
A Taxonomy of Compositional Adaptation
Technical Report MSU-CSE-04-17

May 2004
(Updated July 2004)

Philip. K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C. Cheng

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824�

mckinley,sadjadis,kasten,cheng � @cse.msu.edu

Abstract

Driven by the emergence of pervasive computing and the increasing need for self-managed systems,
many approaches have been proposed for building software that can dynamically adapt to its environ-
ment. These adaptations involve not only changes in program flow, but also run-time recomposition of
the software itself. We discuss the supporting technologies that enable dynamic recomposition and clas-
sify different approaches according to how, when and where recomposition occurs. We also highlight
key challenges that need to be addressed to realize the full potential of run-time adaptable software. This
survey is intended to be a living document, updated periodically to summarize and classify new contri-
butions to the field. The document is maintained under the RAPIDware project web site, specifically, at
http://www.cse.msu.edu/rapidware/survey.

Keywords: adaptive software, compositional adaptation, middleware, survey, taxonomy, pervasive com-
puting, autonomic computing, computational reflection, separation of concerns, component-based de-
sign, aspect-oriented programming, object-oriented programming.

1 Introduction

Interest in adaptive computing systems has grown dramatically in the past few years, and the research
community has responded. A variety of techniques now enable software to adapt dynamically to its current
use or environmental conditions. Even the structure of the software itself can be changed during execution
to fix errors, improve performance, enhance fault tolerance, or harden security in response to attack. Rooted
in the evolutionary and adaptive processes used by natural systems, our understanding of computational
adaptation is improving, as we learn and explore new methods for designing and implementing adaptive
software.

We view the growing interest in adaptive systems as a response to two ongoing revolutions in the com-
puting field: the emergence of ubiquitous computing and the growing demand for autonomic computing.
These areas share several requirements for adaptive behavior, but differ in their overall objectives and strate-
gies for realizing dynamic adaptation.

1

Ubiquitous computing [1] focuses on removing traditional boundaries for how, when, and where hu-
mans and computers interact. To do so, computer systems must adapt to both the surrounding physical
environment and the virtual environment of computing platforms and communication networks. In partic-
ular, conditions at the “wireless edge” of the Internet are often highly dynamic, requiring that software in
mobile devices balance several conflicting and possibly cross-cutting concerns, including quality-of-service
on wireless connections, changing security policies, and energy consumption. Research contributions in this
area are many and varied, for example [2–20].

Autonomic computing [21] refers to self-managed systems that require only high-level human guidance.
Clearly, autonomic computing will play an important role in ubiquitous computing. However, autonomic
computing also refers to the ability of systems to manage and protect their own resources. This capability is
especially important to systems such as financial networks, transportation systems, water and power systems
that must continue to operate correctly during exceptional situations. Such systems require run-time adap-
tation in order to survive hardware component failures, network outages, and security attacks. Researchers
are addressing a variety of issues in software adaptation for autonomic computing, for example [22–29].

Our group is actively participating in the study of adaptive software through our work on two research
projects: RAPIDware (www.cse.msu.edu/rapidware) addresses adaptive software for protecting critical in-
frastructures, and Meridian (www.cse.msu.edu/meridian) addresses automated software engineering for mo-
bile computing applications. Given the increasing pace of research in adaptive software, we believe the time
has arrived to step back and review the reasons for this growth, compare and contrast proposed solutions,
and identify key areas that require further study. This document is intended to provide a vehicle to enhance
the understanding of this research area and help guide future studies.

This paper is organized as follows. Section 2 introduces compositional adaptation. Section 3 describes
key enabling technologies for compositional adaptation. Section 4 provides a taxonomy of compositional
adaptation. Section 5 discusses key challenges required to be addressed in future. Section 6 concludes
this paper draws conclusions. In the appendix, we summarize numerous projects related to compositional
adaptation and classify them according to the taxonomy.

2 Compositional Adaptation

Two general approaches have been used to realize dynamic adaptation in software: parameter and compo-
sitional adaptation. Parameter adaptation involves the modification of variables that determine program
behavior. As described by Hiltunen and Schlichting [30], a well-known example of parameter adaptation
is the way that the Internet’s TCP protocol adjusts its behavior by changing values that control window
management and retransmission in response to apparent network congestion [31, 32]. Recently, parameter
adaptation has been used in many context-aware systems [11, 13, 33–37], in which software execution is
directly affected by the external environment. A weakness of parameter adaptation is that it cannot adopt al-
gorithms or components left unimplemented during the original design and construction of an application.
That is, parameters can be tuned or an application can be directed to use a different existing strategy, but
strategies implemented after the construction of the application cannot be adopted.

In contrast, compositional adaptation results in the exchange of algorithmic or structural parts of the
system with ones that improve a program’s fit to its current environment [30, 38–44]. In comparison to pa-
rameter adaptation, compositional adaptation enables an application to adopt new algorithms for addressing
concerns unforeseen during original design and construction. The flexibility of compositional adaptation
enables more than simple tuning of program variables or strategy selection. Dynamic recomposition is
needed when resource limitations (for example, memory in small devices) restrict the number of respond-
ing components that can be deployed simultaneously, or when adding new behavior to deployed systems
to accommodate unanticipated conditions or requirements (for example, detection of and response to a new

2

security attack).
The history of compositional adaptation dates back to the EDVAC in the 1940’s [45]. In the design

of this computer, both program instructions and data were stored in mutable memory, thereby enabling
instructions to act on both data and other instructions. This “self-modifying code” was used for dynamic
optimizations in programs and offered a work-around solution to limited memory space. Nonetheless, such
programming was soon considered bad practice due to issues such as program inconsistency, difficulty in
debugging, and vulnerabilities to viruses. However, dynamic recomposition has continued to be used and
even well-accepted in certain contexts. Examples include run-time upgrade of highly-available systems such
as telecommunication switches [46], hot-swap bug fixing (or on-the-fly code fixing) [47], protecting against
software piracy [48, 49], and as a means to avoid infection or manipulation by attackers [50].

Over the years, several programming languages have directly supported dynamic recomposition. In
the 1970’s, Smalltalk introduced meta classes as first-class objects, in which information about classes are
stored [51]. 3-LISP, the first language that treats reflection as an important part of the language, was devel-
oped in 1982 by Smith [52]. In 1984, Maes developed 3-KRS and demonstrated feasibility of a reflective
object-oriented language [53]. In 1991, Kiczales et. al. [54] developed CLOS Meta Object Protocols. In
1995, Sun formally announces the Java language [55] and later introduced structural reflection capabilities
in Java. Since then, several projects have extended Java with behavioral reflection [44, 56–62].

In the 1990’s, interest in compositional adaptation gained considerably, due in part to those who en-
visioned a world of ubiquitous computing [1], and to those who recognized the corresponding need for
self managing systems. Numerous workshops and conferences focused on adaptive software and dynamic
recomposition [22, 63–71], and funding programs for this research were created [72–75].

This survey examines and classifies these new approaches to compositional adaptation and attempts to
explain the technological reasons behind this rapidly growing area of study. We focus primarily on dynamic
recomposition of user-level software, namely, middleware and applications. We emphasize, however, that
extensive research has been conducted in several related and often overlapping areas, including design of
software to facilitate its evolution [76–91]; software-architecture techniques for supporting dynamic adapta-
tion [67,92–94]; systems that distill data streams and distribute processing tasks to support resource-limited
devices [4, 5, 37, 43, 95, 96]; adaptable and extensible operating systems [97–103]; and dynamic recompo-
sition within the network infrastructure itself [104–107]. Surveys of contributions in these areas would be
very useful to the research community.

3 Enabling Technologies

At the core of all approaches to compositional adaptation is a level of indirection that enables interception
and redirecton of interactions among program entities. The realization of self-configuring systems has
been aided by the confluence of three key technologies: separation of concerns, computational reflection,
and component-based design (Figure 1). Together, they provide programmers with the tools to construct
self-adaptive systems in a systematic and principled (as opposed to ad hoc) manner [108]. In addition, the
widespread use of middleware in distributed computing has served as a catalyst for research in compositional
adaptation, since middleware is a natural place to locate many types of adaptive behavior. In this section,
we discuss each of these technologies and describe how they support compositional adaptation.

3.1 Separation of Concerns

Separation of concerns [109,110] enables the separate development of the functional behavior and the cross-
cutting concerns (e.g., quality of service, fault tolerance, security) of an application. The functional behavior
of an application is sometimes referred to as its business logic. This separation simplifies development and

3

Separation of
Concerns

Computational
Reflection

Component-
Based Design

Middleware

Compositional Adaptation

Figure 1: Main technologies supporting compositional adaptation.

maintenance, while promoting software reuse. Separation of concerns has become an important princi-
ple in software engineering [111], and many development techniques apply it to some degree. Examples
include domain-specific languages, generative programming, generic programming, constraint languages,
feature-oriented development, and aspect-oriented programming [78].

Presently, the most widely used approach appears to be aspect-oriented programming (AOP) [112–114].
Kiczales et al. [112] recognized that complex programs include various crosscutting concerns (properties
or areas of interest such as QoS, energy consumption, fault tolerance, and security). While object-oriented
programming abstracts out commonalities among classes in an inheritance tree, crosscutting concerns are
scattered among different classes, complicating the development and maintenance of applications. As de-
picted in Figure 2, AOP enables separation of crosscutting concerns during development of the software.
Specifically, the code implementing crosscutting concerns of the system, called aspects, are developed sep-
arately from other parts of the system. In AOP, locations in the program where aspect code can be woven,
called pointcuts, are typically identified during development. Later, for example during compilation, an as-
pect weaver can be used to weave different aspects of the program together to form a program with new
behavior. AOP proponents argue that disentangling crosscutting concerns leads to simpler development,
maintenance, and evolution of software [110, 112]. Examples of AOP approaches include AspectJ [115],
Hyper/J [116], DemeterJ (DJ) [117], JAC [59], Kava [118], and Composition Filters [56].

Woven Code

Run Run
TimeTime

Aspect Weaver

Compile Compile
TimeTime

AspectsBusiness Logic

Development Development
TimeTime

Figure 2: Conceptual representation of aspect-weaving. (Adapted from [112].)

AOP supports dynamic recomposition in three major ways. First, most adaptations are relative to some
crosscutting concern, such as quality-of-service or fault tolerance. AOP enables the code associated with

4

these aspects to be written and managed independently of the application code as well as other parts of
the system, such as traditional middleware platforms. Such separation is needed in order to dynamically
replace one instantiation of a particular concern with another. Second, although compile-time aspect weav-
ing produces a tangled executable that cannot easily be reconfigured, delaying the weaving process until
run-time provides a systematic way to realize dynamic recomposition [119–122]. Finally, if adaptability
itself is considered as a “generic” aspect [123, 124], then run-time weaving can be used to enhance the pro-
gram with adaptive behavior not necessarily anticipated during the original development. (for example, to
tolerate newly discovered faults or to detect and respond to new security attacks). This kind of upgrade is
especially important in situations where the application is required to run continuously and cannot be easily
taken off-line for upgrade.

3.2 Computational Reflection

Computational reflection refers to the ability of a program to reason about, and possibly alter, its own behav-
ior [52, 53]. Reflection enables a system to reveal (selected) details of its implementation without compro-
mising portability [54]. In other words, reflection exposes a system implementation at a level of abstraction
that hides unnecessary details, but still enables changes to the system behavior. Reflection comprises two ac-
tivities. Introspection enables an application to observe its own behavior and intercession enables a system
or application to act on these observations and modify its own behavior [95,125,126]. In a self-auditing dis-
tributed application, for example, introspection would enable software “sensors” to observe and report usage
patterns for various components. Intercession would enable new types of sensors, as well as components
that implement corrective action, to be inserted at run-time.

As depicted in Figure 3, a reflective system (represented as base-level objects) and its self representation
(represented as meta-level objects) are causally connected, meaning that modifications to either one will be
reflected in the other [127]. A meta-object protocol (MOP) [54] is an interface that enables “systematic” (as
opposed to ad hoc) introspection and intercession of the base-level objects. Moreover, MOPs can be cate-
gorized as enabling either structural or behavioral reflection. Structural reflection addresses issues related
to class hierarchy, object interconnection, and data types. As an example, an object can be examined to
determine what methods are available for invocation. Conversely, behavioral reflection focuses on the com-
putational semantics of the application. For instance, a distributed application can use behavioral reflection
to select and load a communication protocol well-suited to current network conditions.

Base Level
Application

MOPs

Objects

Metalevel

Structural Behavioral

Introspection
Intercession Intercession

Introspection

Figure 3: Metalevel understanding collected into metaobject protocols (MOPs).

An adaptive system uses reflection to observe and “reason” about changes to its structure and behavior.
Reflection may be provided by a programming language [44, 51, 53, 54, 56–60, 62, 124, 128–137] or may
be implemented directly in a middleware platform [61, 108, 118, 126, 138–152]. We note that in general,
reflective programming languages are concerned with the representation of a programming language (e.g.,
constructs, implementation, and interpretation of a programming language) while reflective middleware ap-
proaches are concerned with the representation of middleware services (e.g., host-infrastructure, distribution,

5

common, and domain-specific services). Combined with aspect-oriented programming, reflection enables a
MOP to contain logic that weaves crosscutting concerns into an application at run time [120, 153, 154].

3.3 Component-Based Design

The third major contributing factor to dynamic recomposition of software arises from a level of maturity
attained in object-oriented design and, more recently, in component-based design. Well-defined interface
specifications enable service clients and providers to be developed independently, and potentially by differ-
ent parties, using the interface as a contract. Figure 4(a) depicts a static recomposition approach, in which
four components are combined at compile time to produce an application. Of particular importance to dy-
namic recomposition is binding time. Late, or dynamic, binding supports coupling of compatible service
clients and providers through well-defined interfaces at run time. As shown in Figure 4(b), new components
can be bound to an application at run time. In addition, object-oriented languages use indirect interfaces,
primarily as a means to support inheritance and polymorphism [155]. Effectively, method calls are redi-
rected to the appropriate method implementation. This level of indirection, when coupled with dynamic
class loading and late binding, helps to support compositional adaptation.

Compile Time

(a) Static recomposition.

……

Compile Time Run Time

(b) Dynamic recomposition.

Figure 4: Component-based design enables static and dynamic recomposition.

Another important factor is the independent deployment and versioning of software elements intro-
duced in component-based design [155]. Software components are units that can be independently de-
veloped, deployed, and composed by third parties [156]. Popular component-based platforms include
COM/DCOM [157, 158], .NET [159], CCM [160], and EJB [161].

Component-based design supports two types of composition. In static composition, a developer can
combine several components at compile time to produce an application. In dynamic composition, the de-
veloper can add, remove, or reconfigure components within an application at runtime. To provide dynamic
recomposition, a component-based framework must support late binding, which enables coupling of com-
patible components at runtime through well-defined interfaces used as contracts. In addition, to provide
consistency with other applications, a component-based framework must support coexistence of multiple
versions of components.

By enabling the assembly of off-the-shelf components from different vendors, component-based design
promotes software reuse. Moreover, mechanisms for maintaining a program’s component structure after the
initial deployment, when combined with late binding, facilitate compositional adaptation [29].

3.4 Middleware

Much of the recent research in adaptive software focuses on adaptive middleware. Middleware is commonly
defined as a layer of services separating applications from operating systems and network protocols. Schmidt
[3] decomposed middleware into four layers, depicted in Figure A. Host-infrastructure middleware resides

6

atop the operating system and provides a high-level API that hides the heterogeneity of hardware devices,
operating systems, and to some extent network protocols. Distribution middleware provides a high-level
programming abstraction, such as remote objects, enabling developers to write distributed applications in
a way similar to stand-alone programs. CORBA, DCOM, and Java RMI all fit in this layer. Common-
middleware services include fault tolerance, security, persistence, and transactions involving entities such as
remote objects. Finally, domain-specific middleware is tailored to match a particular class of applications.

Applications

Operating Systems and Protocols

Hardware Devices

DomainDomain--Specific Middleware ServicesSpecific Middleware Services

Common Middleware ServicesCommon Middleware Services

Distribution MiddlewareDistribution Middleware

HostHost--Infrastructure MiddlewareInfrastructure Middleware

Figure 5: Schmidt’s middleware layers.

Since the traditional role of middleware is to hide resource distribution and platform heterogeneity from
the business logic of applications, it is a logical place to put adaptive behavior related to various crosscutting
concerns such as quality-of-service, energy management, fault tolerance, and security policy.

Most adaptive middleware approaches are based on an object-oriented programming paradigm and de-
rive from popular object-oriented middleware platforms such as CORBA, Java RMI, and DCOM/.NET.
Many techniques work by intercepting and modifying messages. Figure 6 shows the flow of a CORBA
request/reply sequence in a simplified CORBA client/server application. This application comprises two
autonomous programs hosted on two computers connected by a network. Let us assume that the client has
a valid CORBA reference to the CORBA object realized by the servant. The client’s request to the servant
is first received by the stub, which represents the CORBA object at the client side. The stub marshals the
request and sends it to the client ORB. The client ORB sends the request to the server ORB, where it is de-
livered to the servant by way of a skeleton, which unmarshals the request. The servant replies to the request,
by way of the server ORB and skeleton. The reply will be received by the client ORB and be dispatched to
the client.

ApplicationsApplicationsClient

request flow

Client Application

Client ORB

Servant

Server Application

reply flow

DomainDomain--ServicesServices
CommonCommon--ServicesServices

DistributionDistribution

HostHost--InfrastructureInfrastructure
System PlatformSystem Platform

Server ORB

NetworkNetwork

Stub Skeleton

Figure 6: CORBA call sequence.

Whether a given system uses message interception or one of several other approaches, discussed later,
middleware effectively provides a level of indirection and transparency that can be exploited to implement

7

adaptation. Indeed, the majority of approaches to compositional adaptation discussed in this paper are
implemented in middleware.

3.5 Other Factors

Although we consider the four technologies described above to provide the primary ingredients needed for
dynamic recomposition, many other factors have contributed to the growth in this area. For example, soft-
ware design patterns [162, 163] provide a way to reuse best software designs practiced successfully for
several years. The goal of software design patterns is to create a common vocabulary for communicating
insight and experience about recurring problems and their known solutions. Schmidt and colleagues [163]
have identified a relatively concise set of patterns that enables developing adaptive middleware. For exam-
ple, the virtual component pattern [164], used in TAO [165] and ZEN [152], enables adapting a distributed
application to the memory constraints of embedded devices by providing a small middleware footprint in-
cluding only a minimum core and a set of “virtual” components, whose code can be dynamically loaded
on demand. Numerous adaptive middleware projects [126, 145, 146, 150, 152, 165–170] benefit from the
use of adaptive design patterns. Other technologies that have been applied to the design of adaptive soft-
ware include: generative programming [78], adaptive programming [171], intentional programming [172],
open implementation [173], subject-oriented programming [174, 175], composition filters [56], and mobile
agents [176–179]. An excellent discussion of most of these methods can be found in [78].

4 A Taxonomy of Compositional Adaptation

Researchers and developers have proposed a wide variety of methods for supporting compositional adapta-
tion. Table 1 lists a number of research projects and commercial software packages that support some form
of compositional adaptation. The list is by no means exhaustive – many other groups, both in academia and
industry, are working on various aspects of this problem. Rather, the list includes representative projects. In
this section, we describe a taxonomy that distinguishes approaches by how, when, and where software com-
position takes place. We use the examples in Table 1 to help explain important distinctions. In the appendix,
we provide additional details on the taxonomy and use it to compare and contrast these and other projects.

4.1 How to Compose

The first dimension of our taxonomy is how composition is implemented, that is, what specific mechanisms
are used to enable compositional adaptation. Table 2 lists several key techniques that have been used, along
with examples. Aksit and Choukair [38] provide an excellent discussion of such methods.

All of the techniques in Table 2 create a level of indirection in the interactions between program entities.
Some techniques use specific software design patterns to realize this indirection, whereas others use AOP,
reflection or both. The two middleware techniques both modify interaction between the application and
middleware services, but they differ in the following way: middleware interception is not visible to the
application, whereas integrated middleware provides adaptive services invoked explicitly by the application.

We use the term composer to refer to the entity that uses these techniques to adapt an application. The
composer might be a human – a software developer or an administrator interacting with a running program
through a graphical user interface – or a piece of software – an aspect weaver, a component loader, a
runtime system, or a metaobject. Indeed, autonomic computing promises that increasingly composers will
be software components.

