
Transparent Self-Optimization in Existing CORBA Applications �

S. M. Sadjadi and P. K. McKinley
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan 48824
�sadjadis,mckinley�@cse.msu.edu

Abstract

This paper addresses the design of adaptive middleware
to support autonomic computing in pervasive computing
environments. The particular problem we address here is
how to support self-optimization to changing network con-
nection capabilities as a mobile user interacts with hetero-
geneous elements in a wireless network infrastructure. The
goal is to enable self-optimization to such changes trans-
parently with respect to the core application code. We pro-
pose a solution based on the use of the generic proxy, which
is a specific CORBA object that can intercept and process
any CORBA request using rules and actions that can be in-
troduced to the knowledge base of the proxy during execu-
tion. To explore its design and operation, we have incorpo-
rated the generic proxy into ACT [1], an adaptive middle-
ware framework we designed previously to support adap-
tation in CORBA applications. Details of the generic proxy
are presented. A case study is described in which a generic
proxy is used to support self-optimization in an existing im-
age retrieval application, when executed in a heterogeneous
wireless environment.

Keywords: adaptive middleware, autonomic computing,
self-optimization, dynamic adaptation, transparent adapta-
tion, generic proxy, quality-of-service, mobile computing,
CORBA.

1. Introduction

Applications executing in pervasive computing environ-
ments need to adapt to dynamic conditions in a variety of
ways. The need for adaptation arises in part due to (1) the

� This work was supported in part by the U.S. Department of the Navy,
Office of Naval Research under Grant No. N00014-01-1-0744, and
in part by National Science Foundation grants CCR-9912407, EIA-
0000433, EIA-0130724, and ITR-0313142.

variable nature of wireless network channels (2) the het-
erogeneity of the wireless infrastructure, and (3) the het-
erogeneity of computing platforms. Let us consider just the
simple case of a single mobile device as it interacts with
the wireless infrastructure. The infrastructure may comprise
many different wireless cells, possibly managed by differ-
ent organizations, with different physical characteristics and
different management/security policies. Moreover, the cells
may not always overlap, resulting in temporary (or longer)
periods of disconnection. As the user moves from cell to
cell, an autonomic system should attempt to minimize the
disruption to the applications executing on the mobile de-
vice and should provide smooth transitions, with minimal
user intervention, when disruptions are unavoidable.

Solving this problem is complicated by the fact that the
nature of self-management is often domain- or application-
specific. While new applications can be designed to accom-
modate these dynamics directly by being context-aware [2],
self-management is also needed in legacy applications that
are executed in new environments. Moreover, even if some
aspects of the dynamic environment were anticipated when
the application was developed, others are likely to arise af-
ter it is deployed. Hence, it may be desirable to separate
code that implements adaptive behavior from code that im-
plements the imperative behavior of the application [3].
Kephart and Chess [4] describe an architecture for auto-
nomic elements that promotes this separation of concerns.
They suggest a structure for autonomic elements that con-
sists of one or more manageable elements, which imple-
ment the imperative behavior, coupled with a single auto-
nomic manager, which implements the adaptive behavior
and controls the managed elements.

Our work investigates how such separation of concerns
can enable applications to self-adapt to their environments
in ways that were not necessarily anticipated at develop-
ment time, and in ways that are transparent to the impera-
tive core of the application code. To accomplish this task,
we employ an adaptive middleware approach. Just as tra-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

ditional middleware hides distribution from an application,
so can adaptive middleware hide automatic adaptation to
changes in the execution environment, such as network con-
nectivity, energy usage, and security policies [5–13]. Some
adaptations are “generic,” in that they are common to many,
if not all, applications executing on the device. For exam-
ple, a new IP address may be assigned to a device that has
been temporarily disconnected when it reconnects in a new
wireless domain, and such a change should be transparent
to most applications running on that device. Some adapta-
tions are specific to the application. For example, a con-
ferencing application may adapt the quality of audio/video
streams, or may eliminate some streams entirely, in order to
accommodate a sudden drop in available bandwidth. To en-
able both types of adaptations in a transparent manner, it
must be possible to introduce both application-specific and
generic functionality to the middleware as it executes.

