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Abstract

In a surveillance system, video signals are generated by
multiple cameras with or without spatially and temporally
overlapping coverage. These signals need to be compressed,
fused, stored, indexed, and then summarized as semantic
events to allow efficient and effective querying and mining.
This paper presents the hardware and software architecture
of SfinX, a next-generation video-surveillance system. We
analyze each component within the software architecture and
identify research issues. Finally, we present preliminary re-
sults on the performance of various components ofSfinX.

1 Introduction
Video surveillance has been a key component in ensur-

ing security at airports, banks, casinos, and correctional in-
stitutions. More recently, government agencies, businesses,
and even schools are turning toward video surveillance as
a means to increase public security. With the proliferation
of inexpensive cameras and the availability of high-speed,
broad-band wired/wireless networks, deploying a large num-
ber of cameras for security surveillance has become econom-
ically and technically feasible. However, several important
research questions remain to be addressed before we can rely
upon video surveillance as an effective tool for crime preven-
tion, crime resolution, and crime prosection.SfinX (multi-
Sensor Fusion and mINing Xystem) aims to develop several
core components to process, transmit, and fuse video signals
from multiple cameras, to mine unusual activities from the
collected trajectories, and to index and store video informa-
tion for effective viewing [4].

The current state-of-the-art in commercial video surveil-
lance equipment typically consists of analog cameras and
tape-based VCRs which are functionally very limited. For
instance, these systems do not support simultaneous record-
ing and reviewing of camera data. Analog data on tape must
be first converted to digital format before it can be subjected
to further analysis. Moreover, retrieval of archived videos
is manual and therefore time-consuming. All these issues
make current commercial systems obsolete. Current and fu-
ture surveillance systems must be all digital, capable of han-
dling multiple simultaneous viewing and recording sessions,
automatically detect suspicious activity, and most of all, be

affordable. To this end, we propose to use cheap off-the-
shelf digital video cameras and desktop computers to store,
retrieve, analyze, and query the captured videos. Our archi-
tecture requires only one high-end camera possessing zoom
and motion capabilities for tracking objects or humans in
close-up.

The target application that we intend to support would not
only be capable of viewing video streams in real-time, but
also able to support scan operations (like rew, ffwd, slow-
motion, etc.) on the video streams. In addition, it would also
support video analysis in the form of database queries. A
query, for instance, can be worded like this: “select object =
‘vehicles’ where event =‘circling’ and location =‘parking
lots’ and time =‘since 9pm last night’.” Another example-
query might be “select object =‘vehicle A’where event =‘*’
and location =‘*’ and time =‘since 9pm last night’.”

In this paper, we make the following contributions:

1. We propose the architecture of a next-generation video-
surveillance system which not only supports real-time
monitoring and storage of all the video streams, but also
performs video analysis and answers semantic database
queries.

2. We analyze each component of the proposed architecture
and present the research problems that need to be solved in
order to build a successful video-surveillance system.

3. We present preliminary results of the performance of
certain components of the system.

In recent times, there has been a renewed interest in de-
signing all digital video surveillance systems [1, 8, 9, 4, 10,
5]. However, a number of reserch problems remain to be
solved before we can build efficient and reliable surveillance
systems. We outline the major components withinSfinX and
associated research problems in Section 3.

2 System Architecture
In this section, we introduce the hardware and software

architecture of theSfinX system.
Figure 1 depicts a typical hardware architecture ofSfinX.

Cameras are mounted at the edges of a sensor network to col-
lect signals (shown on the upper-right of the figure). When
activities are detected, signals are compressed and transfered
to a server (lower-left of the figure). The server fuses multi-
sensor data and constructs spatio-temporal descriptors to de-
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Figure 1. Hardware architecture.

pict the captured activities. The server indexes and stores
video signals with their meta-data on RAID storage (lower-
right of the figure). Users of the system (upper-left of the
figure) are alerted to unusual events and they can perform
online queries to retrieve and inspect video-clips of interest.
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Figure 2. Software architecture.

Figure 2 depicts the software architecture ofSfinX. Video
signals are captured by thevideo capturemodule. At the
same timetrackingalgorithms are employed to track objects
in the captured video streams and the video stream isen-
codedand sent off to be stored onto Xtream [2], areal-time
streaming storagesystem. To aid in effective tracking of oc-
cluded objects and to obtain consensus on object position in

ambiguous situations, amulti-trackermodule combines the
tracking information from different cameras which cover a
common physical area and feeds back global information to
the individual camera tracking modules. There exist multi-
ple multi-trackers, which track objects in physically disjoint
areas.