When and where the composer modifies the program determines the transparency of the recomposition.
Transparency refers to whether an application or system is aware of the “infrastructure” needed for recom-
position. For example, a middleware approach to adaptation is transparent with respect to the application

8

Table 1: Representative projects and systems involving compositional adaptation.

Projects Affiliation References Web Site

Language-Based Projects:
Open Java Tokyo Institute of Technology [57] http://www.csg.is.titech.ac.jp/openjava/

FRIENDS LAAS-CNRS, France [147] http://www.laas.fr/ fabre/Friends.htm

PCL University of Illinois [132] http://www-sal.cs.uiuc.edu/ vadve/adaptive.html

Adaptive Java Michigan State University [44] http://www.cse.msu.edu/rapidware/

AspectJ Xerox PARC [115] http://aspectj.org/

Composition Filters Universiteit Twente, The Netherlands [56] http://trese.cs.utwente.nl/composition filters/

RNTL ARCAD EMN/INRIA, France [124, 133] http://www.emn.fr/x-info/obasco/

TRAP/J Michigan State University [62] http://www.cse.msu.edu/rapidware/

JOIE Duke University [180] http://www.cs.duke.edu/ari/joie/

Kava University of Newcastle, UK [118] http://www.cs.ncl.ac.uk/research/

R-Java U. Federal de São Carlos, Brazil [58] http://www.dc.ufscar.br/

Middleware-Based Projects:
Domain-Specific Services:

Boeing Bold Stroke Boeing Corporation [181] http://www.cs.rmit.edu.au/conf/doa/2001/sharp.html

Common Services:
OGS Swiss Federal Inst. of Tech. [182] http://www.eurecom.fr/ felber/

QuO BBN Technologies [168] http://quo.bbn.com/

FTS Technion, Israel [183] http://www.cs.technion.ac.il/ roy/

IRL University of Rome, Italy [184, 185] http://www.dis.uniroma1.it/ irl/

TAO Load Balancing DOC Group (Schmidt, et al.) [169] http://www.cs.wustl.edu/ schmidt/TAO.html

ACT Michigan State University [186, 187] http://www.cse.msu.edu/rapidware/

Distribution:
TAO/ZEN/CIAO DOC Group (Schmidt, et al.) [152, 165, 167] http://www.cs.wustl.edu/ schmidt/

DynamicTAO & UIC University of Illinois [126, 145] http://choices.cs.uiuc.edu/2k/

OpenORB & OpenCOM Lancaster University, UK [108, 144] http://www.comp.lancs.ac.uk/computing/research/mpg/

FlexiNet APM Ltd, UK [149] http://www.ansa.co.uk/

Squirrel/Infopipes Universität Berlin, Germany [188, 189] http://wwwagss.informatik.uni-kl.de/Projekte/Squirrel/

AspectIX Friedrich-Alexander Univ., Germany [190] http://www.aspectix.org/

OpenCorba Ècole des Mines de Nantes [142] http://www.emn.fr/x-info/obasco/

Electra/Horus/Isis Cornell University [191–193] http://www.cs.cornell.edu/Info/Projects/HORUS/main.html

Orbix/Isis IONA Technologies [194, 195] http://www.iona.com/

Orbix/E IONA Technologies [194, 195] http://www.iona.com/

Host-Infrastructure:
ACE DOC Group (Schmidt, et al.) [166] http://www.cs.wustl.edu/ schmidt/ACE.html

Ensemble Cornell University [42] http://www.cs.cornell.edu/Info/Projects/Ensemble/

Metasockets Michigan State University [186, 187] http://www.cse.msu.edu/rapidware/

Eternal/Totem U. California, Santa Barbara [196, 197] http://www.eternal-systems.com/

Rocks/Racks University of Wisconsin [198] http://www.cs.wisc.edu/ zandy/rocks/

PROSE Swiss Federal Inst. of Tech. [140] http://prose.ethz.ch/Wiki.jsp

Iguana/J Trinity College, Dublin [61] http://www.dsg.cs.tcd.ie/ coyote/coyote-documents.html

Guaranà UNICAMP, Brazil [141] http://www.ic.unicamp.br/ oliva/guarana/

Personal/Embedded Java Sun Microsystems [199] http://java.sun.com/products/embeddedjava/

Cross-Layer Projects:
DEOS Georgia Institute of Technology [17, 200] http://www.cc.gatech.edu/systems/projects/DEOS/

GRACE University of Illinois [201] http://rsim.cs.uiuc.edu/grace/

Graybox University of Wisconsin [202] http://www.cs.wisc.edu/graybox/

source code if the application does not need to be modified to take advantage of the adaptive features. Dif-
ferent degrees of transparency (with respect to application source, virtual machine, middleware source, and
so on) determine both the portability of a proposed solution and how easily new adaptive behavior can be
added to existing programs.

9

Table 2: Compositional adaptation techniques.

Technique Description Examples

Function pointers Application execution path is dynamically redi-
rected through modification of function pointers.

Vtables in COM, delegates and events
in .NET, callback functions in CORBA,
ACE

Wrapper pattern Objects are subclassed or encapsulated by other
objects (wrappers), enabling the wrapper to con-
trol method execution.

PCL, Adaptive Java, ARCAD, TRAP/J,
R-Java, QuO, ACE, MetaSockets

Proxy pattern Surrogates (proxies) are used in place of objects,
enabling the surrogate to redirect method calls to
different object implementations.

OGS, FTS, IRL, TAO-LB, ACT, Squir-
rel/Infopipes, AspectIX, ACE, Racks,
Guaranà

Strategy pattern Each algorithm implementation is encapsulated,
enabling transparent replacement of one imple-
mentation with another.

PCL, TAO, ZEN, CIAO, DynamicTAO,
UIC, ACE

Virtual component pattern Component placeholders (virtual components) are
inserted into the object graph and replaced as
needed during program execution.

TAO, ZEN, CIAO

Meta-Object Protocol Mechanisms supporting intercession and intro-
spection enable modification of program behavior.

Open Java, FRIENDS, PCL, Adaptive
Java, AspectJ, Composition Filters, AR-
CAD, TRAP/J, JOIE, Kava, R-Java,
DynamicTAO, UIC, Open ORB/COM,
FlexiNET, OpenCORBA, MetaSockets,
PROSE, Iguana/J, Guaranà

Aspect weaving Code fragments (aspects) that implement a cross-
cutting concern are woven into an application dy-
namically.

AspectJ, Composition Filters, ARCAD,
TRAP/J, AspectIX, PROSE

Middleware interception Method calls and responses passing through a mid-
dleware layer are intercepted and redirected.

FTS, IRL, TAO-LB, ACT, Eternal,
Rocks, Racks, PROSE, Iguana/J,
Guaranà

Integerated middleware An application makes explicit calls to adaptive ser-
vices provided by a middleware layer.

OGS, QuO, TAO, ZEN, CIAO, Dynam-
icTAO, UIC, Open ORB/COM, Flex-
iNET, Squirrel, AspectIX, OpenCorba,
Electra, Orbix/Isis, Orbix/E, ACE, En-
semble, MetaSockets, Personal Java,
Embedded Java

4.2 When to Compose

Second, we differentiate approaches according to when the adaptive behavior is composed with the business
logic. Generally speaking, later composition time supports more powerful adaptation methods, but also
complicates the problem of ensuring consistency in the adapted program. For example, when composition
take place at development, compile or load time, dynamism is limited, but it is easier to ensure that the
adaptation will not produce anomalous behavior. On the other hand, while run-time composition is very
powerful, it greatly complicates the task of assuring the safety and correctness of the program.

Figure 7 illustrates the use of composition time as the classification metric for adaptive applications. On
the vertical axis are application types that implement either static or dynamic composition. Static composi-
tion refers to composition methods that take place at development, compile or load time, whereas dynamic
composition includes methods that can be applied at run time.

Static Composition. If a program is composed at development time, then any adaptability is hardwired
into the program – the adaptive behavior cannot be changed without recoding. Alternatively, a limited form
of adaptation can be implemented at compile time or link time by changing how an application is composed.
Different compositions can address the requirements of a different environment, such as a new computing

10

Composition
Dynamic

Composition
Static

Application Type

Increasing Dynamism

Time
Compile/Link Load Time Run TimeDevelop. Time

Hardwired

Customizable

Configurable

Tunable

Mutable

Figure 7: Classification for software composition using the time of composition or recomposition
as a classification metric.

platform or network type. For example, aspect-oriented programming languages such as AspectJ [115]
enable weaving of aspects into programs during compilation. Aspects might implement an environment-
specific security or fault-tolerance policy. Such customizable applications require only recompilation or
relinking to be fitted to a new environment.

Load-time composition allows the final decision on which algorithmic units to use in the current envi-
ronment to be delayed until the component is loaded by a running application. For instance, the Java Virtual
Machine (JVM) loads classes when they are first used by a Java application. Although load-time composi-
tion is considered as a type of static composition, it enjoys increased dynamism over the other static methods.
When the application requests the loading of a new component, decision logic might select from a list of
components with different capabilities or implementations, choosing the one that most closely matches cur-
rent needs. As such, an application can be configured based on when or where a program is used. For
instance, if an application is started on a handheld computer rather than a desktop, a minimal display com-
ponent might be loaded to guarantee proper presentation. Other load-time approaches work by dynamically
modifying the class itself as it is loaded. For example, Kava [118] provides a class loader that rewrites the
bytecode of classes as they are loaded to provide run-time monitor and debugging capabilities.

Dynamic Composition. The most flexible approaches are those that implement run-time composition:
algorithmic and structural units can be replaced or extended during execution without halting and restarting
the program. We differentiate two types of approaches according to whether or not the business logic of the
application can be modified.

Tunable software prohibits modification of functional code. Tunable software enables fine-tuning in
response to changing environmental concerns, such as dynamic conditions encountered in mobile and per-
vasive computing environments. An example is the fragment object model used in AspectIX [190], which
enables the distribution behavior of a CORBA-compliant application to be tuned at run time.

In contrast, mutable software allows even the imperative function of the program to be changed, enabling
a running program to be dynamically recomposed into one that is functionally different. For example,
in the OpenORB middleware platform [108] all objects (in the middleware and application code) have
reflective interfaces, so at run time virtually any change can be made to any object (change the interface,
implementation, etc). While very powerful, in most cases this flexibility needs to be constrained to ensure
the integrity of the system across adaptations.

4.3 Where to Compose

The final dimension in which we compare approaches to compositional adaptation is according to where
in the system the adaptive code is inserted. The possibilities include one of the middleware layers or the

11

application code itself (see Figure 5). Another approach is to use an extensible operating system [97–
102, 203–206] or to extend a commodity operating system to support dynamic recomposition [207–218].
As our focus is on application-level adaptation, we do not discuss these approaches further. However, we
note that in several cross-layer adaptive frameworks (e.g., Odyssey [219], DEOS [200], GRACE [201], and
Graybox [202]) middleware cooperates with the operating system to provide adaptation.

Projects involving compositional adaptation at the host-infrastructure middleware layer generally fall in
one of two groups. The first includes those approaches that construct a layer of adaptable communication
services, for example [42, 166, 196, 198]. An early example that used object-orientation is ACE [166],
which uses a service configurator pattern and C++ dynamic binding to support dynamic composition. The
second approach is to extend a virtual machine with facilities to intercept and redirect interactions in the
functional code. Given the popularity of Java, many of these projects extend the JVM; example projects
include Iguana/J [61], Meta Java [139], Guaraná [141], PROSE [140], R-Java [58], and JDrums [220]. For
example, R-Java [58] enables the class of an object to be changed (to a subclass) at run-time by adding a
new instruction to the Java interpreter. In general, approaches in this category are very flexible with respect
to dynamic reconfiguration, in that new code can be introduced at run time. However, while they provide
transparency to the application, they are not transparent to the JVM, reducing their portability.

Introducing adaptive behavior in the distribution or common services middleware layers enables both
portability across platforms and transparency with respect to the application program. A large number
of adaptive software projects fall in one of these categories, and those listed in Table 1 comprise only a
small representative sample. Examples at the distribution layer include TAO [165], DynamicTAO [126],
CIAO [167], ZEN [152], ORBacus [195], Squirrel [188], UIC [145], LegORB [146], OpenORB [108],
Quarterware [221], mChaRM [148], Electra [191], and FlexiNet [149] Examples at the common services
layer include QuO [168], AQuA [170], IRL [184], TAO load balancing [169], and ACT [186]. These ap-
proaches typically involve intercepting messages associated with remote method invocations and processing
them in a manner that accounts for current internal or external conditions. Messages might be redirected,
modified, or even deleted. In addition to providing transparency to the functional code, some approaches
(e.g., IRL [184], Eternal [196], and ACT [186, 187]) even provide transparency to the distribution middle-
ware code, that is, they can be integrated into the program without modification to either the application or
the underlying middleware platform.

Middleware approaches are an effective means to support adaptability, but they are applicable only to
programs that are written against a specific middleware platform. The most general approach to supporting
compositional adaptation is to provide this capability directly in the application program itself. Two main
techniques are used. The first is to program all or part of the application code using a language that supports
recomposition inherently, such as CLOS [54] or Python [128]. In addition, a number of programming
language extensions have been introduced recently to facilitate the development of adaptive code. Many
extend Java (e.g., Open Java [57], R-Java [58], Handi-Wrap [134], Adaptive Java [44]) to include new
keywords and constructs to enhance the expressiveness of the adaptive code. However, this approach does
not enable transparent composition of adaptive behavior with existing applications.

The second technique is to weave the adaptive code into the functional code at either compile or load
time. To enable the application to be extended at run time, a two-phase approach can be used [123, 124].
In the first phase, interception hooks are prepared at compile time using static weaving of aspects. In the
second phase, intercepted operations are forwarded to adaptive code using reflection. This approach is used
in TRAP/J [62], DADO [222], Reflex [133], and the OBASCO method [124].

12

5 Key Challenges

Despite many advances in the mechanisms needed to support compositional adaptation, we contend that
the full potential of dynamically recomposable software systems can be realized only with fundamental
advances on four other fronts.

Assurance. The design of recomposable software must be supported by a programming paradigm that
lends itself to automated checking of both functional and nonfunctional properties of the system. First,
in order to help ensure the correctness of the adapted system, all components to be composed into the
system must be certified for correctness with respect to specifications. This assessment can be obtained in
two ways: (a) selecting components that have already been verified and validated offline using traditional
techniques, such as testing, inspection, and model checking; and (b) generating code automatically from
specifications [62,223]. In addition to functional requirements, certification can also include non-functional
requirements, such as security and performance. Second, during the adaptation process, techniques are
needed to ensure that the system continues to execute in an acceptable, or safe manner. Our group and others
are currently investigating this problem using a variety of methods, including dependency analysis [39,206,
224–227] and explicit management of state information [71]. Third, high-level contracts [228] and invariants
can be used to define policies for adaptation, feature interaction, and the correctness of the system before,
during, and after adaptation. The contracts and invariants, including those for synchronization, behavioral,
and QoS, can focus on individual layers or address cross layers [201, 229–236].

Security. Whereas assurance deals primarily with system integrity, security deals with protecting the
system from malicious entities. An important issue is how to prevent the adaptation mechanisms from being
exploited by a would-be attacker. In addition to verifying the sources of inserted components, the core
of an adaptive software system must be extremely well protected from attackers through the usual set of
security tools (e.g strong encryption to ensure the confidentiality and authenticity of messages related to
adaptation). However, an attacker who is able to penetrate weaker perimeter defenses may have adequate
power to perform the traffic analysis necessary to observe adaptive actions, which may themselves be part
of system security. An interesting research topic is how to hide the management of adaptation from would-
be intruders and prevent them from impeding or corrupting the adaptive process [237, 238]. A complete
approach to this problem not only must ensure the integrity of data used in decision-making, but must also
conceal adaptive actions from would-be intruders.

Interoperability. Designing distributed systems that can adapt to their environments requires not only
adaptation of individual components, but coordinated adaptation across system layers and across plat-
forms [145, 200–202, 239]. Different components are likely to have been developed by different parties,
and the developer must be able to integrate separately-designed adaptive mechanisms such that they coop-
erate to meet the needs of the application. The problem is that many of the adaptive software solutions
proposed for different layers have been developed independently, and even solutions within the same layer
are often not compatible. Tools and methods are needed to enable developers to (1) integrate the opera-
tion of adaptive components across layers of a single system and among different systems; and (2) support
adaptability in legacy systems and interoperability among different adaptive frameworks. Topics already
under study include application integration using web services [240] and adaptive behavior in sensor net-
works [241–244].

Decision Making. In confronting a dynamic physical world, decision making in adaptive systems must
modify software composition to better fit the current environment while preventing damage or loss of ser-
vice. Decision makers must monitor both their physical and virtual environments using software and hard-
ware sensors. Moreover, pervasive computing environments may require that software learn about and adapt
to user behavior. Some existing decision makers use rule-based approaches [245], while others are supported
by theoretical models, including those based on control theory [246, 247], resource optimization [248], and
those inspired by biological processes, such as the human nervous system [249] and emergent behavior in

13

species that form colonies [250]. Several researchers have explored artificial intelligence-based techniques
for managing dynamic system reconfiguration [251, 252]. While these methods have been effective in cer-
tain domains, environmental dynamics and software complexity have defied their general application. More
extensive research in this area is needed. Future systems will need to accommodate high-dimensional sen-
sory data [253], and continue to learn from new experience and accommodate new adaptations as they
become available [254–256]. Moreover, these decision makers may need to tolerate the removal or addi-
tion of sensors gracefully, continuing to guide application recomposition in the face of new or incomplete
information.

6 Conclusions

We envision that the use of compositional adaptation will continue to increase, as programmers become
more familiar with adaptive software technologies, the boundary between cyberspace and the physical world
continues to diminish, and Society increasingly expects computer systems to manage themselves. There is a
potential downside, however. While many of the mechanisms are available now, and therefore will be used,
the necessary supporting development environments are, for the most part, an area of ongoing research.
Compositional adaptation is very powerful, but without appropriate tools to automate the generation and
verification of code, its use can negatively impact, rather than improve, the integrity and security of systems.
The challenge to the computer science community is to build a foundation of development technologies
and tools, grounded in rigorous software engineering, that will enable compositional adaptation to raise the
next generation of computing to new levels of flexibility, autonomy, and maintainability, without sacrificing
assurance and security.

Further Information

As noted earlier, our group is actively participating in this area of research through two projects: RAPID-
ware (www.cse.msu.edu/rapidware) addresses adaptive software for protecting critical infrastructures, and
Meridian (www.cse.msu.edu/meridian) addresses automated software engineering for mobile computing.
Among other artifacts, these projects produced Adaptive Java, Trap/J and ACT, mentioned earlier. Source
code is available for downloading via the RAPIDware URL.

Acknowledgements

We would like to express our gratitude to the many individuals who have contributed to this emerging area
of study. Discussions with researchers associated with many of the research projects listed in Table 1, have
greatly improved our understanding of this area. We would also like to thank all the faculty and students
in the SENS Laboratory at Michigan State University for their contributions to RAPIDware, Meridian and
related projects. This work was supported in part by the U.S. Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744, and in part by National Science Foundation grants CCR-
9912407, EIA-0000433, EIA-0130724, ITR-0313142, CDA-9700732, and CCR-9901017.

References

[1] M. Weiser, “Ubiquitous computing,” IEEE Computer, vol. 26, pp. 71–72, October 1993.
[2] D. C. Schmidt, D. F. Box, , and T. Suda, “ADAPTIVE: A Dynamically Assembled Protocol Transformation,

Integration, and eValuation Environment,” Journal of Concurrency: Practice and Experience, pp. 269–286,
June 1993.

14

[3] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin, “A software architecture for adaptive distributed
multimedia applications,” IEE Proceedings - Software, vol. 145, no. 5, pp. 163–171, 1998.

[4] B. D. Noble and M. Satyanarayanan, “Experience with adaptive mobile applications in Odyssey,” Mobile Net-
works and Applications, vol. 4, pp. 245–254, 1999.

[5] S. McCanne, E. Brewer, R. Katz, L. Rowe, E. Amir, Y. Chawathe, A. Coopersmith, K. Mayer-Patel, S. Ra-
man, A. Schuett, D. Simpson, A. Swan, T. Tung, D. Wu, and B. Smith, “Toward a common infrastructure for
multimedia-networking middleware,” in Proc. 7th Intl. Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV ’97), St. Louis, Missouri, May 1997.

[6] M. Roussopoulos, P. Maniatis, E. Swierk, K. Lai, G. Appenzeller, and M. Baker, “Person-level routing in the
mobile people architecture,” in Proceedings of the 1999 USENIX Symposium on Internet Technologies and
Systems, (Boulder, Colorado), October 1999.