In this paper, we propose and evaluate a possible solu-
tion to this problem, the generic proxy. The generic proxy
is a particular CORBA object that can receive any CORBA
request. The generic proxy can be introduced to a mid-
dleware platform at run-time to enable intercepted com-
munication streams to be processed in either a generic or
application-specific way. We have integrated the generic
proxy into ACT [1], an adaptive middleware framework
we introduced previously to support unanticipated adapta-
tion in CORBA applications. An ACT-based framework can
be coupled with a CORBA application transparently at run
time: new types of adaptation can be added without recom-
piling the application. In [1], we described the basic archi-
tecture and operation of ACT (reviewed in Section 2) and
showed how it can be used to support unanticipated adapta-
tion. However, the original ACT architecture required a sep-
arate proxy for each type of intercepted request. In this pa-
per, we report how the generic proxy can used in place of
any specific proxy. This capability is particularly useful in
pervasive computing contexts, where many situations (e.g.,
different security policies and disparate capabilities among
wireless domains) require adaptation irrespective of the ap-
plication.

The main contributions of this paper are threefold. First,
we present the design and implementation of the generic
proxy, focusing on the key issue in its operation, namely,
its interaction with the CORBA interface repository [14] in
order to support interception of multiple types of requests.
Second, we propose and evaluate a design for a flexible rule-
based decision maker, which is used by the generic proxy
to determine the fate of a particular CORBA request. Third,
we demonstrate the role that the generic proxy can play in
pervasive computing by enabling transparent, unanticipated
self-management. Specifically, we describe a case study in
which we used the generic proxy in ACT to implement
transparent self-optimization in an existing CORBA appli-

cation, enabling it to accommodate changing conditions and
interacts with heterogeneous components of a wireless net-
work infrastructure.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the architecture and operation of ACT. Sec-
tion 3 describes the generic proxy and how it is incorpo-
rated within the ACT framework. Section 4 describes the
case study. Section 5 discusses related work, and Section 6
summarizes the paper and mentions possible future direc-
tions.

2. ACT Background

Schmidt [15] decomposes middleware into four lay-
ers: host-infrastructure, distribution, common-services, and
domain-services. Figure 1 illustrates these layers. Since the
operation of ACT involves all four, we provide a brief
overview here.

Applications

Domain-Specific Middleware Services

Common Middleware Services

Distribution Middleware

Host-Infrastructure Middleware

Operating Systems and Protocols

Middleware Layers

Hardware Devices
System Platform

Figure 1: Middleware layers defined by Schmidt [15].

The host-infrastructure layer resides directly atop the op-
erating system and provides a higher-level API that hides
the heterogeneity of hardware platforms, operating sys-
tems and, to some extent, network protocols. The host-
infrastructure layer provides generic services to the up-
per middleware layers by encapsulating functionality that
would otherwise require many tedious, error-prone, and
non-portable code, such as socket programming and thread
communication primitives. ACE [16] and Rocks [17] are
examples of adaptive middleware in this layer. The distri-
bution layer resides atop the host-infrastructure layer and
provides high-level programming abstractions, such as re-
mote object operations, to the developer. Using the distri-
bution layer, a developer can write a distributed application
in a similar way to a stand-alone application. In addition,
this layer hides the heterogeneity of network protocols and,
in some cases, the heterogeneity of operating systems and
programming languages. CORBA [14], DCOM [18], and
Java RMI [19] are the main solutions to distribution mid-
dleware. Adaptive ORBs, which reside in this layer, include
TAO [12], DynamicTAO [5], ZEN [13], OpenORB [6], and

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

ApplicationsClient

Client Application

Servant

Server Application

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client GI

Client ORB

Server GI

Server ORB

Client ACT Core Server ACT Core

request flow reply flow GI: generic interceptor

(a) ACT component configuration

Client ORB

Dynamic
Interceptors

Client ACT Core

Rule-Based
Interceptor

Proxy Decision
Maker

Event
Mediator

Client Generic Interceptor

request flow

to/from the host-infra. middleware

reply flow

to/from the common-services middleware

(b) ACT Core components

Figure 2: ACT architecture [1].

