
Towards Pattern-based Reliability Certification
of Services

Ingrid Buckley1, Eduardo B. Fernandez1, Marco Anisetti2,
Claudio A. Ardagna2, Masoud Sadjadi3, and Ernesto Damiani2

1 Department of Electrical Engineering and Computer Science
Florida Atlantic University

777 Glades Road, Boca Raton, Florida, USA
ibuckley@fau.edu,ed@cse.fau.edu

2 Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

Via Bramante 65, 26013 Crema (CR), Italy
firstname.lastname@unimi.it

3 School of Computing and Information Sciences
Florida International University

University Park, 11200 SW 8th St., Miami, Florida, USA
sadjadi@cs.fiu.edu

Abstract. On Service-Oriented Architectures (SOAs), the mechanism
for run-time discovery and selection of services may conflict with the
need to make sure that business process instances satisfy their reliability
requirements. In this paper we describe a certification scheme based on
machine-readable reliability certificates that will enable run-time negoti-
ation. Service reliability is afforded by means of reliability patterns. Our
certificates describe the reliability mechanism implemented by a service
and the reliability pattern used to implement such a mechanism. Digital
signature is used to associate the reliability claim contained in each cer-
tificate with the party (service supplier or accredited third-party) taking
responsibility for it.

1 Introduction

When Service-Oriented Architectures (SOA) came of age, no specific reliability
technology for Web services was available; reliability mechanisms designed for
Web servers, such as server redundancy, were used in its stead. Later, standards
for reliable service invocation like WS-Reliability and WS-ReliableMessaging
emerged [4], but the problem of achieving reliability of SOA-based Web services
remains unsolved.

When trying to address the problem of Web service reliability, one has to
recognize that many of the features that make SOAs attractive, such as run-time
service recruitment and composition, conflict with traditional reliability models
and solutions. Reliability relates to a system’s ability to function correctly in the
presence of faults, errors, and failures. This ability is traditionally achieved at

system design time; but on a SOA – especially one hosted on a virtual execution
environment like a cloud – the “system” that will execute a given business process
instance is put together run-time via service discovery and selection. How can
we ensure that the overall reliability requirements will be met? Our proposal
to answer this question is a scheme for the reliability certification of services
using reliability patterns. In our approach, a Web Service reliability certificate
is a machine-readable representation of the reasons why a given service claims
to be reliable, including the reliability mechanism the service relies on and the
reliability pattern used to implement it.

As we shall see in the following, we use a POSA format for reliability pat-
terns that provide a concise yet expressive way to specify how a given reliability
mechanism is implemented by a service. Like other certification schemes, we
envision that the party taking responsibility for a reliability claim will digitally
sign the corresponding reliability certificate. Depending on the business scenario,
the signing party can be the service supplier itself, or a third party accredited in
the framework of a regulated certification process, as the ones adopted for life-
or mission-critical applications [10]. Such certificates can then be used at ser-
vice discovery time to make sure that the reliability requirements of a business
process are met by all the services recruited to execute it.

A major difference between our reliability certificates and other types of
Service Level Agreement-style metadata is runtime monitoring of reliability using
reliability patterns [1, 10, 21]. Indeed, the SOA framework makes it possible to
instrument Web services for monitoring the reliability mechanism implemented
by the pattern mentioned in the certificate. At service discovery time, monitoring
rules can be evaluated to check whether the certificate is still valid or not for a
specific process execution, without requiring re-certification.

In the remainder of the paper we describe the building blocks of our proposal
and how they can be put together to obtain a full scheme for the reliability
certification of SOAWeb services. Namely, in Section 2, we present the concept of
pattern for improving system reliability. In Section 3, we describe how reliability
patterns can be used to validate the reliability of services. In Section 4, we present
our certification scheme, illustrating our machine-readable certificate format and
a first solution to the integration of SOA and reliability certification. Finally, in
Section 5, we present our related work and, in Section 6, we give our conclusions.

2 Using patterns for improving reliability

The widespread diffusion of Web services and SOA is raising the interest for
SOA-based implementation of life- and mission-critical applications for which
reliability is a crucial requirement.

Often, in a traditional component-oriented scenario, reliability is added to
the systems after the implementation phase, but experience has shown that
this is not the most effective way to implement reliable services [13, 20]. In this
paper, we aim to define an approach for building reliable services that involves
incorporating reliability in every phase of the system design and throughout

the entire software development life cycle [5, 27]. There are five major reliability
techniques that are used to handle failures and their consequences in a system
[23] as follows.