[7] M. A. Hiltunen and R. D. Schlichting, “The Cactus approach to building configurable middleware services,” in
Proceedings of the Workshop on Dependable System Middleware and Group Communication (DSMGC 2000),
(Nuremberg, Germany), October 2000.

[8] M. Modahl, I. Bagrak, M. Wolenetz, P. Hutto, and U. Ramachandran, “Mediabroker: An architecture for per-
vasive computing,” in Proceedings of IEEE PerCom 2004, 2004.

[9] The Planet Blue project at IBM. http://www.research.ibm.com/compsci/planetblue.html.
[10] The Oxygen project at MIT. http://oxygen.lcs.mit.edu/.
[11] J. P. Sousa and D. Garlan, “Aura: an architectural framework for user mobility in ubiquitous computing en-

vironments,” in Proceedings of the third Working IEEE/IFIP Conference on Software Architecture, pp. 29–43,
2002.

[12] F. Kon, C. Hess, M. Roman, R. Campbell, and M. Mickunas, “A flexible, interoperable framework for active
spaces,” in Proceedings of OOPSLA Workshop on Pervasive Computing, (Minneapolis), October 2000.

[13] A. K. Dey and G. D. Abowd, “The context toolkit: Aiding the development of context-aware applications,”
in Proceedings of the 22nd International Conference on Software Engineering (ICSE): Workshop on Software
Engineering for Wearable and Pervasive Computing, (Limerick, Ireland), June 2000.

[14] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer, “Adapting to network and client variation using active
proxies: Lessons and perspectives,” IEEE Personal Communications, August 1998.

[15] W. G. Griswold, R. Boyer, S. W. Brown, and T. M. Truong, “A component architecture for an extensible, highly
integrated context-aware computing infrastructure,” in Proceedings of the International Conference on Software
Engineering, May 2003.

[16] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. S. Milojicic, “Adaptive offloading inference for delivering
applications in pervasive computing environments,” in Proceedings of the First IEEE Conference on Pervasive
Computing and Communications PerCom 2003, pp. 107–114, 2003.

[17] C. Poellabauer, K. Schwan, S. Agarwala, A. Gavrilovska, G. Eisenhauer, S. Pande, C. Pu, and M. Wolf, “Ser-
vice morphing: Integrated system- and application-level service adaptation in autonomic systems,” in Proceed-
ings of Autonomic Computing Workshop Fifth Annual International Workshop on Active Middleware Services
(AMS’03), 2003.

[18] S.-W. Cheng, D. Garlan, B. R. Schmerl, J. P. Sousa, B. Spitznagel, P. Steenkiste, and N. Hu, “Software
architecture-based adaptation for pervasive systems,” in Proceedings of the International Conference on Ar-
chitecture of Computing Systems, pp. 67–82, Springer-Verlag, 2002.

[19] S. S. Yau and F. Karim, “An energy-efficient object discovery protocol for context-sensitive middleware for
ubiquitous computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 11, pp. 1074–
1085, 2003.

[20] N. Medvidovic, M. Mikic-Rakic, N. Mehta, and S. Malek, “Software architectural support for handheld com-
puting,” IEEE Computer, Special Issue on Handheld Computing, vol. 36, pp. 66–73, September 2003.

[21] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE Computer, vol. 36, pp. 41–50,
January 2003.

[22] Proceedings of the International Conference on Autonomic Computing (ICAC-04), (New York), May 2004.
[23] S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl, and P. Steenkiste, “Rainbow: Architecture-based self-

adaptation with reusable infrastructure,” in Proceedings of the International Conference on Autonomic Com-
puting (ICAC-04), (New York), pp. 276–277, May 2004.

[24] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode, “Remote repair of operating system state using
backdoors,” in Proceedings of the 2004 International Conference on Autonomic Computing, (New York), May
2004.

15

[25] A. Brown and D. A. Patterson, “Embracing failure: A case for recovery-oriented computing (ROC),” in Pro-
ceedings of the 2001 High Performance Transaction Processing Symposium, (Asilomar, California), October
2001.

[26] M. Mikic-Rakic and N. Medvidovic, “Support for disconnected operation via architectural self-
reconfiguration,” in Proceedings of the International Conference on Autonomic Computing (ICAC-04), (New
York, NY), May 2004.

[27] T. Boyd and P. Dasgupta, “Preemptive module replacement using the virtualizaing operating system realizing
multi-dimensional software adaptation,” in Proceedings of the ACM Workshop on Self-Healing, Adaptive and
self-MANaged Systems (SHAMAN), held in conjunction with the 16th Annual ACM International Conference
on Supercomputing, (New York City, NY), June 2002.

[28] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto, “An approach to autonomizing legacy systems,” in
Proceedings of the ACM Workshop on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN), held in
conjunction with the 16th Annual ACM International Conference on Supercomputing, (New York City, NY),
June 2002.

[29] H. Liu and M. Parashar, “Component-based programming model for autonomic applications,” in Proceedings
of the International Conference on Autonomic Computing (ICAC-04), (New York, NY), May 2004.

[30] M. A. Hiltunen and R. D. Schlichting, “Adaptive distributed and fault-tolerant systems,” International Journal
of Computer Systems Science and Engineering, vol. 11, pp. 125–133, September 1996.

[31] Information Sciences Institute University of Southern California, “RFC 793: Transmission control protocol.”
http://www.faqs.org/rfcs/rfc793.html, September 1981.

[32] J. F. Kurose and K. W.Ross, Computer Networking: A Top-Down Approach Featuring the Internet. Boston,
Massachusetts: Addison Wesley, 2001.

[33] S. Fickas, G. Kortuem, and Z. Segall, “Software organization for dynamic and adaptable wearable systems,” in
Proceedings First International Symposium on Wearable Computers (ISWC’97), (Cambridge, Massachusetts),
October 1997.

[34] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes, “Hive: Distributed agents for networking things,” in
Proceedings of ASA/MA’99, the First International Symposium on Agent Systems and Applications and Third
International Symposium on Mobile Agents, 1999.

[35] R. W. DeVaul and A. Pentland, “The Ektara architecture: The right framework for context-aware wearable
and ubiquitous computing applications.” The Media Laboratory, Massachusetts Institute of Technology, unpub-
lished, 2000.

[36] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and Z. Segall, “When peer-to-peer comes
face-to-face: Collaborative peer-to-peer computing in mobile ad-hoc networks,” in Proceedings of the 2001
International Conference on Peer-to-Peer Computing (P2P2001), (Linköpings, Sweden), August 2001.

[37] J. Flinn, E. de Lara, M. Satyanarayanan, D. S. Wallach, and W. Zwaenepoel, “Reducing the energy usage of of-
fice applications,” in Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware 2001), (Heidelberg, Germany), pp. 252–272, November 2001.

[38] M. Aksit and Z. Choukair, “Dynamic, adaptive and reconfigurable systems overview and prospective vision,” in
Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03),
(Providence, Rhode Island), May 2003.

[39] N. Venkatasubramanian, “Safe composability of middleware services,” Communications of the ACM, vol. 45,
June 2002.

[40] M. Aksit, L. Bergmans, and S. Vural, “An object-oriented language-database integration model: The
composition-filters approach,” in Proceedings of the European Conference on Object-Oriented Programming
(ECOOP’92), (Utrecht, Netherlands), pp. 372–395, June 1992.

[41] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Constructing adaptive software in distributed systems,”
in Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21), (Mesa,
Arizona), pp. 635–643, April 2001.

[42] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, and D. Karr, “Building adaptive systems using Ensem-
ble,” Software Practice and Experience, vol. 28, p. 963979, August 1998.

[43] P. K. McKinley, U. I. Padmanabhan, N. Ancha, and S. M. Sadjadi, “Composable proxy services to support
collaboration on the mobile internet,” IEEE Transactions on Computers (Special Issue on Wireless Internet),
pp. 713–726, June 2003.

[44] E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and R. E. K. Stirewalt, “Separating introspection and intercession
in metamorphic distributed systems,” in Proceedings of the IEEE Workshop on Aspect-Oriented Programming
for Distributed Computing (with ICDCS’02), (Vienna, Austria), pp. 465–472, July 2002.

16

[45] W. Aspray, “John von Neumann’s contributions to computing and computer science,” Annals of the History of
Computing, vol. 11, pp. 189–195, Fall 1989.

[46] G. Haugk, F. M. Lax, R. D. Royer, and J. R. Williams, “The 5ESS switching system: Maintenance capabilities,”
AT&T Technical Journal, vol. 64, pp. 1385–1416, July-August 1985.

[47] P. Leszek, “Use the Eclipse platform for debugging your software projects,” tech. rep., IBM, May 2003.
http://www-106.ibm.com/developerworks/opensource/library/os-ecbug/.

[48] M. Mönnig, “Self-modifying code with Delphi.” http://www.undu.com/Articles/990212d.html.
[49] J. Misra, “Strategies to combat software piracy,” tech. rep., Department of Computer Science, University of

Texas at Austin, 2000.
[50] F. Hohl, “Time limited blackbox security: Protecting mobile agents from malicious hosts,” in Mobile Agents

and Security, pp. 92–113, Springer-Verlag, 1998.
[51] A. Goldberg and D. Robson, Smalltalk-80. Addison-Wesley, 1989.
[52] B. C. Smith, Reflection and Semantics in a Procedural Language. PhD thesis, Massachusetts Institute of

Technology, Jan 1982.
[53] P. Maes, “Concepts and experiments in computational reflection,” in Proceedings of the ACM Conference on

Object-Oriented Languages (OOPSLA), pp. 147–155, ACM Press, December 1987.
[54] G. Kiczales, J. des Rivières, and D. G. Bobrow, The Art of Metaobject Protocols. MIT Press, 1991.
[55] “Java history.” http://www.ils.unc.edu/blaze/java/javahist.html.
[56] L. Bergmans and M. Aksit, “Composing crosscutting concerns using composition filters,” Communications of

ACM, pp. 51–57, October 2001.
[57] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian, “OpenJava: A class-based macro system for Java,” in

Proceedings of OORaSE, pp. 117–133, 1999.
[58] J. de Oliveira Guimarães, “Reflection for statically typed languages,” in Proceedings of 12th European Confer-

ence on Object-Oriented Programming (ECOOP’98), pp. 440–461, 1998.
[59] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin., “JAC: A flexible and efficient solution for aspect-oriented

programming in Java.,” in Proceedings of Reflection 2001, LNCS 2192, pp. 1–24, September 2001.
[60] Z. Wu, “Reflective Java and a reflective compnent-based transaction architecture,” in Proceedings of Workshop

on Reflective Programming in C++ and Java, 1998.
[61] B. Redmond and V. Cahill, “Supporting unanticipated dynamic adaptation of application behaviour,” in Pro-

ceedings of the 16th European Conference on Object-Oriented Programming, (Malaga, Spain), Springer-
Verlag, June 2002. volume 2374 of Lecture Notes in Computer Science.

[62] S. M. Sadjadi, P. K. McKinley, R. E. K. Stirewalt, and B. H. Cheng, “TRAP: Transparent reflective aspect
programming,” Tech. Rep. MSU-CSE-03-31, Computer Science and Engineering, Michigan State University,
East Lansing, Michigan, November 2003.

[63] Proceedings of the Workshop on Adaptable and Adaptive Software (held in conjunction with OOPSLA’95),
(Austin, Texas), October 1995.

[64] Proceedings of the ECOOP’97 Workshop on Reflective Real-Time Object-Oriented Programming and Systems,
(Jyvaskyla, Finland), June 1997.

[65] Proceedings of the OOPSLA’98 Workshop on Reflective Programming in C++ and Java, (Vancouver, Canada),
October 1998.

[66] Proceedings of the Middleware’2000 Workshop on Reflective Middleware, (New York), April 2000.
[67] Proceedings of the ACM SIGSOFT Workshop on Self-Healing Systems (WOSS02), (Charleston, South Carolina),

November 2002.
[68] Proceedings of the Workshop on Self-Healing, Adaptive, and self-MANaged Systems (SHAMAN) (held in con-

junction with the 16th Annual ACM International Conference on Supercomputing), (New York), June 2002.
[69] Proceedings of the 5th Annual International Workshop on Active Middleware Services (AMS 2003), (Seattle,

Washington), June 2003.
[70] Proceedings of the First Workshop on the Design of Self-Managing Systems (in conjunction with DSN-2003),

(San Francisco), June 2003.
[71] Proceedings of Fourth International Workshop on Distributed Auto-Adaptive and Reconfigurable Systems (in

conjunction with ICDCS 2004), (Hachioji, Japan), March 2004.
[72] Program on Self Adaptive Software, sponsored by DARPA, point of contact Robert Laddaga, 1998. BAA:

http://msrc.wvu.edu/nsf epscor/cluster research/arpa baa98 1.html.
[73] Program on Dynamic Assembly for Systems Adaptability, Dependability, and Assurance (DASADA), spon-

sored by DARPA and AFRL. http://www.rl.af.mil/tech/programs/dasada/.

17

[74] Program on Critical Infrastructure Protection and High Confidence, Adaptable Software, sponsored by U.S.
DoD. http://alpha.ddm.uci.edu/zotmail/archive/2000/20000623103.html.

[75] Program on Next Generation Software, sponsored by NSF, point of contact Frederica Darema. RFP:
http://www.nsf.gov/pubs/2001/nsf01147/nsf01147.htm.

[76] D. Batory and S. O’Malley, “The design and implementation of hierarchical software systems with reusable
components,” ACM Transactions on Software Engineering and Methodology, vol. 1, pp. 355–398, October
1992.

[77] D. Batory and B. J. Geraci, “Composition validation and subjectivity in GenVoca generators,” IEEE Transac-
tions on Software Engineering (special issue on Software Reuse), pp. 62–87, 1997.

[78] K. Czarnecki and U. Eisenecker, Generative programming. Addison Wesley, 2000.
[79] J. Lamping, G. Kiczales, L. H. R. Jr., and E. Ruf, “An architecture for an open compiler,” in Proceedings of the

IMSA’92 Workshop on Reflection and Meta-level Architectures, 1992.
[80] S. Chiba, “A metaobject protocol for C++,” in Proceedings of the ACM Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA), pp. 285–299, October 1995.
[81] Y. Ishikawa, A. Hori, M. Sato, M. Matsuda, J. Nolte, H. Tezuka, H. Konaka, M. Maeda, and K. Kubota, “Design

and implementation of metalevel architecture in C++ – MPC++ approach,” in Proceedings of the Reflection’96,
pp. 141–154, 1996.

[82] R. Arnold, “Software restructuring,” Proceedings IEEE, pp. 607–617, April 1989.
[83] P. L. Bergstein, “Object-preserving class transformations,” in Conference proceedings on Object-oriented pro-

gramming systems, languages, and applications, pp. 299–313, ACM Press, 1991.
[84] R. Arnold, Software Reengineering. IEEE Computer Society Press, 1993.
[85] P. L. Bergstein, “Maintenance of object-oriented systems during structural schema evolution,” TAPOS Journal,

vol. 3, no. 3, pp. 185–212, 1997.
[86] P. Bottoni, F. Parisi-Presicce, and G. Taentzer, “Coordinated distributed diagram transformation for software

evolution,” in Electronic Notes in Theoretical Computer Science (R. Heckel, T. Mens, and M. Wermelinger,
eds.), vol. 72, Elsevier, 2003.

[87] E. Casais, “An incremental class reorganization approach,” in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP’92) (O. Lehrmann Madsen, ed.), pp. 114–132, Berlin, Heidelberg:
Springer, 1992.

[88] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools. Addison-Wesley Longman
Publishing Co., Inc., 1986.

[89] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Publication Corporation, 1999.

[90] I. D. Baxter and M. Mehlich, “Reverse engineering is reverse forward engineering,” Science of Computer Pro-
gramming, vol. 36, no. 2-3, pp. 131–147, 2000.

[91] R. Heckel, T. Mens, and M. Wermelinger, “Software evolution through transformations,” in Electronic Notes in
Theoretical Computer Science (R. Heckel, T. Mens, and M. Wermelinger, eds.), vol. 72, Elsevier, 2003.

[92] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosen-
blum, and A. Wolf, “An architecture-based approach to self-adaptive software,” IEEE Intelligent Software,
vol. 14, pp. 54–62, May-June 1999.

[93] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin, “Architecture-centric programming for adaptive systems,”
in Proceedings of the ACM SIGSOFT Workshop on Self-Healing Systems (WOSS02), November 2002.

[94] J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin, “Language support for connector abstractions,” in Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP03), July 2003.

[95] L. Capra, W. Emmerich, and C. Mascolo, “Reflective middleware solutions for context-aware applications,” in
Proceedings of Reflection 2001, Lecture Notes in Computer Science, (Kyoto, Japan), Springer Verlag., 2001.

[96] R. H. Katz, E. A. Brewer, et al., “The Bay Area Research Wireless Access Network (BARWAN),” in Proceed-
ings Spring COMPCON Conference, 1996.

[97] Y. Saito and B. Bershad, “System call support in an extensible operating system,” Software Practice and Expe-
rience, vol. 1, pp. 1–10, January 1999.

[98] L. van Doorn, The Design and Application of an Extensible Operating System. PhD thesis, Vrije Universiteit,
Amsterdam, The Netherlands, 2001.

[99] B. Ford, K. V. Maren, J. Lepreau, S. Clawson, B. Robinson, and J. Turner, “The Flux OS Toolkit: Reusable
Components for OS Implementation,” in Proceedings of Sixth Workshop on Hot Topics in Operating Systems,
pp. 14–19, May 1997.

18

[100] A. Senart, O. Charra, and J.-B. Stefani, “Developing dynamically reconfigurable operating system kernels with
the THINK component architecture,” in Proceedings of the workshop on Engineering Context-aware Object-
Oriented Systems and Environments, in association with OOPSLA 2002, (Seattle, Washington), November
2002.

[101] M. Seltzer and C. Small, “Self-monitoring and Self-adapting Operating Systems,” in Proceedings of the Sixth
Workshop on Hot Topics in Operating Systems, 1997. http://www.eecs.harvard.edu/ vino/vino/.

[102] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr., “Exokernel: an operating system architecture
for application-level resource management,” in Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (SOSP ’95), (Copper Mountain Resort, Colorado), pp. 251–266, December 1995.
http://www.pdos.lcs.mit.edu/exo.html.

[103] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D. D. Silva, G. R. Ganger, O. Krieger, M. Stumm,
M. Auslander, M. Ostrowski, B. Rosenburg, and J. Xenidis, “System support for online reconfiguration,” in
Proc. of the Usenix Technical Conference, 2003.

[104] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A survey of active
network research,” IEEE Communications Magazine, vol. 35, pp. 80–86, January 1997.

[105] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis, J. T. Moore, C. A. Gunter, S. M.
Nettles, and J. M. Smith, “The SwitchWare active network architecture,” IEEE Network, Special Issue on Active
and Controllable Networks, vol. 12, no. 3, pp. 29–36, 1998.

[106] O. Angin, A. T. Campbell, M. E. Kounavis, and R.R.-F.M. Liao, “The Mobiware toolkit: Programmable support
for adaptive mobile networking,” IEEE Personal Communications Magazine, Special Issue on Adapting to
Network and Client Variability, August 1998.

[107] A. T. Campbell and M. E. Kounavis, “Toward reflective network architectures,” in Middleware’2000 Workshop
on Reflective Middleware (RM2000), (New York), April 2000.

[108] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An architecture for next generation middleware,”
in Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware’98), (The Lake District, England), September 1998.

[109] D. M. Hoffman and D. M. Weiss, Software fundamentals: collected papers by David L. Parnas. Addison-
Wesley Longman Publishing Co., Inc., 2001.

[110] P. Tarr and H. Ossher, eds., Workshop on Advanced Separation of Concerns in Software Engineering at ICSE
2001 (W17), May 2001.

[111] K. J. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996. ISBN 0-534-94602-X.

[112] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M. Loingtier, and J. Irwin,
“Aspect-oriented programming,” in Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP), Springer-Verlag LNCS 1241, June 1997.

[113] R. J. Walker, E. L. A. Baniassad, and G. C. Murphy, “An initial assessment of aspect-oriented programming,”
in International Conference on Software Engineering, pp. 120–130, 1999.