Electra [20]. The common-services layer resides atop the
distribution layer and provides services such as fault toler-
ance, security, load balancing, event propagation, logging,
persistence, real-time scheduling, and transactions. Exam-
ples of adaptive CORBA frameworks that provide such ser-
vices include QuO [8], IRL [21], and FRIENDS [22]. The
domain-specific layer resides atop the common-services
layer and is tailored to a specific class of distributed ap-
plications. Unlike the common-services layer, the services
in this layer can be reused only for a specific domain of ap-
plications. The Boeing Bold Stroke architecture [23] is an
example of adaptive middleware in this layer that benefits
from the capabilities of real-time CORBA ORBs and sup-
ports configurable and reusable avionics services.

By coordinating actions at various middleware lay-
ers, ACT (short for Adaptive CORBA Template) supports
transparent enhancements, either at startup time or dur-
ing run-time, to CORBA applications. Specifically, ACT
enables CORBA applications to adapt to previously unan-
ticipated changes in their functional requirements or
in non-functional concerns, such as quality-of-service,
fault-tolerance, and security. The key insight into how to
achieve this transparency is the concept of the generic in-
terceptor, which is a particular type of CORBA portable
request interceptor [14]. The generic interceptor pro-
vides a “hook” into the interaction between CORBA clients
and servants, enabling the insertion of new adaptive func-
tionality after deployment. Although the generic interceptor
must itself be registered with the ORB of a CORBA appli-
cation at startup time, it enables registration of other specific
request interceptors to be postponed until run time. The in-
terceptors can adapt requests, replies, and exceptions that
pass through the ORB. As a result, an existing applica-

tion need only be restarted with an argument identifying a
generic proxy object to be used. There is no need to mod-
ify or even recompile the application. At run time, the
generic proxy can be used to incorporate specific inter-
ceptors that dynamically adapt the application behav-
ior.

Figure 2(a) shows the flow of a request/reply sequence
in a simple CORBA application using ACT. For clarity, de-
tails such as CORBA stubs and skeletons are not shown, al-
though we do identify the middleware layer(s) [15] in which
each component resides. The client generic interceptor in-
tercepts all outgoing requests and incoming replies (or ex-
ceptions) and forwards them to its ACT core. Similarly, the
generic interceptor at the server side intercepts all the in-
coming requests and outgoing replies (or exceptions) and
forwards them to its ACT core.

Figure 2(b) shows the flow of a request/reply sequence
within the client ACT core. The request is first processed
by one or more dynamic interceptors. Unlike the generic in-
terceptor, which is statically configured at start-up time, dy-
namic interceptors can be registered after the ORB initial-
ization time (at run time) with the generic interceptor. A
rule-based interceptor (RBI) is an example of dynamic in-
terceptors that uses “rules” to govern its operation. The rules
can be inserted, removed, and modified at run time. A proxy
is a surrogate for a CORBA object that provides the same
set of methods as the CORBA object. A proxy consults with
a decision maker in determining how to handle intercepted
requests. Possibilities include sending a new request (possi-
bly with modified arguments) to either the target object or to
another object. Alternatively, and unlike a request intercep-
tor, a proxy can reply to the intercepted requests using local
data (e.g., cached replies). In the case of exceptional situa-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

Client ORB

Dynamic
Interceptors

Client ACT Core

Rule-Based
Interceptor

Generic
Proxy

Rule-Based
Decision Maker

Client Generic Interceptor

request flow

to/from the host-infra. middleware

reply flow

to/from the common-services middleware

DSI DII

?

DII

rules

Interface Repository
ORB

Interface
Repository

Client Process IR Process

IR: Interface RepositoryInterface definition exchange

Figure 3: Incorporating generic proxy in the ACT core.

tions, the decision maker may notify other objects by way
of an event mediator [24], which propagates events to inter-
ested objects.