– Detection. Detecting the occurrence of an error.
– Diagnostic. Locating the unit or component where the error has occurred.
– Masking. Masking errors so as to prevent malfunctioning of the system if a
fault occurs.

– Containment. Confining or delimiting the effects of the error.
– Recovery. Reconfiguring the system to remove the faulty unit and erasing
the effects of the error.

These five techniques can be implemented using the following reliability
mechanisms:

1. Redundancy. The duplication of critical components in a system with the
intention of increasing the reliability of the system. This mechanism is often
applied to chemical, power, nuclear, and aerospace applications.

2. Diversity. Requires having several different implementations of software or
hardware specifications, running in parallel to cope with errors or failures
that could arise directly from a specific implementation or design.

3. Graceful degradation. This mechanism is essential in systems where, in the
event of a failure, a system crash is highly unacceptable. Instead, some func-
tionality should remain in the event of a failure. If the operating quality of
the system decreases, the decrease should be proportional to the severity of
the failure.

4. Checking and monitoring. Constant checking of the state of a system to
ensure that specifications are being met is critical in detecting a fault. This
mechanism, while very simple, plays a key role in obtaining a fault tolerant
system.

5. Containment. Faults are contained within some specific execution domain,
which prevents error propagation across system boundaries.

Challenges in software reliability not only stem from the size, complexity, dif-
ficulty, and novelty of software applications in various domains, but also relate
to the knowledge, training, and experience of the software engineers involved.
Our approach is based on the notion of reliability patterns [23, 24]. A pattern
is an encapsulated solution to recurrent software or system problems in a given
context, and it can be described using UML diagrams [28]. Reliability patterns
support widespread application of best practices and best solutions, and offer
an effective guideline for software developers that may not have expert knowl-
edge and experience in reliable system development. Specifically, a reliability
pattern [23, 24] consists of several parts which provide a detailed description of
the patterns’ objective, and serves as a tangible reference for an effective reliabil-
ity solution. We utilize the POSA template (see Table 1) to describe reliability
patterns, mainly because it provides a complete encapsulation of a solution to
a given problem. Additionally the POSA template is a widely accepted format

Intent
Example
Context
Problem and forces
Solution
Implementation
Example resolved
Known uses
Consequences
Related patterns

Table 1. POSA template

that sufficiently describes a reliability pattern. Reliability patterns described us-
ing the POSA template provide class and sequence diagrams that can be used
to help generate monitoring rules consistent with the reliability aspect being
sought.

3 Certifying services built using reliability patterns

Once a system is built using some methodology that uses reliability patterns,
we need a way to show it has reached a given level of reliability. In a SOA
environment we can go even further; we can certify that the services satisfy
some standards of reliability making digitally signed information available at
runtime, that is, in SOA-based business process enactment. In our approach, this
information includes the reliability pattern used in the service implementation.
Therefore, we start by looking at some patterns to ascertain their effect on the
reliability of a service.

3.1 A reliability pattern solution

A reliability pattern includes a section which describes its solution (see Figure 1).
This section includes a class diagram illustrating the structure of the solution
and showing the class functions, and their relationships. Figure 1(a) depicts an
example of a class diagram for the well-known Acknowledgment pattern whose
intent is “to detect errors in a system by acknowledging the reception of an
input within a specified time interval”. In the Acknowledgment pattern, the
Sender in conjunction with the Timer constitute theMonitoring System, and the
Receiver in conjunction with the Acknowledger entity constitute the Monitored
System. In particular, the Sender is responsible for contacting the Monitored
System. Whenever the Sender has sent the input to the Receiver, the Timer,
that is responsible for counting down the timeout period every time an input
is provided to the Monitored System, is activated. Upon receiving an input by
the Sender, the Receiver notifies the Acknowledger. The Acknowledger is then
responsible for sending an acknowledgment to the Timer for the received input.

(a)

(b)

Fig. 1. Class diagram (a) and sequence diagram (b) for the Acknowledgment pattern

If the timeout period of the Timer expires for N consecutive times without
receiving an acknowledgment from the Monitored System, the Timer detects an
error on the Monitored System and notifies the Sender.

The sequence diagram in Figure 1(b) provides the dynamics of one of the
use cases of the pattern’s solution. The two diagrams can be evaluated by trans-
forming them to a formal representation and conducting some model checking to
test that they perform some reliability function, that is, they avoid some failure.

3.2 A priori validation of reliability patterns

A priori validation of reliability patterns provides an estimation of the level
of reliability that can be achieved before the actual system is implemented. A

priori validation can be performed using the consequences and the failure/fault
coverage of a reliability pattern.