[114] Communications of the ACM, Special Issue on Aspect-Oriented Programming, vol. 44, October 2001.
[115] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An overview of AspectJ,”

Lecture Notes in Computer Science, vol. 2072, pp. 327–355, 2001.
[116] H. Ossher and P. Tarr, “Using multidimensional separation of concerns to (re)shape evolving software,” Com-

munications of the ACM, vol. 44, no. 10, pp. 43–50, 2001.
[117] K. Lieberherr, D. Orleans, and J. Ovlinger, “Aspect-oriented programming with adaptive methods,” Communi-

cations of the ACM, vol. 44, no. 10, pp. 39–41, 2001.
[118] I. Welch and R. J. Stroud, “Kava - A Reflective Java Based on Bytecode Rewriting,” in Reflection and Software

Engineering (W. Cazzola, R. J. Stroud, and F. Tisato, eds.), Lecture Notes in Computer Science 1826, pp. 157–
169, Heidelberg, Germany: Springer-Verlag, June 2000.

[119] E. Truyen, B. N. Jörgensen, W. Joosen, and P. Verbaeten, “Aspects for run-time component integration,” in
Proceedings of the ECOOP 2000 Workshop on Aspects and Dimensions of Concerns, (Sophia Antipolis and
Cannes, France), 2000.

[120] F. Akkai, A. Bader, and T. Elrad, “Dynamic weaving for building reconfigurable software systems,” in Proceed-
ings of OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-Oriented Systems, (Tampa
Bay, Florida), October 2001.

[121] D. Wagelaar, “Towards a context-driven development framework for ambient intelligence,” in Proceedings
of the Fourth IEEE International Workshop on Distributed Auto-adaptive and Reconfigurable Systems (with
ICDCS’04), (Tokyo, Japan), March 2004.

19

[122] R. Hirschfeld and K. Kawamura, “Dynamic service adaptation,” in Proceedings of the Fourth IEEE Interna-
tional Workshop on Distributed Auto-adaptive and Reconfigurable Systems (with ICDCS’04), (Tokyo, Japan),
March 2004.

[123] Z. Yang, B. H. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and P. K. McKinley, “An aspect-oriented
approach to dynamic adaptation,” in Proceedings of the ACM SIGSOFT Workshop On Self-healing Software
(WOSS’02), November 2002.

[124] P. C. David, T. Ledoux, and N. M. N. Bouraqadi-Saadani, “Two-step weaving with reflection using AspectJ,” in
OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-Oriented Systems, (Tampa), October
2001.

[125] F. Costa, H. Duran, N. Parlavantzas, K. Saikoski, G. Blair, and G. Coulson, “The role of reflective middleware in
supporting the engineering of dynamic applications”,” Reflection and Software Engineering, pp. 79–98, 2000.

[126] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhães, and R. H. Campbell, “Monitoring , security, and
dynamic configuration with the dynamicTAO reflective ORB,” in Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2000), (New York), April 2000.

[127] G. Blair, G. Coulson, and N. Davies, “Adaptive middleware for mobile multimedia applications,” in Proceedings
of the Eighth International Workshop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), pp. 259–273, 1997.

[128] “Python publications.” http://www.rmi.net/ lutz/pybooks.html.
[129] J. McAffer, “Meta-level architectue support for distributed obejcts,” in Proceedings of Reflection’96, (San Fran-

cisco, California), pp. 39–62, 1996.
[130] H. Masuhara, S. Matsuoka, T. Watanabe, and A. Yonezawa, “Object-oriented concurrent reflective languages

can be implemented efficiently,” in Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA) (A. Paepcke, ed.), vol. 27, (New York, NY), pp. 127–144, ACM Press,
1992.

[131] H. Okamura, Y. Ishikawa, and M. Tokoro, “AL-1/D: A distributed programming system with multi-model
reflection framework,” in Proceedings of the Workshop on New Models for Software Architecture, Nov. 1992.

[132] V. Adve, V. V. Lam, and B. Ensink, “Language and compiler support for adaptive distributed applications,” in
Proceedings of the ACM SIGPLAN Workshop on Optimization of Middleware and Distributed Systems (OM
2001), (Snowbird, Utah), June 2001.

[133] É. Tanter, J. Noyè, D. Caromel, and P. Cointe, “Partial behavioral reflection: Spatial and temporal selection
of reification,” in Proceedings of the 18th ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications (OOPSLA 2003) (R. Crocker and G. L. Steele, Jr., eds.), (Anaheim, California),
pp. 27–46, ACM Press, October 2003.

[134] J. Baker and W. Hsieh, “Runtime aspect weaving through metaprogramming,” in Proceedings of the First
International Conference on Aspect-Oriented Software Development, (Enschede, The Netherlands), April 2002.

[135] S. Chiba and T. Masuda, “Designing an extensible distributed language with a meta-level architecture,” Lecture
Notes in Computer Science, vol. 707, 1993.

[136] D. Caromel, W. Klauser, and J. Vayssière, “Towards seamless computing and metacomputing in Java,” Concur-
rency: Practice and Experience, vol. 10, no. 11–13, pp. 1043–1061, 1998.

[137] J. Ferber, “Computational reflection in class based object-oriented languages,” in Conference proceedings on
Object-oriented programming systems, languages and applications, pp. 317–326, ACM Press, 1989.

[138] M. Golm, “Design and implementation of a meta architecture for Java,” Master’s thesis, Friedrich-Alexander-
University, Erlangen-Nurenburg, Jan. 1997.

[139] M. Golm and J. Kleinoder, “metaXa and the future of reflection,” in Proceedings of Workshop on Reflective
Programming in C++ and Java, pp. 1–5, 1998.

[140] A. Popovici, T. Gross, and G. Alonso, “Dynamic homogenous AOP with PROSE,” tech. rep., Department of
Computer Science, Federal Institue of Technology, Zurich, Switzerland, March 2001.

[141] A. Oliva and L. E. Buzato, “The implementation of Guaraná on Java,” Tech. Rep. IC-98-32, Universidade
Estadual de Campinas, Sept. 1998.

[142] T. Ledoux, “OpenCorba: A reflective open broker,” Lecture Notes in Computer Science, vol. 1616, 1999.
[143] D. Conger, Remoting with C# and .NET. Wiley Publishing, Inc., Indianapolis, Indiana, 2003.
[144] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas, “An efficient component model for the construction of

adaptive middleware,” Lecture Notes in Computer Science, vol. 2218, 2001.
[145] M. Roman, F. Kon, and R. H. Campbell, “Reflective middleware: From your desk to your hand,” IEEE Dis-

tributed Systems Online, vol. 2, no. 5, 2001.
20

[146] M. Roman, M. Mickunas, F. Kon, and R. H. Campbell, “LegORB and ubiquitous CORBA,” in Proc. IFIP/ACM
Middleware’2000 Workshop on Reflective Middleware (RM2000), (New York), April 2000.

[147] J. C. Fabre and T. Perennou, “A metaobject architecture for fault-tolerant distributed systems: The FRIENDS
approach,” IEEE Transactions on Computers, vol. 47, no. 1, pp. 78–95, 1998.

[148] W. Cazzola and M. Ancona, “mChaRM: A reflective middleware for communications-based reflection,” Tech.
Rep. DISI-TR-00-09, Universita degli Studi di Milano, May 2000.

[149] R. Hayton, FlexiNet Open ORB Framework. APM Ltd., Oct. 1997.
[150] S. M. Sadjadi, P. K. McKinley, and E. P. Kasten, “Architecture and operation of an adaptable communication

substrate,” in Proceedings of the Ninth IEEE International Workshop on Future Trends of Distributed Comput-
ing Systems (FTDCS’03), (San Juan, Puerto Rico), pp. 46–55, May 2003.

[151] S. M. Sadjadi, P. K. McKinley, R. E. K. Stirewalt, and B. H. Cheng, “Generation of self-optimizing wireless
network applications,” in Proceedings of the International Conference on Autonomic Computing (ICAC-04),
(New York, NY), pp. 310–311, May 2004.

[152] R. Klefstad, D. C. Schmidt, and C. O’Ryan, “Towards highly configurable real-time object request brokers,” in
Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,
April - May 2002.

[153] G. T. Sullivan, “Aspect-oriented programming using reflection and metaobject protocols,” Communications of
the ACM, vol. 44, no. 10, pp. 95–97, 2001.

[154] A. Popovici, T. Gross, and G. Alonso, “Dynamic weaving for aspect-oriented programming,” in Proceedings of
the First International Conference on Aspect-Oriented Software Development, pp. 141–147, ACM Press, 2002.

[155] C. Szyperski, Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1999.
[156] A. T. Campbell, G. Coulson, and M. E. Kounavis, “Managing complexity: Middleware explained,” IT Profes-

sional, IEEE Computer Society, pp. 22–28, September/October 1999.
[157] Microsolft Corporation, COM: Delivering on the Promises of Component Technology, 2000.

http://www.microsoft.com/com/default.asp.
[158] Microsoft Corporation, Microsoft COM Technologies - DCOM, 2000.
[159] Microsoft, http://www.microsoft.com/net/, Microsoft .NET.
[160] Object Management Group, Framingham, Massachusett, The Common Object Request Broker: Architecture

and Specification Version 3.0, July 2003. Available at http://doc.ece.uci.edu/CORBA/formal/02-06-33.pdf.
[161] Sun Microsystems, http://java.sun.com/products/ejb/, Enterprise JavaBeans Technology, 2001.
[162] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements od Reusable Object-Oriented

Software. Addison-Wesley Professional Computing Series, New York, NY: Addison-Wesley Publishing Com-
pany, 1995.

[163] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture, vol. 2. John
Wiley, 2001.

[164] A. Corsaro, D. Schmidt, R. Klefstad, and C. O’Ryan, “Virtual component a design pattern for memory con-
strained embedded applications,” in Proceedings of the Ninth Conference on Pattern Language of Programs
(PLoP 2002), 2002.

[165] D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the TAO real-time object request broker,” Computer
Communications, vol. 21, pp. 294–324, April 1998.

[166] D. C. Schmidt, “The ADAPTIVE Communication Environment: An object-oriented network programming
toolkit for developing communication software,” Concurrency: Practice and Experience, vol. 5, no. 4, pp. 269–
286, 1993.

[167] N. Wang, D. C. Schmidt, and M. Kircher, “Towards an adaptive and reflective middleware framework for QoS-
enabled CORBA component model applications,” IEEE Distributed System Online, Special Issue on Reflective
Middleware, 2003.

[168] J. A. Zinky, D. E. Bakken, and R. E. Schantz, “Architectural support for quality of service for CORBA objects,”
Theory and Practice of Object Systems, vol. 3, no. 1, 1997.

[169] O. Othman, “The design, optimization, and performance of an adaptive middleware load balancing service,”
Master’s thesis, University of California, Irvine, 2002.

[170] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H. Sanders, D. E. Bakken, M. E. Berman, D. A. Karr, and
R. E. Schantz, “AQuA: An adaptive architecture that provides dependable distributed objects,” in Proceedings
of the The 17th IEEE Symposium on Reliable Distributed Systems, p. 245, IEEE Computer Society, Oct. 1998.

[171] K. Lieberherr, Adaptive Object-Oriented Software The Demeter Method. PWS Publishing Company, Boston,
1996.

21

[172] C. Simonyi, “The death of computer languages, the birth of intentional programming,” 1995.
[173] G. Kiczales, “Beyond the black box: Open implementation,” IEEE Software, vol. 13, Jan. 1996.
[174] W. Harrison and H. Ossher, “Subject-oriented programming (a critique of pure objects),” in OOPSLA’93, 1993.
[175] M. Mezini, Variation-Oriented Programming Beyond Classes and Inheritance. PhD thesis, Department of

Electrical Engineering and Computer Science, University of Siegen, Germany, 1997.
[176] A. R. Tripathi, N. M. Karnik, T. Ahmed, R. D. Singh, A. Prakash, V. Kakani, M. K. Vora, and M. Pathak, “De-

sign of the Ajanta system for mobile agent programming,” Journal of Systems and Software, vol. 62, pp. 123–
140, May 2002.

[177] A. Murphy, G. Picco, and G.-C. Roman, “LIME: A middleware for physical and logical mobility,” in Pro-
ceedings of the International Conference on Distributed Computing Systems (ICDCS’01), (Phoenix, Arizona),
pp. 524–533, April 2001.

[178] G. Agha, Actors: A model of concurrent computation in distributed systems. MIT Press, 1986.
[179] R. Brandt and H. Reiser, “Dynamic adaptation of mobile agents in heterogeneous environments,” in Proceedings

of the 5th International Conference on Mobile Agents, pp. 70–87, Springer-Verlag, 2001.
[180] G. A. Cohen, J. S. Chase, and D. Kaminsky, “Automatic program transformation with JOIE,” in 1998 Usenix

Technical Conference, June 1998.
[181] D. Sharp, “Reducing avionics software cost through component-based product line development,” in Proceed-

ings of the Software Technology Conference, (Salt Lake City, Utah), April 1998.
[182] P. Felber, B. Garbinato, and R. Guerraoui, “Towards reliable CORBA: Integration vs. service approach,” in

Special Issues in Object-Oriented Programming (M. Mühlhäuser, ed.), pp. 199–205, dpunkt-Verlag, 1997.
[183] R. Friedman and E. Hadad, “Client side enhancements using portable interceptors,” in Proceedings of the Sixth

IEEE International Workshop on Object-oriented Real-time Dependable Systems, January 2001.
[184] R. Baldoni, C. Marchetti, and A. Termini, “Active software replication through a three-tier approach,” in Pro-

ceedings of the 22th IEEE International Symposium on Reliable Distributed Systems (SRDS02), (Osaka, Japan),
pp. 109–118, October 2002.

[185] C. Marchetti, L. Verde, and R. Baldoni, “CORBA request portable interceptors: A performance analysis,” in
the 3nd International Symposium on Distributed Objects and Applications (DOA 2001), (Rome, Italy), Sept.
2001.

[186] S. M. Sadjadi and P. K. McKinley, “ACT: An adaptive CORBA template to support unanticipated adaptation,”
in Proceedings of the 24th IEEE International Conference on Distributed Computing Systems (ICDCS’04),
(Tokyo, Japan), March 2004.

[187] S. M. Sadjadi and P. K. McKinley, “Transparent self-optimization in existing CORBA applications,” in Pro-
ceedings of the International Conference on Autonomic Computing (ICAC-04), (New York, NY), pp. 88–95,
May 2004.

[188] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu, “Thread transparency in information flow middle-
ware,” in Proceedings of the International Conference on Distributed Systems Platforms and Open Distributed
Processing, Springer Verlag, Nov. 2001.

[189] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu, “Infopipes for composing distributed information
flows,” in Proceedings of the International Workshop on Multimedia Middleware, pp. 44–47, ACM, Oct. 2001.

[190] M. Geier, M. Steckermeier, U. Becker, F. J. Hauck, E. Meier, and U. Rastofer, “Support for mobility and
replication in the AspectIX architecture,” Tech. Rep. TR-I4-98-05, Univ. of Erlangen-Nuernberg, IMMD IV,
1998.

[191] S. Maffeis, “Adding group communication and fault-tolerance to CORBA,” in Proceedings of the Conference
on Object-Oriented Technologies, pp. 135–146, 1995.

[192] R. V. Renesse, K. P. Birman, B. B. Glade, K. Guo, M. Hayden, T. Hickey, D. Malki, A. Vaysburd, and W. Vogels,
“Horus: A flexible group communications system,” Tech. Rep. TR95-1500, Department of Computer Science,
Cornell University, 23, 1995.

[193] K. P. Birman and R. van Renesse, “Reliable distributed computing with the Isis toolkit,” IEEE Computer Society
Press, 1994.

[194] IONA Technologies, Orbix. URL: http://www.iona.com/products/orbix.htm.
[195] IONA Technologies Inc., ORBacus for C++ and Java version 4.1.0, 2001.
[196] L. Moser, P. Melliar-Smith, P. Narasimhan, L. Tewksbury, and V. Kalogeraki, “The Eternal system: An ar-

chitecture for enterprise applications,” in Proceedings of the Third International Enterprise Distributed Object
Computing Conference (EDOC’99), July 1999.

22

[197] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, C. A. Lingley-Papadopoulis, and T. P. Archam-
bault, “The Totem system,” in Proceedings of the 25th International Symposium on Fault Tolerant Computing,
(Pasadena, California), pp. 61–66, 1995.

[198] V. C. Zandy and B. P. Miller, “Reliable network connections,” in Proceedings of the Eighth Annual International
Conference on Mobile Computing and Networking, pp. 95–106, September 2002.

[199] Sun Microsystems, EmbeddedJava Application Environment. http://java.sun.com/products/embeddedjava/.
[200] “Distributed Extensible Open Systems (the DEOS project).” http://www.cc.gatech.edu/systems/projects/DEOS/,

2004. Georgia Institute of Technology - College of Computing.
[201] S. Adve, A. Harris, C. Hughes, D. Jones, R. Kravets, K. Nahrstedt, D. Sachs, R. Sasanka, J. Srinivasan, and

W. Yuan, “The Illinois GRACE project: Global Resource Adaptation through CoopEration,” in Proceedings of
the Workshop on Self-Healing, Adaptive, and self-MANaged Systems (SHAMAN), June 2002.

[202] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau, “Information and Control in Gray-box Systems,” in Sympo-
sium on Operating Systems Principles, pp. 43–56, 2001. http://www.cs.wisc.edu/graybox/.

[203] R. Rashid, R. Baron, A. Forin, D. Golub, M. Jones, D. Julin, D. Orr, and R. Sanzi, “Mach: A Foundation for
Open Sytems,” in Proceedings of the Second Workshop on Workstation Operating Systems(WWOS2), September
1989. http://www-2.cs.cmu.edu/afs/cs/project/mach/public/www/mach.html.

[204] B. N. Bershad and et al, “SPIN - An extensible microkernel for application-specific operating system ser-
vices,” tech. rep., Dept. of Computer Science and Engineering, University of Washington, February 1994.
http://www.cs.washington.edu/homes/melody/os/spin.html.

[205] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, T. A. Proebsting, and J. H. Hartman, “Scout:
A Communications-Oriented Operating System,” in Operating Systems Design and Implementation, 1994.
http://www.cs.arizona.edu/scout/.

[206] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. D. Silva, O. Krieger, D. J. E. M. A. Auslander,
B. Gamsa, G. R. Ganger, P. McKenney, M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis, “Enabling
autonomic behavior in systems software with hot-swapping,” IBM Systems Journal, vol. 42, no. 1, 2003.

[207] M. B. Jones, “Interposition agents: Transparently interposing user code at the system interface,” Symposium on
Operating Systems Principles (SOSP 14), pp. 80–93, December 1993.

[208] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A Secure Environment for Untrusted Helper Applica-
tions,” in Proceedings of the 6th USENIX Security Symposium, (San Jose, CA), 1996.

[209] T. Mitchem, R. Lu, and R. O’Brien, “Using kernel hypervisors to secure applications,” Annual Computer Secu-
rity Application Conference (ACSAC ’97), December 1997. http://www.securecomputing.com/khyper/.

[210] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson, “SLIC: An Extensibility System for
Commodity Operating Systems,” in USENIX 1998 Annual Technical Conference, pp. 39–52, June 1998.
http://now.cs.berkeley.edu/Slic/.

[211] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman, “Ufo: A Personal Global File System Based on
User-Level Extensions to the Operating System,” ACM Transactions on Computer Systems, vol. 16, pp. 207–
233, August 1998.

[212] T. Fraser, L. Badger, and M. Feldman, “Hardening COTS Software with Generic Software Wrappers,” IEEE
Symposium on Security and Privacy, pp. 2–16, May 1999.

[213] T. Fraser, “LOMAC: Low water-mark integrity protection for COTS environments,” IEEE Symposium on Secu-
rity and Privacy, pp. Oakland, CA, May 2000.

[214] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman, “Linux Security Modules: General Secu-
rity Support for Linux Kernel,” USENIX Security Symposium, 2002. http://lsm.immunix.org/.

[215] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, and J. M. Smith, “Efficient Packet Monitoring for
Network Management,” in Proceedings of the 8th IEEE/IFIP Network Operations and Management Symposium
(NOMS), April 2002.

[216] P. Loscocco and S. Smalley, “Integrating flexible support for security policies into the Linux operating system,”
in Proceedings of the FREENIX Track of the 2001 USENIX Annual Technical Conference, 2001.

[217] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C. Steere, “Coda: A highly
available file system for a distributed workstation environment,” IEEE Transactions on Computers, vol. 39,
no. 4, pp. 447–459, 1990.

[218] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole, and K. Zhang, “Optimistic
Incremental Specialization Streamlinig a Commercial Operating System,” Symposium on Operating Systems
Principles (SOSP), 1995. http://www.cse.ogi.edu/DISC/projects/synthetix/.