We refer to ACT as a framework template, because it
provides a generic model for constructing and enhanc-
ing adaptive CORBA frameworks. Several such frame-
works have been developed recently to support quality-
of-service [8], real-time processing [12, 13], fault toler-
ance [21, 25], and mobile computing [26–28]. ACT can be
used to develop an object-oriented framework in any pro-
gramming language that supports dynamic loading of
code and can be applied to any CORBA ORB that sup-
ports portable interceptors [14]. We previously developed
a Java prototype of ACT, as well as a set of adminis-
trative consoles that enable manual adaptation of ap-
plications at run time. The prototype uses ORBacus,
a CORBA-compliant ORB distributed by IONA Tech-
nologies. To demonstrate the seamless interaction of
ACT with other adaptive CORBA frameworks, we com-
bined ACT with the QuO framework [8] developed at
BBN Technologies. The resulting framework is able to
weave quality-of-service (QoS) aspects, referred to as qos-
kets in QuO terminology, into CORBA applications both at
compile time and at run time.

In the remainder of this paper, we describe how ACT
can be used to construct a Java-based adaptive framework to
support autonomic computing in pervasive computing envi-
ronments. We begin with a discussion of how the generic
proxy helps achieve this goal, followed by a case study in
which we demonstrate transparent self-optimization in an
existing image retrieval application.

3. Generic Proxy

To enable dynamic weaving of adaptive functionality
that is common to multiple applications, ACT needs to in-
tercept and adapt CORBA requests, replies, and exceptions
in a manner independent of the semantics (the application
logic) and syntax (the CORBA interfaces defined in the ap-
plication) of specific applications. The generic proxy is a
particular CORBA object that is able to receive any CORBA
request (hence the label “generic”). To determine how to
handle a particular request, the generic proxy accesses the
CORBA interface repository [14], which provides all the
IDL descriptions for CORBA requests. The repository exe-
cutes as a separate process and is usually accessed through
the ORB. Most CORBA ORBs provide a configuration file
or support a command-line argument that allows the user to
introduce the interface repository to the application ORB.
Providing IDL information to the generic proxy in this man-
ner implies no need to modify or recompile the application
source code. The interface repository, however, requires ac-
cess to the CORBA IDL files used in the application.

In default operation, the generic proxy intercepts
CORBA requests, acquires the request specifications from
a CORBA interface repository, creates similar CORBA re-
quests and sends them to the original targets, and for-
wards replies from those targets back to the original
clients. A generic proxy also publishes a CORBA ser-
vice that can be used to register a decision maker.

Figure 3 illustrates the sequence of a request/reply in the
ACT core that contains a rule-based interceptor, a generic
proxy, and a rule-based decision maker. First, a request from

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

the client application is intercepted by the rule-based inter-
ceptor, which checks its rules for possible matches. A de-
fault rule, initially inserted in its knowledge base, directs
the rule-based interceptor to raise a ForwardRequest ex-
ception, which results in its forwarding the request to the
generic proxy. When the generic proxy receives the request,
it acquires the request interface definition via the appli-
cation ORB, which in turn retrieves the information from
the interface repository. The proxy creates a new request
and forwards it to the rule-based decision maker. The rule-
based decision maker checks its knowledge base for pos-
sible matches to the request. Depending on the implemen-
tation of the rules, the decision maker may return either a
modified request to the generic proxy or a reply to the re-
quest. If the decision maker returns the request (or a mod-
ified request), the generic proxy will continue its operation
by invoking the request. If the reply to the request is re-
turned by the decision maker, the proxy replies to the orig-
inal request using the reply from the decision maker. The
generic proxy uses the CORBA dynamic skeleton interface
(DSI) [14] to receive any type of request. The generic proxy
and the rule-based decision maker use the CORBA dynamic
invocation interface (DII) [14] to create and invoke a new
request dynamically.

