped improve the material presented in this paper. This work
was supported in part by NSF awards CNS-1253944 and
CNS-1018262. Sajib Kundu was also supported by an FIU
Dissertation Year Fellowship.

References

[1] Amazon elastic compute cloud (amazon EC2). http://
aws.amazon.com/ec2/.

[2] Filebench: a framework for simulating applications on file systems.
http://www.solarisinternals.com/wiki/index.php/FileBench.

[3] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.

[4] Using vscsiStats for Storage Performance Analysis.
http://communities.vmware.com/docs/DOC-10095.

[5] Vmware vcenter server. http://www.vmware.com/products/vcenter-
server/.

[6] O. A. Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster, and
A. Mu’alem. Ginseng: market-driven memory allocation. In Proceed-

ings of the 10th ACM SIGPLAN/SIGOPS international conference on

virtual execution environments (VEE), pages 41–52, 2014.

[7] K. M. Bretthauer and B. Shetty. The nonlinear knapsack problem
– algorithms and applications. European Journal of Operational

Research, (138):459–472, 2002.

[8] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi, M. Hiltunen,
H. A. Lagar-Cavilla, and E. D. Lara. Kaleidoscope : Cloud micro-
elasticity via vm state coloring. In Proceedings of the sixth conference

on Computer systems (EuroSys), pages 273–286, 2011.

[9] K. Dutta, R. Rangaswami, and S. Kundu. Workload-based generation
of administrator hints for optimizing database storage utilization. Trans.

Storage, 3(4), Feb. 2008.

[10] A. Gordon, M. R. Hines, D. da Silva, M. Ben-Yehuda, M. Silva, and
G. Lizarraga. Ginkgo: Automated, application-driven memory over-
commitment for cloud computing. In Runtime Environments/Systems,

Layering, and Virtualized Environments (RESoLVE) Workshop, 2011.

[11] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Wald-
spurger, and X. Zhu. VMware Distributed Resource

Management: Design, Implementation and Lessons Learned.
http://labs.vmware.com/publications/gulati-vmtj-spring2012, 2012.

[12] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and
M. Uysal. Pesto: Online storage performance management in virtualized
datacenters. In Proceedings of the 2nd ACM Symposium on Cloud

Computing (SOCC), 2011.

[13] P. L. Hammer. Studies in integer programming. IBM Deutschland.

[14] R. Koller, A. Verma, and R. Rangaswami. Generalized ERSS tree
model: Revisiting working sets. Performance Evaluation, 67(11):1139–
1154, 2010.

[15] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. Application
Performance Modeling in a Virtualized Environment. In Proc. of IEEE

High Performance Computer Architecture (HPCA), January 2010.

[16] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta. Modeling
Virtualized Applications using Machine Learning Techniques. In Pro-

ceedings of the 8th ACM conference on Virtual Execution Environments

(VEE), March 2012.

[17] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. In EuroSys ’10,
pages 237–250, 2010.

[18] P. Padala, K.-Y. Hou, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. G. Shin. Automated control of multiple virtualized
resources. In Proceedings of the 4th ACM European conference on

Computer systems/EuroSys, pages 13–16, 2009.

[19] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized resources
in utility computing environments. In Proc. of Eurosys, pages 289–302,
2007.

[20] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone. Application
level ballooning for efficient server consolidation. In Proceedings of the

8th ACM European Conference on Computer Systems (EuroSys), pages
337–350, 2013.

[21] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic
resource scaling for multi-tenant cloud systems. In Proceedings of ACM

Symposium on Cloud Computing (SOCC), 2011.

[22] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath. Automatic virtual machine configuration for database
workloads. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pages 953–966, 2008.

[23] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica. Cake:
Enabling high-level slos on shared storage systems. In Proceedings of

the 3rd ACM Symposium on Cloud Computing (SOCC), 2012.

[24] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigumus.
Activesla: A prot-oriented admission control framework for database-
as-a-service providers. In Proceedings of ACM Symposium on Cloud

Computing (SOCC), 2011.

[25] J. Xu, M. Zhao, J. A. B. Fortes, R. Carpenter, and M. S. Yousif.
Autonomic resource management in virtualized data centers using fuzzy
logic-based approaches. Cluster Computing, 11(3):213–227, 2008.