[219] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile applications,” in Proceedings of the 17th
ACM Symposium on Operating Systems Principles (SOSP), 1999.

23

[220] J. Andersson and T. Ritzau, “Dynamic code update in JDrums,” in Proceedings of the ICSE’00 Workshop on
Software Engineering for Wearable and Pervasive Computing, (Limerick, Ireland), 2000.

[221] A. Singhai, A. Sane, and R. H. Campbell, “Quarterware for middleware,” in Proceedings of the 18th Interna-
tional Conference on Distributed Computing Systems (ICDCS’98), (Amesterdam, The Netherlands), pp. 192–
201, May 1998.

[222] E. Wohlstadter, S. Jackson, and P. Devanbu, “DADO: enhancing middleware to support crosscutting features in
distributed, heterogeneous systems,” in Proceedings of the International Conference on Software Engineering,
(Portland, Oregon), pp. 174–186, May 2003.

[223] P. P. Pal, J. Loyall, R. E. Schantz, J. A. Zinky, and F. Webber, “Building auto-adaptive distributed applications:
the QuO-APOD experience,” in Proceedings of 3rd International Workshop on Distributed Auto-adaptive and
Reconfigurable Systems, in conjunction with 23rd ICDCS, (Providence, Rhode Island), May 2003.

[224] J. Zhang, Z. Yang, B. H. Cheng, and P. K. McKinley, “Adding safeness to dynamic adaptation techniques,”
in Proceedings of the ICSE 2004 Workshop on Architecting Dependable Systems, (Edinburgh, Scotland), May
2004.

[225] J. Zhang, Z. Yang, B. H. C. Cheng, and P. K. McKinley, “Adding safeness to dynamic adaptation techniques,”
Tech. Rep. MSU-CSE-04-11, Computer Science and Engineering, Michigan State University, East Lansing,
Michigan, March 2004.

[226] S. Kulkarni and K. Biyani, “Correctness of component-based adaptation,” in International Symposium on
Component-based Software Engineering (CBSE7), May 2004.

[227] N. Amano and T. Watanabe, “A software model for flexible and safe adaptation of mobile code programs,” in
Proceedings of the international workshop on Principles of software evolution, pp. 57–61, ACM Press, 2002.

[228] A. Beugnard et al., “Making components contract aware,” IEEE Computer, vol. 32, pp. 38–45, July 1999.
[229] A. Tripathi, T. Ahmed, R. Kumar, and S. Jaman, “Design of a policy-driven middleware for secure dis-

tributed collaboration,” in Proceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS), pp. 393–400, July 2002.

[230] J. Keeney and V. Cahill, “Chisel: A policy-driven, context-aware, dynamic adaptation framework,” in Proc. of
IEEE 4th International Workshop on Policies for Distributed Systems and Networks, (Lake Como, Italy), p. 3,
June 2003.

[231] J. Jin and K. Nahrstedt, “QoS specification languages for distributed multimedia applications: A survey and
taxonomy,” IEEE Multimedia, 2004. to appear.

[232] P. P. Pal, J. Loyall, R. E. Schantz, J. A. Zinky, and F. Webber, “Open implementation toolkit for building
survivable applications,” in Proceedings of DISCEX 2000, the DARPA Information Survivability Conference
and Exposition, (Hilton Head Island, SC.), Jan 2000.

[233] J. Lobo, R. Bhatia, and S. A. Naqvi, “A policy description language,” in The Eleventh Innovative Applications of
Artificial Intelligence Conference on Artificial Intelligence(IAAI-2001)/Sponsored by AAAI, pp. 291–298, 1999.

[234] K. Havelund and G. Rosu, “Monitoring Java programs with Java PathExplorer,” in Electronic Notes in Theoret-
ical Computer Science (K. Havelund and G. Rosu, eds.), vol. 55, Elsevier, 2001.

[235] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido, “Extreme model checking,” in Verification: Theory
and Practice, Lecture Notes in Computer Science 2772, pp. 332–358, Springer-Verlag, 2004.

[236] M. Jackson and P. Zave, “Distributed feature composition: A virtual architecture for telecommunications ser-
vices,” IEEE Transactions on Software Engineering, vol. 24, pp. 831–847, October 1998.

[237] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and trade-offs in anonymity providing systems,”
Lecture Notes in Computer Science, vol. 2137, 2001.

[238] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding — A survey,” Proceedings of the
IEEE, vol. 87, no. 7, pp. 1062–1078, 1999.

[239] J. He, M. A. Hiltunen, M. Rajagopalan, and R. D. Schlichting, “QoS customization in distributed object sys-
tems,” Software Practice and Experience, vol. 33, no. 4, pp. 295–320, 2003.

[240] S. Vinoski, “Integration with web services,” IEEE Internet Computing, November-December 2003.
[241] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware to support sensor network applications,”

IEEE Network Magazine, January 2004.
[242] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor networks,” in International Conference on

Architectural Support for Programming Languages and Operating Systems, (San Jose, California), October
2002.

[243] S. R. Madden, J. M. Hellerstein, and W. Hong, “TinyDB: In-network query processing in tinyos.”
http://telegraph.cs.berkeley.edu/tinydb, Sept. 2003.

24

[244] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ramachandran, “DFuse: A framework
for distributed data fusion,” in Proceedings of ACM Sensys 2003, 2003.

[245] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo, “Adaptive middleware architecture for a distributed omni-
direct ional visual tracking system,” in Proceedings of SPIE Multimedia Computing and Networking 2000
(MMCN’00), January 2000.

[246] B. Li and K. Nahrstedt, “A control-based middleware framework for quality of service adaptations,” IEEE
Journal of Selected Areas in Communications, vol. 17, September 1999.

[247] P. Bridges, W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Supporting coordinated adaptation in net-
worked systems.” ftp://ftp.cs.arizona.edu/ftol/papers/hotos.pdf, May 2001.

[248] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, “Dynamic configuration of resource-aware services,” in
Proceedings of the 26th International Conference on Software Engineering, (Edinburgh, Scotland), May 2004.

[249] IBM Systems Journal, Special issue on Autonomic Computing, vol. 42, 2003.
[250] M. Wang and T. Suda, “The bio-networking architecture: A biologically inspired approach to the design of

scalable, adaptive, and survivable/available network applications,” Tech. Rep. 00-03, Department of Informa-
tion and Computer Science, Unversity of California, Irvine, California, February 2000.

[251] N. Arshad, D. Heimbigner, and A. Wolf, “Deployment and dynamic reconfiguration planning for distributed
software systems,” in Proceedings of the 15th International Conference on Tools with Artificial Intelligence
(ICTAI03), 2003.

[252] M. Castaldi, A. Carzaniga, P. Inverardi, and A. Wolf, “A lightweight infrastructure for reconfiguring applica-
tions,” in Proceedings of the 11th International Workshop on Software Configuration Management (Lecture
Notes in Computer Science 2049, Springer-Verlag, Berlin, 2003.

[253] P. Robertson and R. Laddaga, “A self-adaptive architecture and its application to robust face identification,”
in Proceedings 7th Pacific Rim Conference on Artificial Intelligence, Springer-Verlag, 2002. volume 2417 of
Lecture Notes in Computer Science.

[254] J. Weng and W.-S. Hwang, “An incremental learning algorithm with automatically derived discriminating fea-
tures,” in Proceedings Asian Conference on Computer Vision, (Taipei, Taiwan), pp. 426–431, January 2000.

[255] D. Isla, R. Burke, M. Downie, and B. Blumberg, “A layered brain architecture for synthetic creatures,” in Pro-
ceedings of Seventeenth International Joint Conference on Artificial Intelligence (IJCAI), (Seatle, Washington,
USA), August 2001.

[256] T. Jebara and A. Pentland, “Statistical imitative learning from perceptual data,” in Proceedings of the 2nd
International Conference on Development and Learning, (Boston, Massachusetts, USA), pp. 191–196, June
2002.

[257] L. Bergmans, “The composition filters object model,” tech. rep., Department of Computer Science, University
of Twente, 1994.

[258] G. A. Cohen, J. S. Chase, and D. L. Kaminsky, “Automatic program transformation with JOIE,” in Proceedings
USENIX Annual Technical Symposium, (New Orleans, Louisiana), pp. 167–178, June 1998.

[259] M. Dahm, “Byte code engineering,” in Java-Informations-Tage, pp. 267–277, 1999.
[260] S. Chiba, “Load-time structural reflection in Java,” Lecture Notes in Computer Science, vol. 1850, 2000.
[261] E. Bruneton and M. Riveill, “Reflective implementation of non-functional properties with the JavaPod compo-

nent platform,” in Proceedings of the European Conference on Object-Oriented Programming (ECOOP 2000):
Workshop On Reflection and Metalevel Architectures, (Sophia Antipolis and Cannes, France), June 2000.

[262] A. Duncan and U. Hölzle, “Load-time adaptation: Efficient and non-intrusive language extension for virtual
machines,” Tech. Rep. TRCS99-09, Department of Computer Science University of California, Santa Barbara,
Santa Barbara, California, April 1999.

[263] I. Welch and R. Stroud, “Dalang — a reflective extension for java,” Tech. Rep. CS-TR-672, University of
Newcastle upon Tyne, East Lansing, Michigan, September 1999.

[264] G. Kniesel, P. Costanza, and M. Austermann, “Jmangler - a framework for load-time transformation of java
class files,” in Proceedings of IEEE Workshop on Source Code Analysis and Manipulation (SCAM), pp. 100–
110, November 2001.

[265] R. Keller and U. Hölzle, “Binary component adaptation,” in Proceedings of the European Conference on Object-
Oriented Programming (ECOOP 1998) (E. Jul, ed.), (Brussels, Belgium), pp. 307–329, Springer-Verlag, July
1998. volume 1445 of Lecture Notes in Computer Science.

[266] N. Amano and T. Watanabe, “An approach for constructing dynamically adaptable component-based software
systems using LEAD++,” in OOPSLA International Workshop on Object Oriented Reflection and Software
Engineering, (Denver, Colorado), pp. 1–16, November 1999.

25

[267] “The TAILOR project.” http://javalab.iai.uni-bonn.de/research/tailor/.
[268] M. Mezini and K. Lieberherr, “Adaptive plug-and-play components for evolutionary software development,”

ACM SIGPLAN Notices, Proceedings of the conference on Object-oriented programming, systems, languages,
and applications, vol. 33, October 1998.

[269] I. Ben-Shaul, O. Holder, and B. Lavva, “Dynamic adaptation and deployment of distributed components in
Hadas,” IEEE Transactions on Software Engineering, vol. 27, no. 9, pp. 769–787, 2001.

[270] Sun Microsystems, PersonalJava Application Environment. http://java.sun.com/products/personaljava/.
[271] D. C. Schmidt and S. D. Huston, C++ Network Programming: Mastering Complexity Using ACE and Patterns.

Addison-Wesley Longman, 2002.
[272] http://www.cs.wustl.edu/ � schmidt/ACE-overview.html.
[273] D. C. Schmidt and T. Suda, “The service configurator framework: An extensible architecture for dynamically

configuring concurrent, multi-service network daemons,” in Proceedings of the Second International Workshop
on Configurable Distributed Systems, (Pitts-burgh, PA), pp. 190–201, March 1994.

[274] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “Transparent fault tolerance for enterprise applications,”
in Proceedings of the International Conference on Advances in Infrastructure for Electronic Business, Science,
and Education on the Internet, (L’Aquila, Italy), July-August 2000.

[275] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman, “Extending the operating system at the user-
level: the Ufo global file system,” in Proceedings of USENIX’97, pp. 77–90, 1997.

[276] S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture for user-level packet capture,” in
USENIX Winter, pp. 259–270, 1993.

[277] D. Lafferty and V. Cahill, “Real world evaluation of aspect-oriented programming with Iguana,” in Proceedings
of the International Workshop on Aspects and Dimensional Programming at the 14th European Conference on
Object-Oriented Programming (ECOOP), (Sophia Antipolis and Cannes, France), June 2000.

[278] A. Oliva and L. E. Buzato, “The design and implementation of Guaraná,” in Proceedings 5th USENIX Confer-
ence on Object-Oriented Technologies and Systems, (San Diego, California), May 1999.

[279] E. G. Parmelan, “Porting Kaffe to a new platform.” http://egp.free.fr/port-kaffe/port-
kaffe-0.2.html, 2001.

[280] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software. Indianapolis, Indiana: Addison-Wesley, 1995.

[281] K. Burton, .NET Common Language Runtime. Sams Publishing, U.S.A, 2002.
[282] http://www.cs.wustl.edu/ � schmidt/TAO.html.
[283] K. Nilsen, “Issues in the design and implementation of real-time java,” Java Developers Journal, 1996.
[284] K. Nahrstedt, H. hua Chu, and S. Narayan, “QoS-aware resource management for distributed multimedia ap-

plications,” Special issue on multimedia networking, J. High Speed Network, Dec. 1998.
[285] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The case for reflective middleware,” Communications of the

ACM, vol. 45, pp. 33–38, June 2002.
[286] G. S. Blair, G. Coulson, A. Andersen, M. Clarke, F. M. Costa, H. A. Duran, R. Moreira, N. Paralavantzas, and

K. B. Saikoski, “The design and implementation of Open ORB version 2,” IEEE Distributed Systems Online,
vol. 2, no. 6, 2001.

[287] ITU-T/ISO, Reference Model for Open Distributed Processing, Parts 1,2,3., 1995. ITU-T X.901-X.904 —
ISO/IEC IS 10746-(1,3,3).

[288] T. Watanabe and A. Yonezawa, “Reflection in an object-oriented concurrent language,” in Proc. ACM Con-
ference on Object-Oriented Programming, Systems, Languages and Applicaitons (OPSLA’88), (San Diego,
California), pp. 306–315, Sept. 1988.

[289] R. Koster, A Middleware Platform for Information Flows. PhD thesis, Department of Computer Science,
University of Kaiserslautern, Germany, July 2002.

[290] M. van Steen, P. Homburg, and A. S. Tanenbaum, “The architectural design of Globe: A wide-area distributed
system,” Tech. Rep. 422, Vrije Universiteit, Amsterdam, The Netherlands, March 1997.

[291] “Orbix+Isis programmer’s guide.” Technical report D071-00, IONA Technologies, 1995.
[292] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, “The interception approach to reliable distributed

CORBA objects,” in Proceedings of the Third USENIC Conference on Object-Oriented Technologies and Sys-
tems (COOTS), USENIX, 1997.

[293] IONA Technologies, Orbix/E. http://www.iona.com/products/orbix-e.htm.
[294] G. Brose and N. Noffke, “JacORB 1.4 documentation,” tech. rep., Freie Universitt Berlin and Xtradyne Tech-

nologies AG, August 2002.

26

[295] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal, “Packaging quality of service control behaviors for reuse,” in
Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-time distributed Computing,
(Washington, DC), April 2002.

[296] E. Hadad, Architectures for Fault-Tolerant Object-Oriented Middleware Services. PhD thesis, Computer Sci-
ence Department, The Technion - Israel Institute of Technology, 2001.

[297] L. Capra, W. Emmerich, and C. Mascolo, “Reflective middleware solutions for context-aware applications,”
Lecture Notes in Computer Science, vol. 2192, 2001.

[298] H. Miranda, M. Antunes, L. Rodrigues, and A. R. Silva, “Group communication support for dependable multi-
user object-oriented environments,” in SRDS Workshop on Dependable System Middleware and Group Com-
munication (DSMGC 2000), (Nürnberg, Germany), October 2000.

[299] M. Roman and R. Campbell, “Gaia: Enabling active spaces,” in Proceedings of the ninth ACM SIGOPS Euro-
pean Workshop, (Kolding, Denmark), 2000.

[300] F. Kon, R. Campbell, M. D. Mickunas, K. Nahrstedt, and F. J. Ballesteros, “2K: A Distributed Operating
System for Dynamic Heterogeneous Environments,” 9th IEEE International Symposium on High Performance
Distributed Computing, August 2000. http://choices.cs.uiuc.edu/2k/.

[301] M. Satyanarayanan, B. Noble, P. Kumar, and M. Price, “Application-Aware Adaptation for Mobile Computing,”
Operating Systems Review, vol. 29, no. 1, pp. 52–55, 1995.

[302] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker, “Agile Application-
Aware Adaptation for Mobility,” Sixteen ACM Symposium on Operating Systems Principles, pp. 276–287,
October 1997.

[303] B. Noble, “System Support for Mobile, Adaptive Applications,” IEEE Personal Communications, pp. 44–49,
February 2000.

[304] “The SwitchWare project.” http://www.cis.upenn.edu/˜switchware/.
[305] “Distributed operating systems group: Computing communities project.”

http://calypso.eas.asu.edu.
[306] R. Litiu and A. Prakash, “DACIA: A mobile component framework for building adaptive distributed applica-

tions,” in Principles of Distributed Computing (PODC) 2000 Middleware Symposium, (Portland, Oregon), July
2000.

27

Appendix A Classification of Projects

In this appendix, the projects listed in Table 1 are classified according to the taxonomy introduced in Section 4. Table 8
again lists the projects in Table 1 and classifies each by showing a check mark when a project supports a feature listed
in the columns under categories How, When, and Where. We have expanded the How category: in addition to the
particular technique(s) used to implement compositional adaptation, listed in Table 2, the How category includes four
additional dimensions: transparency, granularity, coverage, and compatibility.

In the transparency columns, we distinguish projects that are transparent to the functional application source code,
to the adaptive code, to the distribution middleware services (if applicable), and to the virtual machine (if applicable).
In general, if an approach enables association of adaptive code to functional code, without modifying the functional
code directly, we say the approach is transparent with respect to the functional code. If the association can be made
without modifying the adaptive code directly, then we say that the approach is transparent with respect to the adaptive
code. For example, an application might be adapted at run time in a “generic” way, for example, to apply encryption
to all network communication. If the adaptive code is independent of the functional code of the application, then the
adaptation is transparent with respect to the adaptive code.

Granularity refers to the degree to which interactions in an application can be intercepted, redirected, and modi-
fied. The granularity can be per system (e.g., an ORB in a CORBA application), per class (e.g., a class in a class-based
object-oriented paradigm or a component type in a component-based paradigm), per object (e.g., an object or an in-
stance of a type), per method (e.g., a method signature irrespective of the type or class where the method is introduced),
and per method call (e.g., a message being passed from one object to another as the result of a method call).

Coverage distinguishes projects according to whether adaptation can be applied to local and/or remote interactions.
For example, many middleware approaches apply adaptation only to communication operations. Also, we identify
projects that enable selection of a subset of interactions for possible adaptation, so as not to introduce overhead
unnecessarily on other interactions.

Finally, in the Support columns, we identify projects that support the standard distribution frameworks: CORBA/CCM,
Java RMI/J2EE, and DCOM/.NET Remoting.

This technical report is intended to be a living document. We expect Table 8 to grow and evolve over time, as
additional projects are classified and as new capabilities are added to existing projects. We intend this document
to serve as a tool for research in compositional adaptation, and we welcome input from the research community on
projects not listed and on any necessary corrections. In the remainder of this appendix, we summarize a number
of projects and briefly discuss the rationale for how they are classified. In this version, we do not discuss projects
involving domain-specific services or cross-layer adaptation; those will be addressed later.

A.1 Language-Based Projects

We begin by discussing approaches that language-oriented techniques to support compositional adaptation. Consid-
ering Table 8, we see that all the approaches listed use some type of metaobject protocol, among other mechanisms.
Moreover, since these solutions can be applied to arbitrary application code, their coverage of interactions among ele-
ments is very general (local, remote, selected). Mainly, differences are found in their granularity and the time at which
recomposition occurs.

OpenJava. OpenJava [57] is a macro-based extension to Java that enables customization of class structures, alteration
of the behavior of operations on objects, alteration of variable types, and extension of the Java syntax. OpenJava ad-
dresses the limitations of the Java reflection by enabling behavioral reflection facilities to be added to a Java program
at compile time. The macros are defined to manipulate class metaobjects representing program entities. For example,
these facilities enable inspection of a Java program (e.g., to determine the class of a given object, along with the meth-
ods and fields of that class, and to perform limited operations at run time (e.g., to get and set an object’s field value and
invoke one of its methods). OpenJava provides an openjava.mop.OJClass class, which extends the java.lang.Class
class. The OJClass complements the Java structural reflection facilities at run time by extending the Class meth-
ods. Moreover, the OJClass provides a method, called transformClass(), that can be overwritten by a meta-level
programmer to customize a Java program at compile time. A source-to-source compiler transforms a Java program ac-
cording to the subclass of the OJClass provided by the meta-level programmer, using the transformClass() method.