The consequences of a reliability pattern describe the advantages and disad-
vantages of using the pattern. This information can be used a priori to compare
patterns. A widely used criterion is the amount of computational resources re-
quired by the pattern.

The failure/fault coverage of a pattern, instead, is described as the number of
failures that can be identified, masked, contained, or recovered with its use. This
information can also be used for a priori selection of a pattern. For instance, the
Dual Modular Redundancy (DMR) pattern can detect one fault but does not
mask any faults; the Triple Modular Redundancy (TMR) pattern can detect two
faults and mask one; the N-Modular Redundancy (NMR) pattern can detect (N-
1) faults and mask (N-2) faults. Thus, the DMR pattern provides a lower level
of reliability than the TMR pattern. Similarly, NMR provides a higher level
of reliability than TMR. Figure 2 illustrates the structure of DMR, TMR, and
NMR.

The evaluation of pattern consequences and coverage can permit to compare
functionally equivalent services a priori (i.e., before they are invoked) on the
basis of the level of reliability provided by the corresponding patterns. In this
paper, however, we will focus on a posteriori reliability certificate checking.

3.3 A posteriori validation of service reliability

A posteriori validation of service reliability is an evaluation of the level of reli-
ability provided by a given service implementation. We can assess the level of
reliability in an implemented system that was built with the use of reliability
patterns by evaluating different reliability metrics. There are many metrics in the
literature [3, 16, 17, 22, 27, 28] that can be used to calculate the reliability using
data collected by monitoring an implemented system. We have selected some re-
liability metrics from the literature and proposed some of our own. Metrics (see
Tables 2 and 3) are classified based on time- and cardinality-related failures.
Such metrics correspond to the five reliability mechanisms discussed earlier in
Section 2. Additionally, the metrics in Table 2 and Table 3 are easily measurable
in a SOA environment, using available logging services and toolkits [7, 18].

The metrics and related monitoring features can be used to enhance a priori
comparison of services by taking into account the service implementation.

4 Machine readable certificates for reliable services

Current software certification schemes for security and dependability (e.g., Com-
mon Criteria [12]) provide human-readable, system-wide assurance certificates
to be used at deployment and installation time. This type of certificates does
not match the requirements introduced by a SOA in terms of runtime selection
and composition of services. A solution providing machine-readable certificates
is therefore required. Similarly to the definition of security property in [1], here

Fig. 2. Class diagram for DMR, TMR, and NMR patterns

Reliability Mechanism Time-Related
Metric

Description

Redundancy - Invokes one or more
copy of the same mechanism

Time-to-Failure
(TTF)

The time the service runs before failing

Time-of-Failure
(TF)

The time at which a failure occurs

Mean Time to Fail
(MTTF)

The average time it takes for the system
to fail

Failure Occurrence
Rate (FOR)

The rate at which failures occur when the
system is active

Mean Time Between
Failures (MTBF)

The average time before a failure occurs
in the system

Diversity - Invokes one or more copy
of a particular mechanism that per-
forms the same function

Time-to-Failure
(TTF)

The amount of time the service runs be-
fore failing

Time-of-Failure
(TF)

The time at which the failure occurred

Monitoring - Checks the system con-
tinuously to identify failures and
sends alerts

Response-Time
(RT)

The amount of time it takes to send an
alert

Time-to-Identify-
Failure (TIF)

The time it takes to identify that a failure
has occurred in the system

Time-to-Failure
(TTF)

The time the service runs before failing

Diagnosis - Identifies the source of
failure

Investigation-Time
(IT)

The time it takes to identify the unit that
has failed

Mean-time-to-
Investigate (MTTA)

The average time it takes to investigate
a failure

Masking - Hides the effects of a fail-
ure

Time-to-Replace-
Failed-Component
(TRFC)

The time it takes to replace a failed com-
ponent

Containment - confines a failure to
stop its propagation

Time-of-Failure-
Arrest (TFA)

The time at which the failure was con-
fined

Time-to-Arrest-
Failure (TAF)

Time it takes to confine the failure so
that it does not propagate throughout
the system

Recovery - Erases failure and re-
stores normally

System-Recovery-
Time (SRT)

The time needed for the system to recov-
ery from a failure and return to a failure-
free operational state

Time-to-Recover
(TTR)

The time needed to repair and restore
service after a failure

Table 2. Time-related reliability metrics

we define a concrete specialization of the reliability property as the one that pro-
vides enough information to support monitoring procedures aiming to establish
if the property holds or not. In other words, a concrete definition of reliability
specifies the mechanism in place to assert it (e.g., a redundancy mechanism) and
the faults/failures the property is meant to support (e.g., loss of service failure).
This information is represented as a set of class attributes specifying the mech-
anisms and/or the faults/failures. For instance, we can define a specialization
of the reliability property whose class attributes are: mechanism=redundancy,
level=4, swapping time=10ms, and failure=loss of service failure.