Using the global tracking information and object repre-
sentation created by the multi-tracker modules, thefusion
and representationmodule maps the trajectory of each ob-
ject as it moves through the entire scene. The representa-
tion module represents the trajectory of each object usingse-
quence data representation[9]. This information is stored in
theevents databasefor future reference.

The user-interface consists of two distinct components.
First, thereal-time monitoringcomponent using which a user
can view live camera feeds as well as interact with live feeds
to scan through the stream. This helps the user to imme-
diately track objects by moving through the stream at will.
Second, the viewer can also analyze the stored video streams
by performing database queries. An example of such a query
was presented in Section 1. Controlling the query semantics,
the user can get detailed information from the database.

3 System Components
In this section, we present the major components of the

SfinX system. We analyze each component of the soft-
ware architecture and describe the interaction between var-
ious components.

3.1 Video Capture
For capturing video streams, we propose using multiple,

cheap, off-the-shelf video cameras for each physical location
requiring surveillance. These cameras share data between
themselves to perform their functions with greater accuracy.
Similar to a previous study [10], we use a single high-end
camera per location possessing zoom and motion capabili-
ties for tracking objects or humans in close-up. The most
important problem in capturing useful information from a
scene is that of camera callibration [5]. Ideally, this must be
an automatic process, that maps the camera co-ordinates to
co-ordinates in the physical location. In addition, the close-
tracking high-end camera must be perfectly callibrated at all
times inspite of zoom and motion operations.

3.2 Encoding and Real-time Storage
The video stream obtained from each camera is encoded

using standard encoding algorithms like H.263, MPEG1, or
MPEG4. Each stream is then stored using a real-time stor-
age system like Xtream [2] for future viewing purposes. The
storage system provides real-time stream retrieval and sup-
ports scan operations like rew, ffwd, and slow-motion. The
main sub-components of the real-time storage component
are:data placement, admission control, disk scheduling, and
backup manager.

2



The data placement modulemakes decisions about data
placements using global knowledge about all storage nodes
and the QoS requirements for each IO request. The place-
ment decisions can be short-term (e.g., for each database up-
date) or long-term (e.g., the placement for the next one hour
of a particular video stream). The data placement module
consults theadmission controlmodule to check if a particu-
lar placement satisfies the real-time access requirements. It
also manages data redundancy for reliability.

The disk scheduling moduleis responsible for local disk
scheduling and buffer management on each storage node.
SfinX uses time cycle scheduling [7] for guaranteed-rate real-
time streams. The basic time cycle model is extended to sup-
port non real-time IO requests with different priorities (high-
priority, best-effort, and background IO). To achieve short la-
tency for high-priority requests while maintaining high disk
throughput,SfinX uses preemptible disk scheduling [3].

The backup managermodule is responsible for deciding
which data to copy from main storage to backup and when.
The volume of video data inSfinX is large, of the order of
TB/day. Since the mainSfinX storage is designed to be reli-
able, backup is mainly used to filter its data and to keep only
the important data in the main storage.

3.3 Tracking and Multi-tracking

Tracking refers to the process of following and mapping
the trajectory of a moving object in the scene. Moving ob-
jects in each camera feed are tracked using real-time tracking
algorithms [8, 1]. Using the information about motion trajec-
tory, the high-end camera may be used to follow the moving
object in close-up.

Multi-tracking combines the tracking information from
different cameras which monitor the same physical location.
It uses the global knowledge thus obtained to aid in track-
ing objects which are occluded for individual cameras. It can
also use this global information to reach consensus when in-
dividual tracking modules disagree on object positions. The
multi-tracker feeds this global information back to the in-
dividual camera tracking modules. Each physical location
employs a multi-tracker to combine the information from in-
dividual cameras in that location.

3.4 Fusion and Representation

Using the global tracking information and object repre-
sentation created by the multi-tracker modules, thefusion
and representationmodule maps the trajectory of each ob-
ject as it moves through the entire scene. The representa-
tion module represents the trajectory of each object using
sequence data representation[9]. To arrive at a reasonable
representation, the trajectory of each object is smoothed us-
ing Kalman filters [6] to obtain a piecewise linear trajectory.
This piecewise linear trajectory is then represented using se-
quence data representation.