We classify OpenJava as follows. To support compositional adaptation, OpenJava uses a meta-object protocol
technique (How) at compile time (When) to customize a Java application (Where). Since the customization process is

28

OpenJava √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
FRIENDS √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
PCL √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Adaptive Java √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
AspectJ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Composition Filters √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
ARCAD √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
TRAP/J √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
JOIE √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Kava √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
R-Java √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

OGS √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
QuO √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
FTS √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
IRL √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
TAO-LB √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
ACT √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

TAO √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
ZEN √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
CIAO √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
DynamicTAO √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
UIC √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Open ORB/COM √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
FlexiNET √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Squirrel/Infopipes √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
AspectIX √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
OpenCorba √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Electra/Horus/Isis √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Orbix/Isis √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Orbix/E √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

ACE √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Ensemble √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
MetaSockets √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Eternal/Totem √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Rocks √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Racks √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
PROSE √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Iguana/J √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Guaraná √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Personal Java √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
Embedded Java √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

L
an

g
u

ag
e

B
as

ed

Application Layer:

M
id

d
le

w
ar

e
B

as
ed

Common Services Layer:

Distribution Layer:

Host-Infrastructure Layer:

R
em

o
te

 In
te

ra
ct

io
n

s

S
el

ec
te

d
 In

te
ra

ct
io

n
s

C
O

R
B

A
/C

C
M

Ja
va

 R
M

I/J
2E

E

P
er

 O
b

je
ct

P
er

 M
et

h
o

d

P
er

 M
et

h
o

d
 C

al
l

L
o

ca
l I

n
te

ra
ct

io
n

s

D
is

tr
ib

u
ti

o
n

 M
W

V
ir

tu
al

 M
ac

h
in

e

P
er

 P
ro

ce
ss

P
er

 C
la

ss

M
id

d
lw

ar
e

In
te

rc
ep

ti
o

n

In
te

g
ra

te
d

 M
id

d
le

w
ar

e

F
u

n
ct

io
n

al
 C

o
d

e

A
d

ap
ti

ve
 C

o
d

e

D
is

tr
ib

u
ti

o
n

 M
W

H
o

st
-I

n
fr

as
tr

u
ct

u
re

 M
W

O
p

er
at

in
g

 S
ys

te
m

F
u

n
ct

io
n

 P
o

in
te

rs

W
ra

p
p

er
 P

at
te

rn

P
ro

xy
 P

at
te

rn

S
tr

at
eg

y
P

at
te

rn

V
ir

tu
al

 C
o

m
p

. P
at

te
rn

M
et

a-
O

b
je

ct
 P

ro
to

co
ls

A
sp

ec
t

W
ea

vi
n

g

R
u

n
 T

im
e

A
p

p
lic

at
io

n

D
o

m
ai

n
-S

p
ec

if
ic

 M
W

C
o

m
m

o
n

-S
er

vi
ce

s
M

W

Support

D
ev

el
o

p
m

en
t

T
im

e

C
o

m
p

ile
 &

 L
in

k
T

im
e

S
ta

rt
 &

 L
o

ad
 T

im
e

C
O

M
/D

C
O

M
/.N

E
T

Projects

How? When? Where?
Techniques Transparency Granularity Coverage

Figure 8: Categorizing projects according to the taxonomy introduced in Section 4

performed by the source-to-source compiler, OpenJava is transparent with respect to the functional code of the Java
program. This process is also transparent with respect to the virtual machine, since the transformed source code is a
Java program that can be compiled with a standard Java compiler and executed on a standard JVM. In addition, when
adding “generic” types of new behavior, such as profiling the execution sequence, the meta-level programmer does not
need to know in advance which base-level classes will be associated with the meta-level classes. Therefore, OpenJava
supports transparency with respect to the adaptive code as well. OpenJava enables association of meta-level classes
to the base-level classes, so the granularity of compositional adaptation is per class. Since this association can be for
a selected set of base-level classes, coverage is general (open, remote, selected). Finally, while OpenJava does not
provide any explicit support for CORBA, Java RMI, and COM/DCOM distribution middleware technologies, we note
that it can be used to support adaptation for remote objects.

FRIENDS. The FRIENDS system [147], developed by Fabre et al., provides a meta-level architecture that program-
mers can use to develop dependable systems. The system comprises a set of metaobject libraries (written in both Open
C++ and OpenJava) for fault tolerance, secure communication, and group-based distributed applications. FRIENDS

29

enables non-functional mechanisms to be implemented at the meta level. Reflection is used to address various non-
functional requirements: fault tolerance using several replication strategies, security using ciphering and authentication
protocols, and communication using atomic multicast protocols. Figure 9 shows the multi-level implementation of the
client-server protocol using fault-tolerant, security, and communication meta objects. A specialized MOP enables in-
terception of the interactions between CORBA objects. Using this MOP, FRIENDS provides fault-tolerant replicas as
CORBA objects (or meta objects).

fault-tolerant protocol

security protocol

communication protocol

client group of servers

Figure 9: FRIENDS architecture [147].

FRIENDS use a meta-object protocol technique (How) at compile time (When) to adapt the code of a distributed
application (Where). The use of an open compiler in FRIENDS makes it transparent with respect to both the functional
code, adaptive code, and the virtual machine. While FRIENDS provides specific support for CORBA applications, the
resulting transformation is transparent to the CORBA implementation, so we we consider FRIENDS transparent to the
distribution middleware, Since FRIENDS enables association of meta-level classes to individual CORBA objects and
clients, the granularity is per object.

PCL. Program Control Logic (PCL) [132] is a programming framework that enables design, development, and perfor-
mance optimization of adaptive distributed applications. A source-to-source compiler is provided, which inputs meta
code specified in either PCLC or PCLJ (languages very close to C++ and Java, respectively) and outputs a program
source in C++ or Java that is then compiled and linked with the base program. The PCL project focuses on language
support for run-time adaptability. PCL uses Adaptors to wrap and adapt original application classes. Adaptors are typ-
ically subclasses of targets and have access to many of the variables defined in the target class. Adaptors can change
the behavior of a single target class through the use of variables and methods, called ControlParameters and
ControlMethods, visible in the superclass to the Adaptor. The Adaptor can read and modify ControlParame-
ters and call ControlMethods as part of the adaptation policy, enabling parameter observation and modification.
Adaptation policies are specified using metrics associated with variables of the target class. Metrics can be sampled,
timed or rate based, and are used to trigger events that execute adaptive processing.

PCL uses strategy pattern (e.g., to enable selection of the best algorithm at run time among a list of algorithms
known at compile time) and assigns controlling adaptors to application classes using a meta-object protocol technique
(How) at compile time (When) to adapt a C++ or Java application (Where). Although PCL supports run-time adap-
tation through selection of algorithms and modification to the variables of a program at run time, a new algorithm or
adaptation mechanism cannot be introduced after compile time. Therefore, we do not classify it as supporting compo-
sitional adaptation at run time. The adaptation process is performed by a source-to-source compiler that is transparent
with respect to the program functional code. The transformed source code is either a C++ or Java program that can
be compiled with a standard C++ or Java compiler, so transparency with respect to the virtual machine and distribu-
tion middleware (if used) is preserved. However, it seems that the adaptors in PCL must be aware of the variables of
the class to which they are assigned, so the method is not transparent with respect to the adaptive code also. Because
adaptors are assigned to application classes, we consider the granularity of PCL to be per class.

Adaptive Java. Adaptive Java [44] is an extension to Java that introduces new language constructs to support behav-
ioral reflection. In its behavioral reflective meta-model architecture, Adaptive Java separates monitoring the behavior
(introspection) from changing the behavior (intercession), using “refractive” and “transmutative” meta methods, re-
spectively. By defining a reflection-based component model, Adaptive Java also supports run-time reconfiguration.
Adaptive Java’s approach to composition using encapsulation can be used to instantiate a message filtering design,
where components are extended and invocations added such that a call to an invocation would be filtered through
subsequent encapsulation layers.

To support compositional adaptation, Adaptive Java uses the wrapper pattern to encapsulate application objects
inside their meta-level objects and uses a meta-object protocol technique (How). These actions produce an adapt-
ready version of a Java application (Where) at compile time that can be recomposed (including introduction of new

30

components) at run time (When). Unlike the projects discussed above, the developer is required to modify the source
code of a Java program directly, so the column “Development Time” in Table 8 is checked. In addition, this direct
modification means the method is transparent to neither the functional code nor the adaptive code. However, since
Adaptive Java uses source-to-source compiler, the generated adapt ready program can be compiled with a standard
Java compiler and can be executed by a standard JVM. The granularity is per class, since entire classes are metafied.

AspectJ. AspectJ [115] is an extension to Java that enables a developer to program crosscutting concerns of a Java
program in separate modules, called aspects. At compile time, a number of such aspects can be selected to be woven
into the Java source or class files of the application using the AspectJ compiler, called aspect weaver, to produce a
special version of the application. An aspect in AspectJ has two parts: advice and pointcut. Advice is an implemen-
tation of a crosscutting concern and a pointcut is a set of joinpoints, at which the advice is woven. A joinpoint is an
identifiable point in the execution path of an application, such as a method call or a access to a field.

AspectJ uses aspect weaving (How) at compile time (When) to modify a Java application (Where). We note
that AspectJ also provides reflection facilities that add to the power of the Java reflection, so we have checked the
“Meta-Object Protocol” box. The weaving process is transparent to the application functional code, the JVM, and any
distribution middleware. Moreover, since it is possible to develop generic advice (for example, tracking program flow
or performing security checks) that is independent of the application classes to which it is eventually applied, AspectJ
supports transparency to the adaptive code. In terms of granularity, a joinpoint in AspectJ can be assigned to a class or
to a method of a class. [pkm: Masoud, please clarify the following sentence.] Although, using the AspectJ reflection
facilities, an aspect developer can associate an aspect to a single object or a single method call, we do not consider
per object and per method call granularity for AspectJ, because such granularity is not directly supported in AspectJ.
Finally, we note that while AspectJ itself is a compile-time method, it can be used to support run-time recomposition
by weaving appropriate “hooks” into a program. This approach is used in ARCAD [124] and TRAP/J [62], among
others.

Composition Filters. Composition filters [40, 56, 56, 257] provide a mechanism for disentangling the crosscutting
concerns of the interactions among objects of an object-oriented program (e.g., a C++ or Java program) or among
remote objects of a distributed program (e.g., a CORBA program in Orbix). Specifically, this system declares filters
that intercept messages received and sent by objects. As such, messages can be massaged and checked before they are
delivered to an object. In this manner, aspects such as security authentication or bounds checking can be separated
from the objects that send and receive these messages. We note that one advantage of composition filters over AspectJ
is that the code for filters is not (eventually) tangled with the the application code. Therefore, using the well-defined
meta-object protocols defined in composition filters, a programmer can insert filters into, or remove them from, an
application at run time. Preprocessing produces objects wrapped with a special interface. Depicted in Figure 10,
filters can be applied to these interfaces, filtering incoming and outgoing messages, applying rules or passing them to
the next filterset when no matches are found. Rules can reject or massage a message or dispatch it to an underlying
object. Composition Filters implement superimposition by applying rules at application locations specified using
wild cards or signatures. Superimposition can simulate dynamic inheritance, where program flow is redirected to
filters by rules superimposed on classes or objects. Even functional concerns can be occluded and replaced by new
implementations.

Composition filters use aspect weaving (How) that introduce filters at compile time (When) into the classes of a
Java or C++ program (Where). As with several other approaches, the weaving process is transparent to the application
functional code, to the virtual machine, and to any distribution middleware. Also, generic filters can be defined,
providing transparency to the adaptive code. Filters are designed for entire classes. However, we note that filters can
be developed to be effective with finer granularity such as per object, per method, or per method call. [pkm: Masoud,
explain what you mean above and why the boxes are not checked.] Finally, composition filters have been applied
to CORBA (using Orbix) and Java RMI distributed applications, so we check those boxes. [pkm: per our macro
discussion, is there a set of CFs designed explicitly for CORBA, etc? We should probably mention the specifics and
give references.]

ARCAD. The RNTL ARCAD project [124] uses a two-step approach to support compositional adaptation in existing
Java applications (Where). In the first step, generic interception hooks are woven into an existing Java at compile time
using the AspectJ aspect weaver. In the second step, intercepted operations are forwarded to the meta-level objects,
which are programmable at run time. Therefore, we check both the compile time and the run time boxes (When).
ARCAD uses a MOP library, called RAM, to attach or detach meta-objects to application objects (instances of classes

31

n()

(C)

(B)

(A)

o() p()

m()

filter type

(message does not match)

(message continues to next filter)

(message matches)

(message is modified
continues to next filter)

(message matches)

(message is dispatched)

rejected messages

filter pattern

Figure 10: An intuitive schema of message filtering [257]. In this diagram, (A), (B) and (C) are three
filters, while m(), n(), o() and p() are messages. Following message m(), filter (A) rejects m(), passing
it to filter (B). Filter (B) matches m() and modifies m(). Filter (C) matches the modified message m()
and dispatches it to a target object.

modified at compile time using AspectJ) at run time. The code for meta-objects in ARCAD is written in Java, while
the code for filters in composition filters is written in a high-level language that can be reused for programs written in
other languages such as C++, if a compiler is supported for that language.

Since the aspect weaving is used to wrap a selected set of classes, ARCAD combines three techniques: aspect
weaving, wrapping, and meta-object protocols (How). to support composition technique supported by AspectJ and
provides generic aspects that wrap a selected set of the classes As in AspectJ, the weaving process is transparent to
the application functional code, to the virtual machine, and to any distribution middleware. The MOP library provides
reusable meta-level classes that are developed without the need to know to which application classes they will be
assigned, so ARCAD supports transparency to the adaptive code. The granularity of adaptation supported in ARCAD
is considered per object, because meta-objects in ARCAD are attached to or detached from application objects at run
time.

TRAP/J. TRAP/J [62] is a software tool that, similar to ARCAD, provides a two-step approach to dynamic adaptation
in Java applications (Where). TRAP/J enables new adaptable behavior to be added to existing Java applications
transparently (that is, without modifying the application source code and without modifying the JVM). Specifically,
TRAP/J enables the developer to select, at compile time, a subset of classes in the existing program that are to be
adaptable at run time. As illustrated in Figure 11, TRAP/J then generates aspects and reflective classes associated with
the selected classes, producing an adapt-ready program. The aspects are generic in that simply provide hooks that
intercept the program flow. Moreover, a generic MOP provides a means by which to introduce new code, referred to
as a delegate, to be executed upon such an interception.

In terms of classification, TRAP/J uses the same three techniques as ARCAD (wrapping, weaving, MOPs) (How)
and provides both compile-time and run-time composition (When). In fact, the only difference from ARCAD’s clas-
sification is that TRAP/J’s generic MOP enables the implementation of each individual methods of each instance of
an adaptable class to be modified at run time, through insertion or removal of delegate classes. The delegate classes
themselves can support generic functionality, so TRAP/J can be transparent to the adaptive code.

32

MetaLevel
Class

BaseLevel
ClassAspect

MetaLevel
Class

BaseLevel
ClassAspect

Reflective Class
Generator

Application Source

AspectJ Compiler (ajc)

Aspect
Generator

Class Name List

Wrapper-
Level Class

Meta-
Level ClassAspect

TRAP/JTRAP/J

Java Compiler (javac)

Data Flow

Adapt-Ready App.

Figure 11: TRAP/J operation at compile time.

Java Object Instrumentation Environment (JOIE). The Java Object Instrumentation Environment (JOIE) [258] is
a toolkit that enables existing Java class files to be modified when loaded by the JVM. JOIE provides a specialized
Java class loader that enables the registration of user-specified transformers, which implement policies that modify
Java byte code. The class loader constructs a reflective ClassInfo object, encapsulating the byte code of the class
as it is loaded. This ClassInfo object is then passed to each of the registered transformers. ClassInfo objects
provide an interface that enables the manipulation of byte code such that functionality can be modified or extended.
As such, calls to debugging or tracing routines can be inserted, enabling existing compiled classes to be instrumented.
Moreover, algorithms and variables can be modified through byte code splicing.

JOIE uses a meta-object protocol mechanism (How) at load time (When) to modify byte code of class files of a
Java application (Where). The byte-code modification is transparent to the application functional code, to the virtual
machine, and to any distribution middleware. The library of reusable class loaders that can be used to modify Java
program in ways independent of the application code, so JOIE supports transparency to the adaptive code. Finally, the
modifications are carried out on a class basis, so the level of granularity is the class.

Kava. Kava [118] uses load-time byte-code rewriting to support dynamic adaptation of Java programs at run time.
Kava addresses the problems with byte-code rewriting toolkits such as JOIE [180] (discussed above), Byte Code Engi-
neering Library [259], and Javassist [260] that do not support the express behavioral modifications in Java so that they
can be compiled and verified as Java classes. Specifically, Kava uses the Byte Code Engineering Library [259] toolkit
to incorporate its run-time meta-object protocol in a Java program. Kava provides an XML-like binding language that
can be used to write configuration files to be used in the transformation process at load time. The configuration file
plays the same role as the pointcuts in AspectJ [115]. Kava allows each class to be bound to a meta-level object, where
behaviors such as method invocation, method execution, and field access can be modified dynamically. Traps inserted
into class files at load time enable run-time redirection of the execution to the meta-level object.

Kava uses a meta-object protocol mechanism (How) to modify the Java program byte code at load time and to
support dynamic adaptation at run time(When) at the application layer (Where). Kava supports dynamic adaptation
by enabling dynamic manipulation of meta-level objects, but its adaptation is limited to the classes modified at load
time (i.e., Kava supports anticipated dynamic adaptation). The byte-code modification is transparent to the application
functional code, to the virtual machine, and to any distribution middleware. Kava supports transparency to the adaptive
code through the use of configuration files, which is used as a glue code between the application functional code (base-

33

level classes) and the adaptive code (meta-level objects). Since Kava meta-level objects are assigned to base-level
classes, the level of granularity is the class.

R-Java. R-Java [58] is Java extension that supports a type of statically-typed metaobject called dynamic shells. Unlike
many approaches, R-Java is designed to minimize the overhead when no adaptive behavior is required. However, the
cost is a a new instruction, (chclass), added to the Java language that enables developers to explicitly change the
class of objects at run time. (The new class must be a “subclass” of the original class.) Hence, the JVM requires this
modification. Basically, R-Java is categorized similar to Kava, except that it is not support transparency with respect
to the JVM. Also, the “Host-Infrastructure MW” column in the Where section is checked to indicate the need for a
modified JVM.

Other Language-Based Approaches. Numerous other projects apply language-based approaches to compositional
adaptation. Examples include Open C++ [135], Reflective Java [60], Hyper/J [116], Aspectual Components [117,171],
Reflex [133], Handi-Wrap [134], JAC [59], JavaPod [261], Proteus [262], Dalang [263], Byte Code Engineering Li-
brary [259], Javassist [260], JMangler [264], Dynamic Weaver Framework (DWF) [120], Binary Component Adap-
tation (BCA) [265], DAS [266], TAILOR [267], Adaptive Plug-and-Play Components (APPCs) [268], DADO [222],
and Hadas [269]. These and other projects will be classified at a later date.

A.2 Host-Infrastructure Middleware Projects

Projects involving compositional adaptation at the host-infrastructure layer generally fall in one of two groups. The
first group includes those approaches that construct a layer of adaptable communication services, which can be used
to adapt remote interactions (e.g., ACE [166], Ensemble [42], MetaSockets [150], Eternal [196], Rocks [198], and
Racks [198]). The second group includes approaches that are based on virtual machines. Unlike the first group,
approaches in this group can be used to adapt both local and remote interactions, since a virtual machine intercepts
all interactions. Approaches in this group may extend a standard virtual machine (e.g., PROSE [140], Guaraná [141],
and Iguana/J [61]), or may generate a customized version of a standard virtual machine (e.g., PersonalJava [270]
and EmbeddedJava [199]). Many benefit from facilities provided in the standard JVM, including Java reflection for
inspection and (limited) manipulation of a Java program, the forName() static method for dynamic class loading,
and command-line parameters (e.g., -Xbootclasspath and various HotSpot options) for custom configuration. While
providing transparency to the application code, however, approaches in this latter category reduce portability with
respect to the standard virtual machines.