Besides the mechanisms and faults used to assert reliability, our machine-
readable certificate includes all the other information in the reliability pattern
used in service implementation and any available evidence supporting reliability.
Our certificates are designed to be checked a posteriori, that is, on a working
implementation of a service (Section 3). As we shall see, our evidence consists

Reliability Mechanism Cardinality-
Related Metric

Description

Redundancy - Invokes one or more
copy of the same mechanism

Number-of-
Simultaneous-
Failure (NSF)

The number of failures occurring at the
same time

Number-of-
Invocation(NI)

Total number of calls made to a service

Number-of-Failure
(NF)

Total number of failures that occurred in
the system

Number-of-
Expected-Failures
(NEF)

The expected number of failures over a
time interval

Diversity - Invokes one or more copy
of a particular mechanism that per-
forms the same function

Number-of-
Simultaneous-
Failure (NSF)

The number of failures occurring at the
same time

Number-of-
Invocation(NI)

Total number of calls made to a service

Number-of-Failure
(NF)

Total number of failures that occurred in
the system

Number-of-
Expected-Failures
(NEF)

The expected number of failures over a
specified time interval

Monitoring - Checks the system con-
tinuously to identify failures and
sends alerts

Number-of-Failure-
Alerts (NFA)

The total number of failure alerts sent

Number-of-
Successful-
Acknowledgments
(NSA)

The total number of successful acknowl-
edgments sent

Diagnosis - Identifies the source of
failure

Number-of-
successful-
Investigations
(NSI)

The total number of times when the
source of a failure is identified

Number-of-
Unsuccessful-
Investigations
(NUI)

The total number of times when the
source of a failure is not identified

Masking - Hides the effects of a fail-
ure

Number-of-Failed-
Components-
Replaced (NFCR)

The total number of times a failed com-
ponent is replaced

Containment - confines a failure to
stop its propagation

Number-of-
Confinement-
Attempts (NUA)

The total number of times a confinement
attempt is made

Number-of-
Resource-Needed-
to-Contain-Failure
(RNCF)

The percentage of system resources that
was needed to prevent the failure from
propagating throughout the system

Number-of-
Successful-Failure-
Arrest (NSFA)

The total number of times a failure was
detained

Number-of-
Unsuccessful-
Failure-Arrest
(NUFA)

The number of times a failure was not
detained

Recovery - Erases failure and re-
stores normally

Number-of-
Successful-Recovery
(NSR)

The total number of successful recoveries

Number-of-
Unsuccessful-
Recovery (NUR)

The total number of failed or aborted re-
covery attempts

Mean-time-to-
Recover (MTTR)

The average time it takes to recover from
a failure in the system

Table 3. Cardinality-related reliability metrics

of a set of metrics that must be continuously monitored and updated using
monitoring rules.

More in details, our machine-readable certificates for reliability include the
following information:

– Reliability property : a description of the concrete reliability property includ-
ing class attributes with reference to mechanisms/faults used to assess it.

– Reliability pattern: a concise description of the reliability solution. We adopt
the POSA template to describe reliability patterns.

– Evidence: a set of elements that specify the metrics and monitoring rules
used for supporting the reliability in the certificate as follows.

• Set of metrics : the metrics used to verify that a given property holds.
For each metric, we define the expected value that is requested for the
metric.

• Monitoring rules: the rules used for monitoring the metrics in the evi-
dence. Each rule contains a human-readable description and a reference
to a standard toolkit for reliability monitoring on SOAs that permits to
do the measurements of the corresponding metrics.4 A violation of the
monitoring rules produces a runtime revocation of the certificate.

Figure 3 shows our XML schema of the reliability certificate, which includes
all information explained above. We note that the certificate contains the link to
the certified service (ServiceBinding element), the reliability property (Property
element), and the pattern used for the implementation (Pattern element). Then,
it contains the evidence composed by a set of monitoring rules (MonitoringRules
element) and a set of metrics (Metrics element). The MonitoringRules element
includes a set of rule groups (RuleGroup element) that in turn contain a set
of rules each one with an ID attribute. The Metrics element contains a set of
metrics each one specifying the id of the rule to which the metric refers (RuleID
attribute), the runtime and expected values for the metric, and an operator that
specifies how to compare the two values. The runtime validity of the certificate
is obtained by monitoring each rule in the evidence and comparing the metric
runtime values with the expected values. This comparison can be simple (e.g.,
equality or inequality) or complex (e.g., including tolerance, bounding values).

