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Abstract. Low upfront costs, rapid deployment of infrastructure and
flexible management of resources has resulted in the quick adoption of
cloud computing. Nowadays, different types of applications in areas such
as enterprise web, virtual labs and high-performance computing are al-
ready being deployed in private and public clouds. However, one of the
remaining challenges is how to allow users to specify Quality of Service
(QoS) requirements for composite groups of virtual machines and en-
force them effectively across the deployed resources. In this paper, we
propose an Infrastructure as a Service resource manager capable of al-
locating Distributed Ensembles of Virtual Appliances (DEVAs) in the
Cloud. DEVAs are groups of virtual machines and their network connec-
tivities instantiated on heterogeneous shared resources with QoS speci-
fications for individual entities as well as their connections. We discuss
the different stages in their lifecycle: declaration, scheduling, provision-
ing and dynamic management, and show how this approach can be used
to maintain QoS for complex deployments of virtual resources.

1 Introduction

Infrastructure as a Service (IaaS) clouds allow users to instantiate Virtual Ma-
chines (VMs) on demand in remote shared resources for a certain period of
time. One of the currently faced challenges in such systems is allowing users
to specify fine-grained requirements for groups of resources and ensure that the
promised Quality of Service (QoS) is met for them, not only in terms of individ-
ual machines, but also in their aggregate traffic assignment. This requirement
is essential to run certain parallel and distributed workloads such as scientific
applications that rely on low network latencies or high bandwidth, for example.
We propose an IaaS cloud manager to tackle this problem at different levels: user
request definition, scheduling of virtual resources and management of physical
infrastructure to secure the requested service.

In order to maximize resource utilization, providers assign VMs to shared
physical infrastructure. Consequently, mechanisms need to be implemented to
ensure that utilization is fairly distributed according to the requested alloca-
tion. These measures have to consider various aspects such as VM placement,
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creation of virtual network links between them that provide the appropriate
bandwidth and latency, and dynamic monitoring and management of the com-
posite allocations. Our proposed work in this paper is an attempt to address the
above mentioned issues in the current IaaS implementations such as Amazon [1],
OpenNebula [14], Eucalyptus [11] or Nimbus [6].

Our approach allows users to submit requests by specifying the requirements
of their application. A cloud resource manager is in charge of brokering for the
appropriate resources and acquiring them for the desired time. This process is
akin to the act of planning for traditional computing equipment, where hard-
ware —architecture, processor speed, memory, switching and routing devices, or
machine interconnections— can be carefully tailored based on costs and capa-
bilities, except with the benefits of the cloud, such as elasticity or pay-per-use.
An additional advantage is that, by defining concrete Service Level Agreements
(SLA), the broker can use heterogeneous resources, reducing the fragmentation
between clouds with different capabilities. This fact can also be employed to
enable federation among providers.

In this paper, we implement a heuristic placement algorithm based on the
assign mapping method used in Emulab [4] for network topologies. Next, we
create a cloud interface on top of OpenNebula which accepts user requests for
Distributed Ensembles of Virtual Appliances (DEVAs) with annotated network
connections and VM descriptions. We also define DEVA agents in charge of en-
forcing QoS, isolating traffic, monitoring resource usage and tunneling packets
between remote resources to seamlessly create layer 2 networks among ensem-
ble members. Finally, we perform experiments to validate our architecture and
demonstrate how QoS can be fulfilled.

The results demonstrate that our system can be used to instantiate groups
of VMs in clouds with user-defined QoS requirements to execute different types
of applications. The DEVA IaaS manager enables fine-grained control over the
allocated resources, allowing users to request the appropriate infrastructure and
providers to apply the right policies so that resources are not allocated in excess.

2 System Overview

Figure 1 depicts the general architecture of the system and the flow of interac-
tions among the different components. Users prepare a request description based
on their application requirements and send it to the Cloud Interface component.
When a request is received, it is parsed and a graph describing the virtual deploy-
ment is generated. The Mapper component tries to find the most appropriate
resources based on pre-defined site policies and the fulfillment of the user spec-
ified requirements. The resulted mapping is then sent to a VM provisioner, for
example, the OpenNebula [14], which is the one that we used in our prototype
implementation. The provisioner transfers the required VM images to the desti-
nation nodes, instantiates them, and notifies the DEVA Agents in every hosting
node. Each agent then applies the appropriate network mechanisms to perform
traffic monitoring, isolation and traffic control. Agents also monitor the state of
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the VMs and notify the central manager. The steps mentioned in the process
are enumerated and discussed in detail next.