ACE. One of the earliest middleware projects in this category is Schmidt’s Adaptive Communication Environment
(ACE) [166, 271], a real-time object-oriented framework written in C++. ACE wraps many OS services in C++
wrappers and provides a variety of communication-related patterns for use by distributed applications. ACE is de-
signed to support distributed applications with efficiency and predictability, including low latency for delay-sensitive
applications, high performance for bandwidth-intensive applications, and predictability for real-time applications. Fig-
ure 12 illustrates the key components in the ACE framework. Note that the OS Adaptation Layer resides directly atop
the native operating system APIs providing a platform-independent API, which is why we place ACE in the host-
infrastructure layer (Where). ACE can be configured at startup time using configuration files and can be reconfigured
at run time using a component configurator pattern [163] and C++ dynamic binding features (When).

Figure 12: ACE architecture [272].

34

To support compositional adaptation, ACE employs C++ function pointers and software design patterns, and can
be incorporated into a distributed application using the integrated middleware technique (How). Although ACE was
designed to be used directly in distributed applications, with the development of TAO [165] (discussed later), ACE
is more commonly used indirectly via TAO. In this mode, the ACE adaptive services are used explicitly by TAO and
remain transparent to the application code. For example, TAO uses the ACE service configurator framework [273],
which implements the component configurator pattern [163], to load and initialize a POA component (a CORBA
portable object adapter that dispatches remote calls to CORBA servants) at run time. The specific implementation
of a POA component is transparent to the application code, and a POA implementation does not need to have any
specific knowledge of the application using it. Therefore, ACE provides transparency to both functional and adaptive
code. If ACE were incorporated into an application directly (not through TAO), then it would not be transparent to the
application code. Since the ACE core remains intact during adaptation, we consider it as repeatedly-tunable (but not
mutable) middleware. Moreover, ACE provides a process-wide adaptation, since adaptations in ACE (such as the one
discussed above) are applied to the entire program (as opposed to being applied to only a class of objects, a specific
object, a method of a class, or a method call).

Ensemble. Ensemble [42] from Cornell University is a groupware communication toolkit that supports distributed ap-
plications with application-specific communication protocols (Where). Ensemble is a follow-on project to Horus [192]
and is implemented in a variant of the ML programming language to facilitate formal verification (Horus was written in
C). Central to the design is the construction of protocol stacks from fine-grained components, called micro-protocols.
A set of communicating processes use a common stack configuration (represented as a protocol graph) to support
group operations. The Ensemble framework is designed to provided QoS monitoring, reliability, high availability,
fault-tolerance, consistency, security, and real-time responsiveness in distributed applications. For example, to support
QoS monitoring, Ensemble enables insertion of detectors in the protocol graph. These detectors can trigger dynamic
adaptation by distributing a new protocol-graph specification to all involved participants using a reconfiguration pro-
tocol.

Ensemble provides a number of reusable micro-protocols in its library, and new micro-protocols can also be
developed and used in Ensemble. Ensemble can be configured at startup time by stacking a number of micro-protocols
on top of each other and reconfigured at run time by rearranging the micro-protocol stack (When). Examples of
dynamic adaptations supported in Ensemble include adaptation with respect to changes in network bandwidth and
latency, to processor and network failures, and to changing security policies. The Ensemble core remains intact
during adaptation, so we consider it to be repeatedly-tunable middleware. The classification of Ensemble is similar
to that of ACE, with the exception of the mechanisms used for compositional adaptation. In Ensemble, these custom
mechanisms are built into the framework, so we categorize them as integrated middleware (How). As with ACE,
Ensemble can be incorporated into a distributed application either directly, where the application code uses Ensemble
adaptive services explicitly, or through the a distribution middleware (Electra [191]) (discussed later), in which case
the Ensemble adaptive services remain transparent to the application code. Finally, similar to ACE, Ensemble provides
a process-wide adaptation.

MetaSockets. MetaSockets [150] from Michigan State University are adaptable communication components created
from existing Java socket classes using Adaptive Java [44], a reflective extension to Java discussed earlier. As il-
lustrated in Figure 13, MetaSockets support compositional adaptation through the use of a filter pipeline that allows
insertion and removal of filters dynamically in response to external stimuli. A filter performs a single operation on a
stream of data passing through the filter pipeline. Comparing MetaSockets to Ensemble, the filter pipeline and filters
in MetaSockets play a role similar to that of the protocol graph and micro-protocols in Ensemble, respectively. How-
ever, the level of abstraction supported in MetaSockets is Java sockets, whereas the level of abstraction in Ensemble is
network protocols.

MetaSockets use the reflection facilities and the wrapper pattern provided in Adaptive Java [44]. Typically, they
are incorporated into an application using the integration middleware technique (How). That is, an application de-
veloper can use MetaSockets directly, in which case MetaSockets are explicitly declared in the application source
code at development time and compiled by the Adaptive Java compiler at compile time (When). As such, the use of
MetaSockets is not transparent to the application code. However, we note that tools such as TRAP/J can be used to
weave MetaSockets into an application transparently. Similar to micro-protocols of Ensemble, the filters in MetaSock-
ets can be developed by third parties and can be independent of a specific application code. For example, a pair of
encryption/decryption filters can be developed independent of the type of data being secured or the application code
using the filters. Therefore, MetaSockets provide transparency with respect to adaptive code. The code for MetaSock-

35

filter with thread
and buffer

GetStatus

RemoveFilter

InsertFilter

Java
Socket

send
close

pipeline

meta level

base level

Figure 13: MetaSockets pipeline.

ets is compiled by the Adaptive Java compiler, which is a source-to-source compiler, so the resulting Java program can
be compiled by the standard Java compilers and run by the standard JVM. A MetaSocket can be configured at startup
time by inserting filters into its filter pipeline and can be reconfigured at run time by inserting, removing, or modifying
the filters dynamically (When). Since the core MetaSocket code remains intact during the tuning process, we classify
them as repeatedly-tunable middleware. Finally, the granularity of adaptation in MetaSockets is the individual Java
socket object, since each MetaSocket can be configured differently at run time.

Eternal. Eternal [274] from UCSB and Eternal Systems, is a component-based middleware to provide fault tol-
erance to CORBA applications by replicating CORBA objects. As illustrated in Figure 14, Eternal is incorporated
into a CORBA application using a middleware interception approach (How), which is transparent both to the ap-
plication code and CORBA distribution middleware implementation. Eternal intercepts system requests originated
from unmodified CORBA ORBs targeted for the kernel TCP/IP protocol stack using the operating system user-level
extensions [275] (Where), and transfers them to a replication manager. Eternal uses a reliable multicast protocol
(specifically, Totem [197]) in maintaining consistency among replicas.

TCP/IP

Unmodified CORBA ORB or
Java Virtual Machine

Eternal
Interceptor

Eternal
Replication
Mechanisms

Totem

Platform

Multicast
Messages

I IOP Interface

Application Object

Figure 14: The Eternal architecture [196].

To use Eternal in an existing CORBA application, Eternal must be configured at application startup time to set up
the monitoring and capturing of system calls. The system can be reconfigured at run time to modify the number of
CORBA replicates and the replication strategy (When). The existence of the replication, and hence the configuration
and reconfiguration, are transparent to the CORBA objects; hence, Eternal provides transparency to the application
code. Moreover, using Eternal, one can choose alternative strategies (e.g., active or passive replication) to provide
fault-tolerance. Since these strategies are independent of particular applications, Eternal provides transparency to the
adaptive code. Finally, Eternal provides adaptation at the process level by intercepting all the calls to TCP/IP and at
the CORBA object level using replicates.

Rocks. Zandy et al. [198] at the University of Wisconsin developed reliable sockets (Rocks) to protect socket-based
applications from poor network conditions, specifically, connection failures in mobile computing environments. Ex-
amples include unexpected modem disconnections and IP address changes as a result of mobile device movements or
DHCP lease expiration. Rocks resume sessions automatically after recovering from a period of disconnection. Us-
ing the “preloading” feature of the Linux loader [198], the Rocks library is interposed between the application code

36

and the kernel TCP socket (Where), as shown in Figure 15. Rocks monitor the TCP socket send and receive buffers
and maintain a copy of in-flight packets to prevent data loss in the presence of connection failure. After reconnec-
tion, Rocks first resends the packets in the in-flight buffers and then resumes the TCP socket to continue its normal
operation.

Figure 15: Rocks architecture [198].

The Rocks library exports the socket API, which is the same as the kernel socket API to be used transparently
by the application. This middleware interception approach (How), similar to that of Eternal, means that Rocks recon-
figuration is transparent to the application code, as well as to any distribution middleware or virtual machine. The
reliability provided in Rocks is independent of specific applications; hence, Rocks is also transparency to the adaptive
code. An enhanced API (RE-API) is available for use by Rocks-aware applications. We consider Rocks as config-
urable middleware because the interposition of the Rocks library must be done at the application startup time (When).
Finally, since an adaptation applies to all connections of a process, the level of granularity is the process.

Racks. Reliable packets (racks) [198], also developed at University of Wisconsin, offer an alternative solution to Rocks
that solves the following problems introduced by Linux preloading feature. First, the preloading feature depends on
the dynamic linker while, for security reasons, the dynamic linker is disabled on “setuid” binaries. Second, system
libraries may not correctly support preloading because they might have used static calls that cannot be trapped using
preloading. Finally, it is possible that other interposed libraries coexist with the Rocks library; the ordering of the
libraries affects the correct functioning of the Rocks library. As depicted in Figure 16, Racks are implemented as a
separate daemon process (Rackd), as opposed to the in-process approach in Rocks.

Figure 16: Racks architecture [198].
37

Instead of intercepting the socket calls as in Rocks or intercepting TCP calls as in Eternal, Racks intercept and
manipulate packets using a “packet filter” approach [276], which is a kernel mechanism that enables user processes
to select and intercept outgoing and incoming packets (Where). Although different than many middleware mecha-
nisms, we classify this approach as a middleware interception technique (How). We consider Racks as configurable
middleware because of the need to register a packet filter with the kernel during the application startup time (When).
Similar to Rocks and Eternal, the adaptation supported in Racks is transparent to the application code, to the adaptive
code, and to any distribution middleware and virtual machine. As in Rocks, Racks provides a per process adaptation
granularity.

PROSE. PROgrammable extenSions of sErvices (PROSE) [140,154] is an extension to the standard JVM (where) that
supports dynamic weaving of aspects into Java programs. The authors describe their approach as homogeneous, which
means the same language is used for both the application and aspects. (unlike AspectJ [115], which uses a different
language to define aspects and pointcuts). In PROSE, aspects and joinpoints are constructed by extending the Aspect
and Joinpoint classes, respectively. Weaving instructions are defined using the JVM debug interface (JVMDI), which
is a middleware interception technique (How). When an application reaches a joinpoint, program execution is halted
and the PROSE Java Machine Aspect Interface (JVMAI) receives notification of a joinpoint event. Then, PROSE
executes the aspects associated with the joinpoint.

PROSE must be configured with the standard JVM to set the JVMDI at startup time and can be reconfigured at
run time using its dynamic aspect weaving capabilities (When). The adaptation supported in PROSE is transparent to
application code, since setting up the JVMDI at startup time and intercepting interactions at run time used in PROSE
does not need any support from the application code. As in AspectJ, PROSE provides transparency to adaptive code
also, by enabling development of generic aspects (e.g., profiling aspects) that can be developed independent of specific
application code. Such a generic aspect can be assigned to specific classes or methods of a Java program using
joinpoints. PROSE provides adaptation at the class and method level for the same reasons as discussed in AspectJ.
Finally, PROSE can be used to adapt both local and remote interaction, because it can intercept all interactions that go
through the JVM.

Iguana/J. Iguana/J [61] extends the standard JVM (Where) to intercept method invocation, object creation, and field
reads and writes at run time. A key feature of Iguana/J is its support for unanticipated changes, where modifications
are not foreseen during system design. Rather than focus on reweaving and superimposition as in PROSE [140] and
Composition Fitlers [56], respectively, Iguana/J [61, 277] supports construction of applications that use reflection and
metaobject protocols for behavioral modification (How). Specifically, Iguana/J intercepts and reifies base-level oper-
ations (e.g., method invocations, object creations, and fields read and write), and redirects them to the corresponding
metaobject.

Iguana/J must be configured with the JVM at startup time but supports dynamic adaptation at run time by assign-
ing and reassigning metaobjects to classes (When). The adaptation is transparent to the application code, since similar
to PROSE, the JVM configuration at startup time does not require any support from the application code. Iguana/J
supports transparency with respect to the adaptive code, since generic metaobject protocols can be developed inde-
pendent of the specific implementation of a Java program. Later, at run time, the generic MOPs can be assigned to
various classes in the Java program. Finally, Iguana/J provides adaptation at the class level and, similar to PROSE, can
be used to adapt both the local and remote interaction.

Guaraná. Guaraná [141, 278] also implements a metaobject protocol in Java by extending the JVM (How), Instead
of configuring the standard JVM by Sun Microsystems, however, Guaraná extends the Kaffe OpenVM [279] (Where).
The approach uses composers to delegate control to other metaobjects and to other composers. The composer structure
forms a composite pattern [280] that allows multiple reflective views of a base-level object. The structure formed by
metalevel objects for a base-level object is called the metaconfiguration of the base-level object. Like Composition
Filters [56], Guaraná composers are capable of delegating an operation to multiple metaobjects for processing. The
returned results are composed by the composer and returned to the caller. Proxies can be used to reincarnate an object
from persistent storage or migrate an object to another machine. Similar to Iguana/J, Guaraná configures JVM at
startup time to set the JIT interface and to disable the Java HotSpot, and can be used for dynamic adaptation at run
time, by changing the metaconfiguration and issuing reconfiguration requests dynamically (When).

Personal Java and Embedded Java. PersonalJava [270] and EmbeddedJava [199] constitute a minimum Java that
reimplements the full set of Java APIs in order to fit into smaller devices with limited memory (Where). PersonalJava

38

is designed for “web-connected” devices such as set-top boxes, smart phones, and hand-held devices like PDAs. As
depicted in Figure 17(a), a minimum standard core is required on every PersonalJava-enabled device to enable the
web functionality. Unlike PersonalJava, EmbeddedJava enables automatic creation of customized APIs relative to the
requirements of one application, as opposed to one application domain, which results in smaller footprints. As such,
EmbeddedJava enables Java applications on very limited memory embedded devices, including industrial controllers,
process controllers, and scientific instruments. Every EmbeddedJava application may include different set of classes
since there is no required core functionality for all embedded devices as depicted in Figure 17(b).

(a) Personal Java [270]. (b) Embedded Java [199].

Figure 17: Architecture of PersonalJava and EmbeddedJava

Both PersonalJava and EmbeddedJava use a middleware integration technique to be incorporated to a Java program
(How). The incorporation is performed at compile time when a customized version of Java API is generated for a
specific application (When). PersonalJava and EmbeddedJava support a static approach to compositional adaptation
because they produce minimum applications at compile time and provide no specific support for dynamic adaptation.
The adaptation supported in both PersonalJava and EmbeddedJava is transparent to the application code, since the
customization takes place after the application is developed. Finally, both PersonalJava and EmbeddedJava provide
adaptation at the process level and can be used to adapt both the local and remote interactions.

Other Host-Infrastructure Middleware-Based Approaches. Other host-infrastructure middleware-based approaches
to compositional adaptation include Microsoft’s .NET CLR [281], metaXa (also known as MetaJava) [138, 139].

A.3 Distribution Middleware Projects

Much of the research in adaptive middleware has focused on the distribution layer, which moves the portability issue
closer to the application. The projects listed in Table 8 constitute only a representative sample. In considering the
table, we note that while the projects employ a variety of techniques, all include integrated middleware, and therefore
none is transparent with respect to the distribution middleware. However, all are transparent with respect to the virtual
machine. The granularity in these projects is relatively coarse, and many apply to the entire process (for example, in
a CORBA application, by requiring changes to all ORBs). In fact, the majority of the projects are based on CORBA.
All apply to remote interactions, by definition, but many enable selecting subsets of interactions for adaptation. Most
enable configuration at startup time and then enable reconfiguration at run time. Now, let us review each of the projects
and discuss their classification.

TAO/ZEN/CIAO. Schmidt et al. [165] extended their ACE work to create The ACE ORB (TAO), a CORBA compliant
real-time ORB built atop the ACE components, shown in Figure 18. TAO enhances the standard CORBA event service
to provide real-time event dispatching and scheduling required by real-time applications such as avionics, telecom-
munications and network management systems. Earlier versions of TAO employ the strategy design pattern [162]
to encapsulate different aspects of the ORB internals, such as IIOP pluggable protocols, concurrency, request de-
multiplexing, scheduling, and connection management. A configuration file is used to specify the strategies used to

39

implement these aspects during startup time. TAO parses the configuration file and loads the required strategies.

REAL-TIME ORB CORE`

Figure 18: TAO architecture [282].

In terms of classification, the strategy and virtual component patterns of TAO are incorporated into an application
using integration middleware (How). TAO is configured at startup and can load new components at run time using
the virtual component pattern (When). We consider the earlier versions of TAO as configurable middleware and the
recent version as repeatedly-tunable middleware, because it decomposes the C++ implementation of TAO into several
core ORB components that can be dynamically loaded on demand using the virtual component pattern [164]. The
adaptation supported in TAO is transparent to the application code the adaptive code, and the virtual machine, but not
to the distribution middleware. The level of granularity is the process.

ZEN [152] is a TAO successor targeting real-time and embedded systems. ZEN is implemented in Java and
Real-Time Java [283] and uses a micro-ORB architecture, illustrated in Figure 19, to minimize the footprint of the
system. ZEN identifies several major ORB services, such as object adapters and transport protocols, that can be moved
out of the micro-ORB kernel. Specifically, the virtual component pattern [164] is used extensively in ZEN to make
services dynamically pluggable. Each ORB service itself is decomposed into smaller pluggable components that can
be loaded into the ORB at run time only when required. Because of this feature, we consider ZEN as repeatedly-tunable
middleware. ZEN also employs profiling and reflection techniques to monitor and inspect the optimized configuration
found during the application tuning phase. The optimized configuration is written into a configuration file that can
be used for future executions of the application. ZEN parses the configuration file during the application startup time
and cofigures the middleware accordingly. As with TAO, ZEN uses strategy and virtual component patterns in an
integration middleware technique (How), can be configured at startup time using configuration files and can load new
components at run time using the virtual component pattern (When), and is a distribution middleware (Where).

Figure 19: The ZEN architecture [152].

Component-Integrated ACE ORB (CIAO) [167], the TAO implementation of CORBA Component Model (CCM) [160],
also resides in the distribution layer. CIAO is intended to provide component-based design to distributed real-time and
embedded (DRE) system developers by abstracting systemic aspects, such as QoS requirements and composable meta-
data units supported by the component framework. The classificationof CIAO is identical to that of TAO and ZEN.

40

dynamicTAO. Researchers at the University of Illinois have developed several adaptive middleware platforms [126,
145,146,221]. Kon et al. [126] extended an earlier version of TAO [165], which is configurable at startup/load time, by
using computational reflection to construct a dynamically adaptive version. called DynamicTAO. To provide real-time
services, DynamicTAO uses the Dynamic Soft Real-Time Scheduler (DSRT) [284], which provides QoS guarantees to
applications with soft real-time requirements. Reification in DynamicTAO is achieved using the service configurator
pattern [163], rather than metaobjects. In other words, reflection is mainly used to implement the service configura-
tor pattern. Figure 20 illustrates the DynamicTAO reified structure. The DomainConfigurator, TAOConfigurator,
and ServantConfigurator are all realizations of service configurator pattern in DynamicTAO. A service configurator
in DyanimcTAO exports the DynamicConfigurator interface, which is a CORBA IDL interface, defined also as the
MOP for inspecting, adapting, loading, and unloading “component implementations” dynamically. Component im-
plementations are organized in categories representing different aspects of the TAO ORB packaged as dynamically
loadable libraries (DLLs) that can be linked to the ORB at run time.

Servant1Configurator Servant2Configurator

TAOConfigurator

DomainConfigurator

ConcurrencyStrategy

SchedulingStrategy

SecurityStrategy

MonitoringStrategy

Figure 20: DynamicTAO reified structure [285].

As indicated in Table 8, DynamicTAO uses a strategy pattern and a meta-object protocol mechanism and is incor-
porated into an application using the integration middleware technique (How), can be configured at startup time using
configuration files and can be reconfigured at run time using the configurator pattern (When). Of course, it is consid-
ered as distribution middleware (Where). Because component implementations can be introduced to the middleware
at run time using DLLs, and because only a limited portion of the middleware core can be reconfigured at run time,
we consider DynamicTAO to be repeatedly-tunable middleware. The adaptation supported in DynamicTAO is trans-
parent to the application code to the adaptive code, and to the virtual machine, but not to the distribution middleware.
DynamicTAO provides a ORB-wide adaptation, so the granularity is per process.