4. Case Study: Adaptive Mobility Manage-
ment

To evaluate the effectiveness of ACT to support
self-management in existing CORBA applications, with-
out modifying the application code, we conducted a case
study in which self-optimization is enabled in an ex-
isting application. Additional experiments involving IP
handoff, are described in an accompanying technical re-
port [29]. We begin with a brief overview of the application
and the experimental environment, followed by the de-
scription of the experiment. The experiment shows how
ACT could be used to support autonomic computing in ei-
ther a generic or application-specific manner.

4.1. The Example Application and Experimental
Environment

For the application, we adopted a distributed image re-
trieval application developed by BBN Technologies, which
we also used in our first ACT study [1]. The application
has two parts, a client that requests and displays images,
and a server that stores the images and replies to requests
for them. In this study, we treat the application as though
it is used for surveillance, with a mobile user executing
the client code on a laptop and monitoring a physical fa-
cility through continuous still images from multiple camera
sources. For the experiment described later in this section,

we executed the server on a desktop computer connected to
a 100 Mbps wired network and the client on a laptop com-
puter connected to a three-cell 802.11b wireless network.
Both the desktop and laptop systems are running the Linux
operating system.

Figure 4 shows the physical configuration of the three ac-
cess points used in the experiment. (The wireless cells are
drawn as circles for simplicity – the actual cell shapes are ir-
regular, due to the physical construction of the building and
orientation of antennas.) AP-1 and AP-3 provide 11Mbps
connections, whereas AP-2 provides only 2Mbps. The desk-
top running the server application is close to AP-1. AP-1
and AP-2 are managed by our Computer Science and Engi-
neering Department, whereas AP-3 is managed by the Col-
lege of Engineering. This difference implies that the IP ad-
dress assigned to the client laptop needs to change as the
user moves from a CSE wireless cell to a College cell.

AP-1: 11 Mbps,
Dept. subnet

AP-2: 2 Mbps,
Dept. subnet

AP-3: 11 Mbps,
College subnet

A
B

C

D

Figure 4: The configuration of the access points used in the
experiment.

Figure 5 shows an example image from the experiment.
The server provides four different versions of each image,
varying in size and quality. Typical comparative file sizes
are 90KB, 25KB, 14KB, and 4KB.

4.2. Self-Management and Self-Optimization

To investigate how ACT can support self-management,
we developed an application-specific rule that maintains the
frame rate of the application by controlling the image size or
inserting inter-frame delays dynamically. The original im-
age retrieval application operates in a default mode, which
retrieves and plays images as fast as possible. ACT enables
us to weave the rule into the application at run-time, thereby
providing new functionality (frame rate control) transpar-
ently with respect to the application. The self-optimization
rule maintains the frame rate of the application in the pres-

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

Figure 5: An image from the experiment.

ence of dynamic changes to the wireless network loss rate,
the network (wired/wireless) traffic, and CPU availability.

Figure 6 shows the Automatic Adaptation Con-
sole, which diplays the application status and also en-
ables the user to user to enter quality-of-service pref-
erences. As shown in this figure, the rule uses several
parameters to decide on when and how to adapt the ap-
plication in order to maintain the frame rate. These pa-
rameters have default values as shown in the figure,
but can be modified at run time by the user. The Aver-
age Frame Rate Period indicates the period during which
the average frame rate should be calculated to be consid-
ered for adaptation. The Stabilizing Period specifies the
amount of time that the rule should wait until the last adap-
tation stabilizes; also if a sudden change occurs in the
environment such as hand-off from one wireless cell to an-
other one, the system should wait for this period before
it decides on the stability of the system. The rule de-
tects a stable situation using the Acceptable Rate Devia-
tion; when the frame rate deviation goes below this value,
the system is considered stable. Similarly, the rule de-
tects an unstable situation, if the instantaneous frame
rate deviation goes beyond the Unacceptable Rate De-
viation value. The rule also maintains a history of the
round-trip delay associated with each request in each wire-
less cell. Using this history and the above parameters, the
rule can decide to maintain the frame rate either by in-
creasing/decreasing the inter-frame delay or by changing
the request to ask for a different version of the im-
age with smaller/larger size. The default behavior of
the rule is to display images that are as large as possi-
ble, given the constraints of the environment.