Fig. 1. General architecture

We define a Distributed Ensemble of Virtual Appliances (or DEVA) as a group
of virtual appliances, including virtual machines, virtual network devices, and
their connections, altogether with a set of QoS requirements applied either glob-
ally or to individual members of the ensemble. DEVAs can be described using
XML, and sent to a resource manager capable of processing and instantiating
them within a pool of physical resources. Our current implementation supports
single VM requirements such as CPU power and memory, network bandwidth
in megabits per second and latency, as low or high.

3 DEVA Manager

3.1 Mapping of DEVAs

After a DEVA description is sumitted to the DEVA Manager, the Mapper mod-
ule decides where to place each of the individual components. During this pro-
cess, there is a match-making algorithm that selects those resources that can
fulfill the request: this stage considers both individual VMs (i.e., available CPU
and memory), and the whole ensemble (network connectivity, available band-
width, etc.). We assume that physical resources may be heterogeneous, and that
they may belong to different administrative domains. We implement a central-
ized match-making approach, where the main process is on the DEVA manager
front-end node and has all the information about the available resources, even
if they are located on different sites.

As it has already been discussed in the literature, the process of mapping a
virtual topology to a physical one is an NP-hard problem, making comprehensive
algorithms too costly. Instead, we have adopted the assign algorithm [12], used
in emulab [4], for the mapping stage.

Our implementation of assign differs from the original one in various aspects
based on the different targeted use. While this algorithm was originally designed
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to solve the so called network testbed mapping problem (i.e., how to find an
optimal or close to optimal mapping from a virtual network topology to a phisical
one), we take a more pragmatic approach, focusing on providing the required
connectivity and QoS rather than an exact replica of the topology.

The algorithm considers five types of connection mapping with different scores
that lead to various solutions. These types are:

– Trivial: Both VMs share the same physical host, thus sharing an internal
connection.

– Direct: The hosting machines are directly connected through a cable.
– IntraSwitch: The hosting machines are connected to the same switch.
– InterSwitch: The hosting machines are connected to different switches

which in turn are connected through a cable.
– InterRouter: The hosting machines are in different layer 2 networks, con-

nected by one or more routers in between.

Each of the itemized connection types has a cost in terms of latency and pos-
sible bandwdith, which is accounted for in the mapping process. The algorithm
gives each connection a score, promoting results with better connectivity. The
case of InterRouter connections is special since, when a connection between two
machines that share a logical layer 2 link is mapped to this kind of connection,
tunneling will be necessary at the provisioning stage, which also results in addi-
tional network latency. The algorithm takes this fact in consideration, creating
a policy violation if the mapped connection won’t be able to fulfill the request.
In particular, low latency links from the DEVA request mapped to InterRouter
connection may result in a policy violation.

3.2 DEVAs across Heterogeneous Resources

The previous phase of the process is in charge of finding a good mapping between
the virtual topology and the physical resources. The assign algorithm outputs
a list of pairs of virtual resource to physical resources mappings altogether with
the policies in the links. The next step takes this mapping and realizes it.

We use the OpenNebula virtual infrastructure manager, version 1.4, to provi-
sion and control individual machines. OpenNebula is an IaaS resource manager
that receives requests via a command line interface or remote procedure calls
and instantiates the appropriate VMs, described by a template file. The DEVA
manager receives the output of the infrastructure mapper and translates it to
calls to OpenNebula’s XMLRPC protocol in order to provision and start the
VMs. The process to realize a DEVA involves four steps:

1. Translate the original DEVA request into OpenNebula VM templates
2. Send instantiation requests to OpenNebula, using the mapping results to

indicate the appropriate hosting machines
3. Apply the network configuration at each machine to ensure QoS is met
4. Monitor traffic at each host and aggregate it at the DEVA manager to form

a picture of the overall state
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OpenNebula’s VM template requires some information that is provided in the
original DEVA request, such as the location of the kernel, ramdisk and filesystem
images. Other data is generated by the DEVA manager, such as the VM’s MAC
address, and the rest of information is provided by the mapping algorithm, for
example the destination host. The template is created dynamically and sent to
OpenNebula, which is in charge of transferring the required images from a central
repository to the host machine and starting the VM. Each of the instantiated
VMs is identified by its uniquely generated MAC address, controlled by the
central DEVA manager.