When we come to the evaluation of the validity of the certificate for the
service, we have to consider that all rules assume a boolean value at each time
instant. A rule assumes value true if and only if all metric elements that refer
to it are satisfied (i.e., the runtime value is compatible with the expected value).
Rules in the RuleGroup element are then ANDed, while different RuleGroup
elements are ORed, finally producing a boolean value for the MonitoringRules
evidence. If it is true, the certificate is valid, otherwise it is revoked.

We now provide two examples of XML-based certificate for the service Voter
(see Figure 2) implementing TMR and DMR patterns, respectively.

4 Several commercial products are available, including the Microsoft Reliability Mon-
itor [18].

Fig. 3. XML schema of the reliability certificate

Example 1. Figure 4 shows an example of an XML-based certificate that proves
the property Reliability for a Voter service available at the endpoint
http://www.acme.com/wsdl/voter.wsdl. The Voter implementation follows the
TMR pattern and includes a single RuleGroup element with two rules. The
TMR requires software redundancy including at least three parallel instances of
the service. The first rule (rule 1) requires to continuously count all available
service instances, using a toolkit function called CountingRedundancy(). The
second rule (rule 2) requires that in case of an instance failure, the recovery
time is measured. This measure is done via a function called EvaluateRecovery-
Time(). The number of available instances and the recovery time are used in
the Number-of-Simultaneous-Failure (NSF) and Time-to-Recover (TTR) met-
rics, respectively. In particular, the expected value for the number of available

<Certi f icate xsi :noNamespaceSchemaLocation=” . . . ” xmlns : xsi=” . . . ”>
<ServiceBinding>http ://www. acme . com/wsdl / voter . wsdl</ServiceBinding>
<Property>

<PropertyName>http ://www. acme . com/ r e l i a b i l i t y / R e l i a b i l i t y</PropertyName>
<ClassAttribute>

<Name>mechanism</Name>
<Value>redundancy</Value>

</ClassAttribute>
<ClassAttribute>

<Name> l e v e l</Name>
<Value>3</Value>

</ClassAttribute>
<ClassAttribute>

<Name> f a i l u r e</Name>
<Value> l o s s o f s e r v i c e f a i l u r e</Value>

</ClassAttribute>
</Property>
<Pattern>TMR</Pattern>
<Evidence>

<MonitoringRules>
<RuleGroup>

<Rule ID=”1”>
<Description>Count a l l a v a i l a b l e s e r v i c e i n s t anc e s</Description>
<Function>CountingRedundancy ()</Function>

</Rule>
<Rule ID=”2”>

<Description>
In case o f an in s tance f a i l u r e , measure the recovery time

</Description>
<Function>EvaluatingRecoveryTime ()</Function>

</Rule>
</RuleGroup>

</MonitoringRules>
<Metrics>

<Metric Name=”NSF” RuleID=”1” >
<RuntimeValue>4</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>3</ExpectedValue>

</Metric>
<Metric Name=”TTR” RuleID=”2”>

<RuntimeValue>1m</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>1m</ExpectedValue>

</Metric>
</Metrics>

</Evidence>
</Certi f icate>

Fig. 4. An example of valid certificate

instances (or in other words the number of simultaneous failures the system can
manage) is three, while the recovery time is 1 minute. The operators used in the
comparison are both ≥. Since the runtime values of the metrics in the certificate
are equal to/greater than the expected values, the certificate is valid.

Example 2. Figure 5 shows an example of XML-based certificate that does not
prove the property Reliability for the Voter service available at the endpoint
http://www.acme.com/wsdl/voter.wsdl. This Voter implementation follows the
DMR pattern. The monitoring rules and metrics are the same as the ones in
Example 2, except for the expected value of Number-of-Simultaneous-Failure
(NSF) metric that is equal to two. Since the runtime value of the redundancy
metric is less than the expected value for the metric, the monitoring rule rule 1
is not satisfied and the certificate is revoked.

A final aspect to consider is the integration of the reliability certification pro-
cess and metadata within the SOA infrastructure. We need to provide a solution
that allows clients to select the service that best fits their reliability requirements
at runtime, on the basis of the information specified in the reliability certificate.
This selection is performed by matching client requirements with service certifi-
cates.