Figure 7 shows a trace demonstrating automatic adap-
tation of the application in the following scenario. In this
experiment, the user has selected a desired frame rate of 2
frames per second, as shown in Figure 6. For the first 60 sec-

Figure 6: Automatic Adaptation Console.

onds of the experiment, the user stays close to the location
A (Figure 4). The rule detects that the desired frame rate
is lower than the maximum possible frame rate, based on
observed round-trip times. Hence, it inserts an inter-frame
delay of approximately 200 milliseconds to maintain the
frame rate at about 2 frames per second. At point 120 sec-
onds, the user starts walking from location A to location B
for 60 seconds. The automatic adaptation rule maintains the
frame rate by decreasing the inter-frame delay during this
period. At point 180 seconds, the user begins walking from
location B to location C and back again, returning to lo-
cation B at 360 seconds. During this period, because the
AP-2 access point provides 2Mbps, the automatic adapta-
tion rule detects that the current frame rate is lower than that
desired. It first removes the inter-frame delay, but the frame
rate does not reach to 2 frames per second. Therefore, it re-
duces the quality of the image by asking for a smaller im-
age size. Now the frame increases beyond that desired, so
the automatic adaptation rule inserts an inter-frame delay
of 400 milliseconds to maintain the frame rate at 2 frames
per second. Although there is some oscillation, the rate sta-
bilizes by time 360 seconds. At this point, the user contin-
ues walking from location B to location A, prompting the
rule to reverse the actions. First the inter-frame delay is in-
creased to maintain the frame rate, followed by an increase
in image size. In this manner, the rule brings the applica-
tion back to its original behavior. Again, because the cur-
rent frame rate is higher that expected, an inter-frame delay
of about 200 milliseconds is inserted to maintain the frame
rate at 2 frames per second.

This result is promising and demonstrates that it is pos-
sible to add self-management behavior to an application
transparently to the application code. Moreover, the use

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

Frame Rate Using Automatic Adaptation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 60 120 180 240 300 360 420 480 540

Time in seconds

F
ra

m
e

R
at

e

Figure 7: Maintaining the application frame rate using au-
tomatic adaptation.

of a generic proxy enables self-optimization functionality,
both application-independent and application-specific, to be
added to the application, even at run time.

5. Related Work

ACT is intended to complement adaptive middle-
ware frameworks and to support interoperation among in-
compatible frameworks. Like ACT, many adaptive middle-
ware projects use the aspect-oriented programming (AOP)
paradigm [3], facilitating separation of functional as-
pects from non-functional aspects (e.g., self-management,
quality-of-service, security, and fault-tolerance). Exam-
ples include QuO [8], AspectIX [9], and Squirrel [10].
Other projects [5, 6] use computational reflection [30]
as the primary mechanism for adaptation, enabling mid-
dleware to inspect and modify its structure and behav-
ior during execution. Examples include DynamicTAO [5],
OpenORB [6], Iguana/J [31], and ZEN [13]. By trans-
parently intercepting requests, replies, and exceptions,
ACT could serve as a framework gateway, enabling ap-
plications developed under such frameworks to interact
seamlessly.

The concept of transparently intercepting CORBA re-
quests and replies has been used in several projects. Fried-
man et al. [32] use CORBA portable interceptors to en-
hance the client side of a CORBA application by introduc-
ing proxies that can cache replies and forward requests to
other CORBA objects. This work is among the first to ex-
ploit CORBA portable interceptors for transparent adapta-
tion. In the IRL project, Baldoni et al. [21] use portable in-
terceptors to transparently introduce their implementation
of fault-tolerant CORBA [14] to CORBA-compliant ORBs.
Moser et al. [25] also use an interception-based approach
in Eternal, which transparently introduces afault-tolerant
CORBA implementation to CORBA applications. Eternal,

however, employs an operating-system interception-based
approach instead of CORBA portable interceptors. In gen-
eral, the above projects focus on modifying program behav-
ior in a particular way, for example, to enhance fault tol-
erance. Like ACT, the DADO project [33] uses CORBA
portable interceptors to support dynamic weaving of multi-
ple cross-cutting concerns such as security, fault tolerance,
and QoS. However, ACT uses the concept of generic inter-
ceptors to enable late binding of the adaptation infrastruc-
ture itself. Moreover, generic interception enables ACT to
be used as a framework gateway.