The next step consists of applying the required network configuration at each
host in order to perform traffic monitoring, network isolation, bandwidth man-
agement and intelligent routing between ensemble members. To accomplish this,
each physical machine needs to know the details about the hosted VM’s network
configuration. We use OpenNebula’s hook functionality for this. Hooks are small
scripts that can be configured to run at certain points of OpenNebula’s request
lifecycle, such as when a VM is started, stopped or removed. They are executed
either in the head node or in the hosting machine. Since we need a process to
manage network settings accordingly to the original user’s request at each node,
we have developed a daemon (called a DEVA Agent) that runs at each host that
can perform these actions.

4 DEVA Agents

A DEVA agent runs as a background process that listens for new requests, runs
some pre-defined commands on the host machines, monitors network and VM
behavior, and creates VPN (Virtual Private Network) tunnels between sites.
The DEVA Manager notifies the appropriate agent of a new VM member using
a hook, which sends a command through the agent’s specified port. There is
one designated agent per site that creates VPN tunnels, called a site gateway.
All agents in a site know the address of the site gateway and can send requests
to create new tunnels. There are three supported commands: ADD, DEL and
TUN.

When an agent receives an ADD request, it looks for the virtual network
interface of the specified VM and queries the DEVA manager to retrieve global
information about the DEVA, such as which ensemble members this VM is
connected to and what is the requested network QoS. After this information is
returned, the agent can perform the appropriate actions. In the case that one
or more of the ensemble members share a virtual layer 2 connection with VMs
assigned to machines in different domains, the agent on the host machine of the
newly assigned VM issues an additional call to its corresponding site gateway
asking for a tunnel to be created between the VMs using the TUN command.
Finally, the DEL command is analogous to ADD, which basically removes a VM
from a host.
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Different DEVAs are completely isolated from one another at network layer 2.
When the DEVA agent receives a request to add a new VM, it creates ebtables 1

rules to block all traffic except those frames originating from or directed to other
ensemble members in the same logical network.

When an ADD request is received by the agent, it retrieves a list of the
VM’s neighbors from the DEVA manager, and then it adds two rules for each
of them: one to allow outgoing traffic from the VM’s unique MAC address to
the neighbor’s one, and the reciprocal rule to accept packets originating from
the neighbor’s address with the local VM as the destination. ARP requests are
special since they do not have a unique target, and therefore an additional rule
is added to allow this kind of packets from and to the network.

In the original DEVA request, each link in the ensemble may be annotated
with a desired latency and bandwidth. The DEVA Agent consults the manager
to retrieve the bandwidth constraints between the local VM and each of its
neighbors. For each pair, the agent creates a queuing class discipline in the
kernel’s traffic control module using the tc command. Next, packets are marked
in the kernel and filtered to use the appropriate class. We use the Hierarchical
Tocken Bucket (HTB) for its versatility and good performance.

Site gateways are in charge of routing frames that are not targetted to the
host’s Local Area Network. Since DEVAs may be distributed among different
networks that are not reachable at layer 2, agents must encapsulate the frames
that are directed to another network and send them. In our architecture, each
site must have a VPN server and allow client connections from other sites. Also,
each site that needs to tunnel traffic has to have at least one site gateway. When
the site gateway agent starts, it runs a VPN client for each of the remote sites
and connects to them. The client is configured to create a special tap device,
in such a way that all traffic send through a tap will be tunneled to a different
site. Then agents that instantiate new VMs retrieve the neighboring VM hosts,
and for each host that is located outside of the VM’s domain, they send a TUN
request to the local site gateway so that packets originating from the VM directed
to the destination neighbor are tunneled through the appropriate channel.

5 Experimental Results

Here we perform different experiments to demonstrate the use of DEVAs as a
viable cloud resource management approach. We have run several measurements
to quantify the performance and scalability of our design and the prototype
implementation. We evaluate the following hypothesis experimentally:

1. The overhead of the DEVA agents is small when executing High-Performance
Computing applications.

2. Traffic is effectively isolated between different deployed DEVAs.
3. User requested QoS is fulfilled through the execution of applications.