<Certi f icate xsi :noNamespaceSchemaLocation=” . . . ” xmlns : xsi=” . . . ”>
<ServiceBinding>http ://www. acme . com/wsdl / voter . wsdl</ServiceBinding>
<Property>

<PropertyName>http ://www. acme . com/ r e l i a b i l i t y / R e l i a b i l i t y</PropertyName>
<ClassAttribute>

<Name>mechanism</Name>
<Value>redundancy</Value>

</ClassAttribute>
<ClassAttribute>

<Name> l e v e l</Name>
<Value>4</Value>

</ClassAttribute>
<ClassAttribute>

<Name> f a i l u r e</Name>
<Value> l o s s o f s e r v i c e f a i l u r e</Value>

</ClassAttribute>
</Property>
<Pattern>TMR</Pattern>
<Evidence>

<MonitoringRules>
<RuleGroup>

<Rule ID=”1”>
<Description>Count a l l a v a i l a b l e s e r v i c e i n s t anc e s</Description>
<Function>CountingRedundancy ()</Function>

</Rule>
<Rule ID=”2”>

<Description>
In case o f an in s tance f a i l u r e , measure the recovery time

</Description>
<Function>EvaluatingRecoveryTime ()</Function>

</Rule>
</RuleGroup>

</MonitoringRules>
<Metrics>

<Metric Name=”NSF” RuleID=”1” >
<RuntimeValue>1</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>2</ExpectedValue>

</Metric>
<Metric Name=”TTR” RuleID=”2”>

<RuntimeValue>1m</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>1m</ExpectedValue>

</Metric>
</Metrics>

</Evidence>
</Certi f icate>

Fig. 5. An example of revoked certificate

4.1 An architecture for reliability certificates checking

Let us consider an enhanced SOA infrastructure composed by the following
main parties. i) Client (c), the entity that needs to select or integrate a remote
service based on its reliability requirements. ii) Service provider (sp), the entity
implementing remote services accessed by c. iii) Certification Authority (CA),
an entity trusted by one or more users to assign certificates. iv) Evaluation Body
(EB), an independent, trusted component carrying out monitoring activities. EB
is trusted by both c and sp to correctly check the certificate validity on the basis
of the monitoring rules and metrics. v) Service Discovery (UDDI), a registry
of services (e.g., [26]) enhanced with the support for reliability certificates and
requirements.

Our service invocation process enhanced with reliability certification is com-
posed by two main stages (Figure 6). In the first stage (Steps 1-2), CA grants a
reliability certificate to a service provider sp based on a service implementation
s and a reliability pattern. In the second stage (Steps 3-9), upon receiving the
certificate for the service s, sp publishes the certificate together with the ser-
vice interface in a service registry. Then the client c searches the registry and
compares the reliability certificates of the available services. Once the client has

Fig. 6. A SOA enhanced with reliability certification

chosen a certificate, it will ask to the trusted component EB to confirm its va-
lidity. EB checks that the corresponding monitoring rules hold and returns a
result to c. If the result is positive c proceeds to call the service.

5 Related Work

Many approaches to software reliability have been proposed in the past and are
presented in the following.

Becker et al. [2] proposed the Palladio Component Model (PCM) as a meta-
model for the description of component-based software architectures with a
special focus on the prediction of QoS attributes, especially performance and
reliability. Spanoudakis et al. [25] proposed a tool called SERENITY which pro-
vides dynamic configuration and assembly of both security and dependability
at runtime. Here, patterns are incorporated to realize the properties of security
through location-based access control and dependability through monitoring and
diagnostics. Monitoring and diagnostics are achieved with the use of a runtime
framework called Everest. Everest employs event calculus to detect threats and
failures in the system. The proposed solution also provides a monitoring frame-
work for runtime checks of conditions related to the correct operation of security
and dependability patterns. These conditions are specified as monitoring rules
in Event Calculus.

Bernardi et al. [3] proposed an approach called MARTE-DAM for depend-
ability modeling and analysis using UML. MARTE-DAM extends UML and
includes features for the modeling, evaluation, and analysis of real-time systems.
The authors first created a domain model that considers the main dependability
concepts and organized them into top- and low-level packages. These packages
include attribute descriptions and their relationships with each other. After the
packages are defined they are stereotyped or mapped to a concrete profile. The
packages usually contain dependability stereotypes and attributes called tags.
They used a library of defined non-functional dependability types to measure
different dependability metrics. They conducted a case study using a Message

Redundancy Service (MRS) which is described using sequence diagrams. They
then annotated the MRS with dependability properties using MARTE-DAM.
They conducted an analysis and assessment of MARTE-DAM by transforming
the MRS case into a Deterministic and Stochastic Petri Nets (DSPN). The DSPN
model was then simulated to measure its dependability and performance. Simi-
larly the work by Koopman [15] proposed the Ballista approach to quantitatively
assess fault tolerance, quality assurance and computer security. Ballista can be
used for robustness testing in operating systems. The aim is to use Ballista as a
quality check for software assurance, by measuring generic robustness for fault
tolerance and transforming security aspects into analogs of Ballista data types.
Ballista uses both software testing and fault injection to test robustness.