3.5 Event Recognition
Event recognition translates to the problem of recogniz-

ing spatio-temporal patterns under extreme statistical con-
straints. It deals with mapping motion patterns to semantics
(e.g., benign and suspicious events). Recognizing rare events
comes up against two mathematical challenges. First, the
number of training instances that can be collected for model-
ing rare events is typically very small. LetN denote the num-
ber of training instances, andD the dimensionality of data.
Traditional statistical models such as the Hidden Markov
Model (HMM) cannot work effectively under theN < D
constraint. Furthermore, positive events (i.e., the sought-for
hazardous events) are always significantly outnumbered by
negative events in the training data. In such an imbalanced
set of training data, the class boundary tends to skew toward
the minority class and hence results in a high incidence of
false negatives.

3.6 Querying and Monitoring
Monitoring allows retrieving videos efficiently via differ-

ent access paths. Video data can be accessed via a vari-
ety of attributes, e.g., by objects, temporal attributes, spa-
tial attributes, pattern similarity, and by any combinations
of the above. We support retrieval of videos with trajecto-
ries that match a given SQL query definition. At the same
time the storage system must also support viewing of stored
videos. The infrastructure also supports real-time monitor-
ing of camera streams. However, simultaneously support-
ing high-throughput writes (recording encoded videos) and
quick response reads (retrieving video segments relevant to a
query) presents conflicting design requirements for memory
management, disk scheduling, and data placement policies at
the storage system.

4 Results
In this section, we present results obtained while measur-

ing camera performance, vidoe compression efficiency, net-
work capability, and storage performance.

4.1 Camera Performance
Table 1 presents the performance characteristics of the

high-end camera that we currently use to track objects in
close-up.

4.2 Compression results
Of the four compression methods we tested (H.263,

MPEG4, MSMPEG4, MPEG1), all were within approxi-
matly 8% CPU usage of each other. MSMPEG4 was the
slowest, though it did exhibit the best quality. Here we
present the compresion results using MPEG1 encoding. Ex-
periments were carried out on an Intel P4 2.66GHz using an
open source video encoder,ffmpeg.

We notice an interesting trend in Figure 3, which depicts
the CPU utilization to compress video MPEG1 at 15 fps at
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Parameter Value
Camera model Sony EVI-D30
Output resolution 460x350 NTSC tv lines
Pan range 193.75 degrees (specs say 200 degrees)
Maximum pan speed 80.7 degrees/sec (specs say 80)
Pan accuracy ±0.45 degrees approx.
Tilt range 47.36 degrees
Maximum tilt speed 52.6 degrees/sec (specs say 50)
Tilt accuracy ±0.22 degrees approx.
Zoom (”tele” and ”wide”) 1x to 12x at 6 speed settings

Table 1. Measured performance parameters for
the Sony EVI-D30 high-end camera.
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Figure 3. CPU utilization for compression.

different resolutions. A larger resolution video naturally re-
quires more CPU. Also, the larger the bitrate, the larger the
CPU usage. This is counter intuitive because one would think
the more you compress the video, the more work it requires.
In addition to this chart, we found that capturing at 15fps
uses a little over half of the CPU as capturing at 30fps.

4.3 Network streaming results

Bit-rate (kbps) # Streams
100 919
400 229
800 114
1200 76
3000 30

Table 2. Throughput of 100 Mbps network.

Table 2 gives an estimate about the number of streams
that can be supported at various bit-rates over a 100Mbps
local area network. The network is switched ethernet and the
switch is a HP 2324 Procurve box.

4.4 Storage results
We now present results for real-time storage using

Xtream [2]. We use an Intel Pentium 41.5 GHz Linux based
PC, with512 MB of main memory and a WD400BB40 GB
hard drive. The maximum sequential disk throughput is31
MBps in the fastest zone and21 MBps in the slowest zone.

We performed experiments for the following two scenar-
ios: homogeneous constant bit-rate (typeC) and variable

Avg. BR N: Type C N: Type V
250 kBps 44 44

1000 kBps 20 23
2000 kBps 12 11

Table 3. Disk throughput.

(typeV ) bit-rate streams where all serviced streams have the
same bit-rate.N denotes the maximum number of streams
that the system can support without missing deadlines.

5 Conclusion
In this paper, we have described the architecture and de-

sign of SfinX, a next-generation video-surveillance system.
We have enumerated the research challenges and require-
ments for each component of the system and outlined our
solutions. AlthoughSfinX is oriented to support surveil-
lance applications, its components will continue to involve
research in the areas of Computer Vision, Signal Processing,
Machine Learning, Databases, and Systems.
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