6. Conclusions

In this paper, we introduced the generic proxy, which
supports autonomic computing in existing CORBA ap-
plications transparently to the application code. We de-
scribed details of the generic proxy in the context of
ACT, an interception-based adaptive middleware frame-
works. Finally, in the context of a case study, we showed
how a generic proxy can be incorporated in ACT to sup-
port self-optimization related to the dynamic behavior
of wireless infrastructure in pervasive computing en-
vironments. In this manner, the generic proxy enables
mechanisms that facilitate pervasive computing by sup-
porting autonomy in existing CORBA applications, with-
out the need to modify or recompile their source code, and
in ways not anticipated during development.

Further Information. A number of related papers and
technical reports of the Software Engineering and Network
Systems Laboratory can be found at the following URL:
http://www.cse.msu.edu/sens.

References

[1] S. M. Sadjadi and P. K. McKinley, “ACT: An adaptive
CORBA template to support unanticipated adaptation,” in
Proceedings of the 24th IEEE International Conference
on Distributed Computing Systems (ICDCS’04), (Tokyo,
Japan), March 2004.

[2] G. Chen and D. Kotz, “A survey of context-aware mo-
bile computing research,” Tech. Rep. TR2000-381, Com-
puter Science Department, Dartmouth College, Hanover,
New Hampshire, November 2000.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J. M. Loingtier, and J. Irwin, “Aspect-
oriented programming,” in Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
Springer-Verlag LNCS 1241, June 1997.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[5] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Mag-
alhães, and R. H. Campbell, “Monitoring, security, and dy-
namic configuration with the dynamicTAO reflective ORB,”

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

in Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2000), (New
York), April 2000.

[6] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An
architecture for next generation middleware,” in Proceedings
of the IFIP International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing (Middle-
ware’98), (The Lake District, England), September 1998.

[7] M. Astley, D. C. Sturman, and G. A. Agha, “Customizable
middleware for modular distributed software,” Communica-
tions of the ACM, vol. 44, no. 5, pp. 99–107, 2001.

[8] J. A. Zinky, D. E. Bakken, and R. E. Schantz, “Architectural
support for quality of service for CORBA objects,” Theory
and Practice of Object Systems, vol. 3, no. 1, 1997.

[9] M. Geier, M. Steckermeier, U. Becker, F. J. Hauck, E. Meier,
and U. Rastofer, “Support for mobility and replication in
the AspectIX architecture,” Tech. Rep. TR-I4-98-05, Univ.
of Erlangen-Nuernberg, IMMD IV, 1998.

[10] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu,
“Thread transparency in information flow middleware,”
in Proceedings of the International Conference on Dis-
tributed Systems Platforms and Open Distributed Process-
ing, Springer Verlag, Nov. 2001.

[11] N. Venkatasubramanian, M. Deshpande, S. Mohapatra,
S. Gutierrez-Nolasco, and J. Wickramasuriya, “Design and
implementation of a composable reflective middleware,” in
Proceedings of the 21th International Conference on Dis-
tributed Computing Systems (ICDCS-21), April 2001.

[12] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design
of the TAO real-time object request broker,” Computer Com-
munications, vol. 21, pp. 294–324, April 1998.

[13] R. Klefstad, D. C. Schmidt, and C. O’Ryan, “Towards highly
configurable real-time object request brokers,” in Proceed-
ings of the Fifth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, April - May
2002.

[14] Object Management Group, Framingham, Massachusett,
The Common Object Request Broker: Architecture and
Specification Version 3.0, July 2003. Available at
http://doc.ece.uci.edu/CORBA/formal/02-06-33.pdf.

[15] D. C. Schmidt, “Middleware for real-time and embedded
systems,” Communications of the ACM, vol. 45, June 2002.