Lastly, Mustafiz et al. [20] proposed a model-based approach for developers
to analyze the dependability of systems whose requirements are described as use
cases, and to help identify reliable and safe ways of designing the interactions in a
system. They introduced probabilities at each step of the use case; this probabil-
ity represents the success of that step. They utilized a probabilistic extension of
state charts which are deterministic finite state automata to formally model the
interaction requirements defined in the use cases. AToM3, a tool used for formal
modeling, was used to model the state charts. An analytical evaluation of the
formal model is then carried out based on the success and failure probabilities
of events in the environment.

Several other approaches adopted a Markovian approach to evaluate system
reliability (e.g., [14, 19]). Most of the above approaches produce model-based
reliability evidence. However, experience with security certification suggests that
the integration in our reliability certification scheme is not unfeasible.

Other works focused on evaluating dependability and reliability of services in
a SOA environment. Cardellini et al. [6] proposed a model-based approach to the
realization of self-adaptable SOA systems with the goal of addressing depend-
ability requirements. The authors introduced a SLA (System Level Agreement)
Monitor for monitoring aspects of the services agreed in SLA. According to
their definition of SLA, the proposed solution includes a large set of parame-
ters for different kinds of functional and non-functional service attributes, as
well as for different ways of measuring them. In our vision, this type of SLA
monitoring can be responsible for doing the measurements of the monitoring
rules specified in the service certificate. Cortellessa and Grassi [9] analyzed the
problem of reliability in SOA environments with focus on the composition and
on mathematical aspects of the reliability modeling. They define a generic set
of information to support SOA reliability analysis that can be monitored also
in the case of composed services. Grassi and Patella [11] presented a reliability
evaluation algorithm for SOA services. The algorithm uses the flow graph as-
sociated with a service to compute its reliability. Finally, Challagulla et al. [8]
proposed a solution based on AI reasoning techniques for assessing the reliability
of SOA-based systems based on dynamic collection of failure data for services
and random testing. Again, failure data could be integrated as evidence in our
reliability certificates.

6 Conclusions

Reliability is a key concern in most systems today. The SOA paradigm, which
supports runtime selection and composition of services, makes it difficult to
guarantee a priori the reliability of a process instance. In this paper, we presented
a technique based on machine-readable reliability certificates using reliability
pattern. In our work, we used the certificates to conduct a posteriori evaluation
of reliable services. We are currently extending our approach to support a wider
number of reliability patterns. Also, we are working on the integration of other
types of dependability evidence.

Acknowledgements

This work was partly funded by the European Commission under the project
ASSERT4SOA (contract n. FP7-257351). This material is based upon work sup-
ported by the National Science Foundation under Grant No. OISE-0730065.

References

1. Anisetti, M., Ardagna, C.A., Damiani, E.: Fine-grained modeling of web services
for test-based security certification. In: Proc. of the 8th International Conference
on Service Computing (SCC 2011). Washington, DC, USA (July 2011)

2. Becker, S., Koziolek, K., Reussner, R.: The palladio component model for model-
driven performance prediction. Journal of Systems and Software (JSS) 82(1), 3–22
(2009)

3. Bernardi, S., Merseguer, J., Petriu, D.: A dependability profile within marte. Jour-
nal of Software and Systems Modeling 10(3), 313–336 (2009)

4. Buckley, I., Fernandez, E., Rossi, G., Sadjadi, M.: Web services reliability pat-
terns. In: Proc. of the 21st International Conference on Software Engineering and
Knowledge Engineering (SEKE 2009). Boston, MA, USA (July 2009), short paper

5. Buckley, I., Fernandez, E.: Three patterns for fault tolerance. In: Proc. of the
International Workshop OOPSLA MiniPLoP. Orlando, FL, USA (October 2009)

6. Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., Mirandola, R.: Towards
self-adaptation for dependable service-oriented systems. In: Proc. of the Workshop
on Architecting Dependable Systems (WADS 2008). Anchorage, AK, USA (June
2009)