UIC. Universal Interoperable Core (UIC) [145] (previously called LegORB [146]) is the successor to dynamic-
TAO [126]. In addition to its small footprint (a UIC client-side ORB for PalmOS can be as small as 16KB [145]), UIC
can adopt one or more personalities such as CORBA, Java RMI, and DCOM for interoperability purposes. Figure 21
illustrates the interaction between the UIC core and its personalities. UIC personalities can be either customized stat-
ically during the application compile time, or tuned dynamically using late composition during run time. The UIC
minimum ORB core runs uninterrupted while ORB strategies and servants are dynamically updated. We classify UIC
as both customizable and repeatedly-tunable middleware. UIC exploits customizable adaptation for rare and expensive
changes during compile time, and exploits repeatedly-tunable adaptation for the frequent and inexpensive changes dur-
ing run time. Using UIC, the same server objects can interoperate with different personalities without modifying their
implementations. The main difference in our classification of UIC, compared to that of dynamicTAO, is the support
for Java RMI and DCOM.

Open ORB and Open COM. Researchers at Lancaster University have conducted several projects in multimedia
middleware [108, 127, 144, 286]. In the Adapt Project, Blair et al. [127] investigated middleware implementation for
mobile multimedia applications that can be dynamically adapted in response to the environmental changes. In the
OpenORB project [108], the successor to the Adapt project [127], Blair et al. focused on the role of computational
reflection in middleware. More recently, Blair et al. [286] designed OpenORB v2, which adds a component-based
design framework to the OpenORB reflective framework. OpenCOM [144] is the implementation of OpenORB v2,

41

Abstract Core

Specialization
Specialization

Specialization

CORBA
Personality

JavaRMI
Personality

CORBA/JavaRMI
Personality

CORBA
Server

JavaRMI
Server

Multi-personalitySingle-personalities

UIC

Figure 21: The UIC personalities [145].

designed for Microsoft COM systems. All above mentioned projects are greatly influenced by RM-ODP [287], a meta
standard for multimedia applications. Unlike TAO [165] and DynamicTAO [126], none of the Adapt, OpenORB, or
OpenORB v2 projects is CORBA compliant.

OpenORB uses meta-object protocols to realize an integration middleware solution (How) that supports dynamic
adaptation at run time (When). The implementation of the OpenORB reflective architecture is based on the reflec-
tion model illustrated in Figure 22. OpenORB categorizes reflection into structural and behavioral reflection [285], a
distinction first introduced in [288]. The architecture meta-model provides access to an object using its object graph.
The interface meta-model provides access to the methods, associated attributes, and inheritance structure of each in-
terface of an object. The interception meta-model provides interception hooks for each interface of an object including
message arrival, dispatching, marshalling and unmarshalling interception hooks. The resources meta-model provides
access to available resources per address space and enables resource reservation.

Meta-level

Base-level

Architecture
meta-object

Interface
meta-object

Interception
meta-object

Resource meta-object
(per address space)

Base-level
component

Base-level
component

Figure 22: OpenORB reflection model [285].

Unlike DynamicTAO [126], which uses reflection mainly to implement the service configurator pattern, OpenORB
provides an ORB-wide reflection. Therefore, we consider OpenORB as mutable middleware. The adaptation sup-
ported in OpenORB is not transparent to the application code, to the adaptive code, or to the distribution middleware,
but it is transparent to the virtual machine. While adaptations can be ORB-wide, the reflective capabilities of OpenORB
also enable adaptation of individual objects and selected sets of remote interactions.

FlexiNet FlexiNet [149] is a CORBA-compliant ORB implemented in Java that uses reflection (How) to provide dy-
namic adaptation at run time (When). FlexiNet is designed as a set of components that can be dynamically assembled.
Similar to DynamicTAO [126], FlexiNet provides coarse-grained, ORB-wide adaptation via metaobject protocols. For
example, FlexiNet can dynamically modify the underlying communication protocol stack through the replacement
and insertion of layers. Similar to OpenORB [108], FlexiNet also provides fine-grained per-interface adaptation, as
depicted in Figure 23. Therefore, we consider FlexiNet as repeatedly-tunable middleware. In FlexiNet, replaceable
meta-objects can intercept requests in stubs and skeletons. These meta-objects realize channel configuration policies

42

that are used to adapt stubs and skeletons.

typed invocation

generic invocation

conversion

Meta After

Meta BeforeSTUB

Destination
Object

Meta Objects

Figure 23: FlexiNet architecture [149].

Squirrel over Infopipes. Squirrel [188, 289] is QoS-oriented middleware specialized for distributed multimedia ap-
plications. Squirrel uses the Infopipes abstraction [189] to support streaming data. The designers argue that CORBA
stubs and skeletons generated from IDL interfaces follow a standard protocol (marshalling and unmarshalling) that is
not suitable for multimedia applications with different QoS requirements. To solve this problem, Squirrel introduces
smart proxies [289], which are service-specific stubs that include adaptive code (How). A smart proxy for a specific
application can be developed and shipped to the client program statically during compile time or dynamically during
load time (When). Figure 24 illustrates dynamic smart proxy shipping in a live video application. Squirrel provides
adaptation for CORBA objects, so it supports a per object adaptation granularity.

filter

feedback display

network

source sink

file

Server Smart Proxy Client

sensor MPEG

Smart Proxy

Shipping Smart Proxy

Figure 24: Squirrel: dynamic shipping of a smart proxy [289].

AspectIX. AspectIX [190] is an aspect-oriented middleware based on a fragmented (distributed) object model [290].
Figure 25(a) illustrates a distributed object that has four fragments distributed over three programs over a network.
A fragment is divided into a fixed interface and a flexible implementation. A fragment implementation can be as
simple as a CORBA stub or as complicated as a “smart” fragment (similar to smart proxies in Squirrel [188]) that
can cache previous replies locally or change its behavior using dynamically inserted aspects. Figure 25(b) shows
how an AspectIX-aware application can dynamically inspect and adapt the set of aspects residing inside a fragment
implementation. Figure 25(c) shows how a fragment implementation can be dynamically exchanged, transparent to
the application.

fragment interface

fragment impl.

distributed object

address space

(a) distributed object model.

set of aspects

specific configuration object

get_aspects()

get_aspect()

set_aspects()

set_aspect()

(b) aspect configuration. (c) fragment exchange.

Figure 25: AspectIX: an aspect-oriented middleware based on the distributed object model [190].

AspectIX supports stub configuration at stub load time and reconfiguration at run time (When) using the proxy
43

Multicast
Messages

Modified CORBA ORB

Adaptor Objects

Reliable Multicast

Platform

Application
Object

Figure 26: The middleware integration approach [292].

pattern and aspect weaving dynamic aspect weaving (How). AspectIX can be repeatedly tuned by insertion and
removal of aspects at runtime. The adaptation supported in AspectIX is not transparent to the application code, to
the adaptive code, or to the distribution middleware, but it is transparent to the virtual machine. AspectIX provides
adaptation for CORBA objects, so it supports a per object adaptation granularity.

OpenCorba. OpenCorba [142] is a CORBA-compliant ORB that uses reflection to expose and modify certain in-
ternal characteristics of CORBA (How). OpenCorba is implemented in NeoClasstalk, a reflective language based
on Smalltalk [51]. OpenCorba reifies various properties of the ORB through explicit meta-classes. Unlike Dy-
namicTAO [126] and OpenORB [108], OpenCorba does not provide a global view of ORB, but similar to Dy-
namicTAO preserves an intact ORB core during tuning process at run time, so it is repeatedly-tunable middleware
(When). OpenCorba provides adaptation for application classes, finer-grained adaptation than DynamicTAO and
coarser-grained adaptation than OpenORB.

Electra and Orbix+Isis. Electra [191] and Orbix+Isis [291] are two CORBA compliant ORBs that provide fault-
tolerance by integrating an object replication mechanism inside their ORBs. As depicted in Figure 26, adapter objects
are used to enable the modified ORB to use the services provided by the reliable multicast. Orbix+Isis uses Isis [193]
and Electra can use either Horus [192] or Isis [193] as their reliable multicast service. The integration approach
is transparent to the application code, but requires both sides of application to use the same modified ORB. Both
Electra and Orbix+Isis are incorporated into an application using the integration middleware technique (How) that
supports configuration of CORBA object replicas at startup time (When), and are considered as distribution and host-
infrastructure middleware (Where). Since both can be configured during the application startup time, we consider
them to be configurable middleware. Electra and Orbix+Isis provide adaptation for CORBA objects, so they supports
a per object adaptation granularity.

Orbix/E Orbix/E [293] from IONA Technologies is a lightweight and high-performance CORBA ORB designed for
embedded devices. The size of an Orbix/E can be as small as 100KB for the client and 150KB for server programs.
Similar to PersonalJava (and unlike EmebeddedJava), Orbix/E requires a minimum fixed core functionality. We also
consider Orbix/E as configurable middleware because of its ability to parse configuration files during the application
startup time, for example, to load optional pluggable protocols. We consider Orbix/E as customizable middleware
because it allows a developer to generate customized versions of Orbix/E. The adaptation supported in both Orbix/E
is transparent to the application code, to the adaptive code, and to the virtual machine but not to the distribution
middleware. Orbix/E provides adaptation at the ORB level, so the granularity is per-process. Finally, Orbix/E is used
to adapt remote interactions.

Other Distribution Middleware-Based Approaches. Other distribution middleware-based approaches that sup-
port compositional adaptation include Orbix [194], ORBacus [195], JacORB [294], Horus [192], Isis [193], COM/-
DCOM [157, 158], and .NET remoting [143].

A.4 Common-Services Middleware Projects

We divide projects and specifications supporting compositional adaptation at the common-services layer into two
groups according to the transparency provided to the application source code. Approaches in the first category do

44

Multicast
Messages

Platform

Application
Object

Reliable
Object
Service

CORBA ORB

DII/DSI

Figure 27: The service approach [292].

not provide transparency to the application code (e.g., OGS [182] and QuO [168]), whereas approaches in the second
group do (e.g., FTS [183], IRL [184], TAO-LB [169], and ACT [186]). Projects in the former group use the integra-
tion middleware technique, where the services are required to be used explicitly by the applications. Projects in the
latter group use a middleware interception technique (e.g., CORBA portable interceptors [160]) to enables existing
applications to benefit from the adaptive services.

As indicated in Table 8, all projects in common-services layer provide transparency with respect to adaptive code,
and to any distribution middleware and virtual machine (as applicable). Finally, they all involve adaptation of remote
interactions.

OGS. Object Group Services (OGS) [182] from Swiss Federal Institute of Technology is an implementation of fault-
tolerant CORBA, supporting CORBA applications with reliability. It is implemented as an integrated middleware
technique (How). OGS provides a group communication CORBA service1, that must be used explicitly by a CORBA
application at development time, can be configured at startup time by setting up members of object groups, and can
be reconfigured at run time through a dynamic group membership (When). A CORBA service is a set of domain-
independent CORBA objects, which can be used by any CORBA client through a CORBA compliant ORB. The OGS
CORBA object uses its group communication protocol to communicate with the service replicas. It then returns the
reply to the application object.

Three approaches, namely, integration, interception, and service, have been used in the literature to implement
fault-tolerant CORBA [292]. In the integration approach, an implementation of a group management protocol and
its use are integrated either with the application code (e.g., FRIENDS [147] using a compile-time MOP) or with the
CORBA ORB (e.g., Electra [191] and Orbix+Isis [291] that provide a modified ORB, which must be compiled with the
application). In the interception approach, a group management implementation intercepts the remote interactions and
adapts them accordingly (e.g., Eternal [196] that uses a middleware interception technique). In the service approach,
a CORBA service provides a group management implementation of a group management protocol, such as OGS that
provides a CORBA object for this purpose (Where). As depicted in Figure 27, the OGS object uses CORBA DSI and
DII interfaces [160] to receive requests from the client object. Note that an OGS object can also be considered as a
proxy for its assigned group of service replicas. Finally, OGS provides an object-level granularity for compositional
adaptation, since the configuration of replicas and the replication style (active or passive) are independent of the
specific CORBA object benefiting from them.

QuO. Researchers at BBN Technologies [168] have developed QuO, an adaptive framework that provides a high-level
QoS abstraction on top of distribution middleware technologies such as CORBA and Java RMI. Figure 28 illustrates
QuO components residing between the application and a distribution ORB (Where). QuO employs aspect-oriented
programming [112] to separate the non-functional (systematic) aspects from the functional aspects of an application.
QuO uses an integrated middleware technique (How) by wrapping stubs and skeletons of a remote object in an object
called a delegate, which intercepts all the interactions targeted to or received from stubs and skeletons and redirects
them to a QuO kernel (using the premethod and postmethod methods). The intercepted interactions may be mon-
itored or adapted by the QuO kernel using a contract and several system conditions. A contract is written in the

1We note that as of the time of writing this technical report, a group communication service is not specified as a standard
CORBA service by OMG. For a list of standard CORBA services, please refer to the following URL: http://www.omg.org/-
technology/documents/formal/corbaservices.htm.

45

contract-description language (CDL) [295] and defines acceptable regions of operation in an application. System con-
ditions can be considered as software “sensors” that record values representing the state of the execution environment.
QuO combines the code for a contract, a number of system conditions, and a wrapper into a package called a qosket,
which can be reused for different applications providing transparency to the adaptive code.

Figure 28: QuO architecture [295].

A delegate is generated from a program written in the aspect-oriented structural description language (ASL) [295].
Delegates are similar to a statically shipped smart proxies in Squirrel [188], except that delegates can also wrap
skeletons on the server side, whereas smart proxies are only at the client side. To take advantage of QuO, a developer
modifies the source code of the application at development time (to add code for creation and use of delegates in the
application code explicitly) and uses the quogen tool at compile time to generate the code for delegates, contracts,
and system conditions. Finally, QuO provides adaptations granularity at the level of remote objects.

IRL and FTS. Interoperable Replication Logic (IRL) [184, 185], developed by Baldoni et al., and fault-tolerant ser-
vice (FTS) [183, 296], developed by Hadad et al., are two middleware projects that provide fault-tolerance CORBA
using both the service and interception techniques (How). IRL and FTS both use CORBA request portable intercep-
tors [160] to intercept requests (requests, replies, and exceptions) and redirect them to a group manager object that
coordinates the interactions among clients and object replicas (Where). The basic IRL architecture is illustrated in Fig-
ure 29, where a client request portable interceptor forwards the request to a local proxy, which provides a fault-tolerant
service using object replication.

Client Request PI

Proxy

Client Server
operation()

Client and Proxy ORB Server ORBInter-
network

Figure 29: The IRL basic architecture [185].

To use IRL and FTS, a developer must configure a CORBA portable interceptor with the CORBA application
at startup time (an ORBInitializer class must be introduced to the application ORB) and can reconfigure the object
replicas at run time (When). Using the portable interceptors, both IRL and FTS support transparency to the application
code and to CORBA ORBs. The replication style can be developed independent of the applications using it. As such,
IRL and FTS provide transparency with respect to the adaptive code. Finally, both IRL and FTS provide adaptation
granularity at the level of CORBA objects.

TAO Load Balancing. TAO load balancing (TAO-LB) [169], developed by Othman et al., adds a load balancing
service to TAO [165] using CORBA portable interceptors (Where). TAO-LB employs an adaptive on-demand archi-
tecture that works as follows. First, a client receives a handle to the load balancer instead of the target object. Next,
using CORBA standard LOCATION FORWARD mechanism [160], the load balancer redirects the initial client re-
quest to the appropriate target object replica. The CORBA client continues using the new object reference (obtained

46

as part of the LOCATION FORWARD message) to communicate with this replica directly until it is either done or
redirected again. An adaptive load balancer that forwards requests on demand can monitor the load on each replica
continuously. Using this load information and the policies specified for load balancing, the load balancer can deter-
mine whether the load is distributed evenly. When the load becomes unbalanced, the load balancer can communicate
with the replica ORBs and ask them to redirect their clients back to the load balancer. The load balancer can then
redirect the clients to less loaded replicas. Similar to IRL and FTS, TAO-LB is incorporated into an application using
a middleware interception technique (How). It can be configured at startup time (to register its portable interceptor
with CORBA ORBs and set up number of objects cooperating in load balancing) and can be reconfigured at run time
(When). Similar to IRL and FTS, TAO-LB supports transparency to the application code, to the adaptive code, and to
the CORBA ORBs. Finally, the granularity of adaptation is at the level of the CORBA object.

ACT. Adaptive CORBA Template(ACT) [186], developed at Michigan State University, is an adaptive CORBA frame-
work designed to support transparent adaptation to (unanticipated) changes in a CORBA application’s functional
requirements or in non-functional concerns, such as quality-of-service, fault-tolerance, and security. The key insight
into how to achieve this transparency is the concept of the generic interceptor, which is a particular type of CORBA
portable request interceptor [160] (How). The generic interceptor provides a “hook” into the interaction between
CORBA clients and servants, enabling the insertion of new adaptive functionality after deployment. Although the
generic interceptor must itself be registered with the ORB of a CORBA application at startup time, it enables registra-
tion of other specific request interceptors to be postponed until run time (When). The interceptors can adapt requests,
replies, and exceptions that pass through the ORB. As a result, an existing application need only be restarted with an
argument identifying a generic proxy object to be used. There is no need to modify or even recompile the applica-
tion. At run time, the generic interceptor can be used to incorporate specific interceptors that dynamically adapt the
application behavior.

ApplicationsClient

Client Application

Servant

Server Application

Domain-Services

Common-Services

Distribution

Host-Infrastructure
System Platform

Network

Client GI
Client ORB

Server GI
Server ORB

Client ACT Core Server ACT Core

request flow reply flow GI: generic interceptor

(a) ACT component configuration

Client ORB

Dynamic
Interceptors

Client ACT Core

Rule-Based
Interceptor

Generic
Proxy

Rule-Based
Decision Maker

Client Generic Interceptor

request flow

to/from the host-infra. middleware

reply flow

to/from the common-services middleware

DSI DII

?

DII

rules

Interface Repository
ORB

Interface
Repository

Client Process IR Process

IR: Interface RepositoryInterface definition exchange

(b) ACT Core components

Figure 30: ACT architecture [186].

Figure 30(a) shows the flow of a request/reply sequence in a simple CORBA application using ACT. The client
generic interceptor intercepts all outgoing requests and incoming replies (or exceptions) and forwards them to its ACT
core (Where). Similarly, the generic interceptor at the server side intercepts all the incoming requests and outgoing
replies (or exceptions) and forwards them to its ACT core. Figure 30(b) shows the flow of a request/reply sequence
within the client ACT core. The request is first processed by one or more dynamic interceptors. A rule-based inter-
ceptor (RBI) is an example of dynamic interceptors that uses “rules” to govern its operation. The rules can be inserted,
removed, and modified at run time. A generic proxy is a surrogate for any CORBA object that used CORBA DII and
DSI [160] to receive and send any request. The generic proxy consults with a decision maker in determining how
to handle intercepted requests. Possibilities include sending a new request (possibly with modified arguments) to ei-
ther the target object or to another object. Alternatively, and unlike a request interceptor, a proxy can reply to the
intercepted requests using local data (e.g., cached replies). In the case of exceptional situations, the decision maker
may notify other objects by way of an event mediator [150], which propagates events to interested objects. Similar to
other projects that use CORBA portable interceptors, ACT supports transparency to the application code, to the adap-

47

tive code, and to the CORBA ORBs. ACT provides adaptation at the ORB-, object-, method-, and method-call level
through insertion or removal of rules at run time Finally, ACT can be used to adapt a selected set of CORBA object
interactions.

Other Common-Services Middleware-Based Approaches. Other approaches that support compositional adaptation
at the common services level include CorbaServices [160], AQuA [170], Context-Toolkit [13], Context-Aware [297],
multi-channel reification model (mChaRM) [148], and CORE [95].

A.5 Other Related Projects

This technical report has attempted to classify some of the many projects in compositional adaptation. Numerous other
projects, addressing one or more aspects of compositional adaptation, were not specifically discussed: Boeing Bold
Stroke [181], Aura [11], MOOSCo [298], Oxygen [10], PlanetBlue [9], GRACE [201], DEOS [200], Graybox [202],
Gaia [299], 2K [300], Odyssey [301–303], Puppeteer [37], SwitchWare [304], Computing Communities [305], Cac-
tus [7, 30, 41, 247], and Dynamic Adjustment of Component InterActions (DACIA) [306]. We intend to classify more
projects in future versions.

48