[16] D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: An object-oriented network programming toolkit for
developing communication software,” Concurrency: Prac-
tice and Experience, vol. 5, no. 4, pp. 269–286, 1993.

[17] V. C. Zandy and B. P. Miller, “Reliable network connec-
tions,” in Proceedings of the Eighth Annual International
Conference on Mobile Computing and Networking, pp. 95–
106, September 2002.

[18] Microsoft Corporation, Microsoft COM Technologies -
DCOM, 2000.

[19] Java Soft, Java Remote Method Invocation Specification, re-
vision 1.5, JDK 1.2, Oct. 1998.

[20] S. Maffeis, “Adding group communication and fault-
tolerance to CORBA,” in Proceedings of the Conference on
Object-Oriented Technologies, pp. 135–146, 1995.

[21] R. Baldoni, C. Marchetti, A. Termini, “Active software repli-
cation through a three-tier approach,” in Proceedings of the
22th IEEE International Symposium on Reliable Distributed
Systems (SRDS02), (Osaka, Japan), pp. 109–118, October
2002.

[22] J. C. Fabre and T. Perennou, “A metaobject architecture for
fault-tolerant distributed systems: The FRIENDS approach,”
IEEE Transactions on Computers, vol. 47, no. 1, pp. 78–95,
1998.

[23] D. Sharp, “Reducing avionics software cost through
component-based product line development,” in Proceed-
ings of the Software Technology Conference, (Salt Lake City,
Utah), April 1998.

[24] S. M. Sadjadi, P. K. McKinley, and E. P. Kasten, “Architec-
ture and operation of an adaptable communication substrate,”
in Proceedings of the Ninth IEEE International Workshop
on Future Trends of Distributed Computing Systems (FT-
DCS’03), (San Juan, Puerto Rico), pp. 46–55, May 2003.

[25] L. Moser, P. Melliar-Smith, P. Narasimhan, L. Tewksbury,
and V. Kalogeraki, “The Eternal system: An architecture for
enterprise applications,” in Proceedings of the Third Interna-
tional Enterprise Distributed Object Computing Conference
(EDOC’99), July 1999.

[26] M. Haahr, R. Cunningham, and V. Cahill, “Supporting
CORBA applications in a mobile environment,” in Proceed-
ings of the Fifth ACM/IEEE International Conference on
Mobile Computing and Networking, 1999.

[27] S. Adwankar, “Mobile CORBA,” in Proceedings of the In-
ternational Symposium on Distributed Object and Applica-
tions (DOA 2001), 2001.

[28] M. Liljeberg, K. Raatikainen, M. Evans, S. Furnell, N. Mau-
mon, E. Veldkamp, B. Wind, and S. Trigila, “Using CORBA
to support terminal mobility,” in Proceedings of the TINA
Conference, November 1997.

[29] S. M. Sadjadi and P. K. McKinley, “Supporting transpar-
ent and generic adaptation in pervasive computing environ-
ments,” Tech. Rep. MSU-CSE-03-32, Department of Com-
puter Science, Michigan State University, East Lansing,
Michigan, November 2003.

[30] P. Maes, “Concepts and experiments in computational re-
flection,” in Proceedings of the ACM Conference on Object-
Oriented Languages (OOPSLA), pp. 147–155, ACM Press,
December 1987.

[31] B. Redmond and V. Cahill, “Supporting unanticipated dy-
namic adaptation of application behaviour,” in Proceedings
of the 16th European Conference on Object-Oriented Pro-
gramming, June 2002.

[32] R. Friedman and E. Hadad, “Client side enhancements using
portable interceptors,” in Proceedings of the Sixth IEEE In-
ternational Workshop on Object-oriented Real-time Depend-
able Systems, January 2001.

[33] E. Wohlstadter, S. Jackson, and P. Devanbu, “DADO: en-
hancing middleware to support crosscutting features in dis-
tributed, heterogeneous systems,” in Proceedings of the In-
ternational Conference on Software Engineering, (Portland,
Oregon), pp. 174–186, May 2003.

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 1, 2009 at 18:06 from IEEE Xplore. Restrictions apply.