7. Challagulla, V., Bastani, F., Paul, R., Tsai, W., Yinong Chen, Y.: A machine
learning-based reliability assessment model for critical software systems. In: Proc.
of the 31st Annual International Computer Software and Applications Conference
(COMPSAC). Beijing, China (July 2007)

8. Challagulla, V., Bastani, F., Yen, I.L.: High-confidence compositional reliability
assessment of soa-based systems using machine learning techniques. In: Tsai, J.,
Yu, P. (eds.) Machine Learning in Cyber Trust: Reliability, Security, Privacy, pp.
279–322. Spinger-Verlag (2009)

9. Cortellessa, V., Grassi, V.: Test and analysis of web services. In: Baresi, L. (ed.)
Reliability Modeling and Analysis of Service-Oriented Architectures, vol. 154, pp.
339–362. Springer (2007)

10. Damiani, E., Ardagna, C.A., El Ioini, N.: Open source systems security certifica-
tion. Springer, New York, NY, USA (2009)

11. Grassi, V., Patella, S.: Reliability prediction for service-oriented computing envi-
ronments. IEEE Internet Computing 10(3), 43–49 (2006)

12. Herrmann, D.: Using the Common Criteria for IT security evaluation. Auerbach
Publications (2002)

13. Holzmann, G., Joshi, R.: Reliable software systems design: Defect prevention, de-
tection, and containment. In: Proc. of the IFIP WG 2.3 Conference on Verified
Software: Tools, Techniques, and Experiments (VSTTE 2005). Zurich, Switzerland
(October 2005)

14. Iyer, S., Nakayama, M., Gerbessiotis, A.: A markovian dependability model with
cascading failures. IEEE Transactions on Computers 58(9), 1238–1249 (2009)

15. Koopman, P.: Toward a scalable method for quantifying aspects of fault tolerance,
software assurance, and computer security. In: Proc. of the Computer Security,
Dependability, and Assurance: From Needs to Solutions (CSDA 1998). York, U.K.
(July 1998)

16. Kopp, C.: System reliability and metrics of reliability, http://www.ausairpower.
net/Reliability-PHA.pdf, accessed in date July 2011

17. Lyu, M.: Handbook of Software Reliability Engineering. McGraw-Hill (1995)
18. Microsoft: Using Reliability Monitor, http://technet.microsoft.com/en-us/

library/cc722107(WS.10).aspx, accessed in date July 2011
19. Muppala, J., Malhotra, M., Trivedi, K.: Markov dependability models of complex

systems: Analysis techniques. In: Ozekici, S. (ed.) Reliability and Maintenance of
Complex Systems, NATO ASI Series F: Computer and Systems Sciences, vol. 154,
pp. 442–486. Springer-Verlag, Berlin (1996)

20. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of
system dependability. Journal of Software and Systems Modeling 7(4), 487–502
(2008)

21. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architec-
tures. In: Proc. of the IEEE International Workshop on Systems Development in
SOA Environments (SDSOA 2007). Minneapolis, MN, USA (June 2007)

22. Pan, J.: Software reliability.18-849b dependable embedded systems. Tech. rep.,
Carnegie Mellon University, http://www.ece.cmu.edu/~koopman/des_s99/sw_

reliability/, accessed in date July 2011
23. Saridakis, T.: A system of patterns for fault tolerance. In: Proc. of the EuroPLoP

Conference. Kloster Irsee, Germany (2002)
24. Saridakis, T.: Design patterns for fault containment. In: Proc. of the EuroPLoP

Conference. Kloster Irsee, Germany (2003)
25. Spanoudakis, G., Kloukinas, C., Mahbub, K.: The serenity runtime monitoring

framework. In: Spanoudakis, G., Kokolakis, S. (eds.) Security and Dependability
for Ambient Intelligence, pp. 213–238. Springer (2009)

26. Tsai, W., Paul, R., Cao, Z., Yu, L., Saimi, A., Xiao, B.: Verification of Web services
using an enhanced UDDI server. In: Proc. of the 8th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS 2003). Guadalajara,
Mexico (January 2003)

27. Walter, M., Schneeweiss, W.: The modeling world of reliabiliy of reliability/safety
engineering. LiLoLe Verlag (2005)

28. Walter, M., Trinitis, C.: Automatic generation of state-based dependability models:
from availability to safety. In: Proc. of the 20th International Conference Architec-
ture of Computing Systems (ARCS 2007). Zurich, Switzerland (March 2007)