1 http://ebtables.sourceforge.net
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For all experiments, we employ our Magellan cluster, which is composed of 8
nodes, each of them with a Pentium 4 CPU at 3 GHz and Hyper Threading and
1 GB of memory. The nodes are connected using a 1 Gbps ethernet link and a
Gigabit switch. The head node of the cluster has two network interfaces, one is
connected to the Internet and the other to the private network where the other
7 nodes are also connected. Each node runs CentOS 5.3 and the Rocks cluster
administration software version 5.2 with the Xen roll, which provides Xen 3.0.3.

5.1 Overhead Measurement

In the first set of experiments, we quantify the overhead imposed by the agents
at each host. The agents control network isolation and bandwidth usage. Each
agent manages incoming and outgoing traffic at the virtual network interface
of each VM by filtering packets based on the source and destination addresses.
In our prototype implementation, since each VM has a unique MAC address,
the agent can control traffic for each pair of ensemble members, which implies
that there are two ebtable rules for each pair to manage incoming and outgoing
traffic.

For this experiment, we execute the Weather Research and Forecast (WRF)
package [8], a simulation software used for atmospheric research, using differ-
ent setups. WRF uses the Message Passing Interface (MPI) middleware 2 for
communication between processes, and can be executed with different number
of processes. We have previously studied the behavior of this program [7], and
demonstrated that its communication model is highly sensitive to network de-
lays. In particular, link latencies of more than 1 ms result in slower executions
when adding more nodes to the computation, making it impossible to perform
blind scaling across Internet.

In this macro-benchmark, we perform executions of WRF for 1, 2, 4 and 8
nodes using the physical cluster running Xen’s Domain 0, a set of OpenNebula
instantiated VMs, and a DEVA instantiated through our manager. Each process
is assigned to a different node. For all runs that involve VMs, we use a base
CentOS 5.3 Xen image with 512 MB of memory and a 2.6.18 Linux kernel. We
installed the required software to compile and run WRF version 2.2.

Figure 2 shows the execution time for the three considered cases, namely the
physical cluster, the VMs instantiated through OpenNebula and the DEVA VMs.
The slowdown between the physical execution and OpenNebula’s execution is
entirely produced by the Xen virtualization overhead. It can be observed that
when the number of nodes grows, so does the amount of communication among
them. This factor is specially significant, since I/O virtualization is known to
have a huge performance hit. The use of more sophisticated network drivers
and newer hardware would certainly alleviate the slowdown, although this is
outside the scope of the current paper. The overhead produced by the filtering
and monitoring by the agents is minimal in this case, averaging to less than 1
percent.
2 http://www.mpi-forum.org
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Fig. 2. WRF Execution time

The next experiment performs a micro-benchmark of the same parameters as
the previous one. We investigate the performance impact of adding the necessary
filtering rules to provide isolation between VMs in different networks. For this
experiment, we instantiate two VMs connected to a virtual switch, but we add
rules as if there were a greater number of VMs in the DEVA. Since rules are
directly dependent on the number of connections a VM has to other VMs, this
allows us to measure the slowdown produced by those rules in relation to the
size of the broadcast group.

Figure 3 shows bandwidth, round trip time and number of generated rules in
relation to the VM connections. We use netperf to measure the total available
bandwidth between two physical machines, two VMs instantiated with 0, 10 and
100 connections instantiated through the DEVA manager. Note that the number
of rules depends on how many ensemble members are in the same broadcast
group (i.e., share the same virtual link) and not the size of the DEVA.
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Fig. 3. Overhead introduced by filtering rules

From the results, we can see that the impact of adding more VMs is increas-
ingly high, specially in terms of total bandwidth. Although 10 connections still
has a tolerable overhead of 6.2% over the zero-connection case, adding more
VMs results in a great overhead due to the number of filtering rules that need
to be added.
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The approach of assigning unique MAC addresses to control network isolation
is therefore not scalable for large groups of ensemble members. To address this
problem, we employ VLANs to identify which virtual network each packet be-
longs to. VLANs are defined by adding 4 additional bytes to each datagram at
the source interface. To implement this method, we modified the DEVA manager
to assign a unique id to each broadcast group. The downside of this solution is
that VLANs need to be supported by the physical switch, while the individual
MAC filtering is network agnostic.

5.2 Isolation and QoS Conservation

Isolation is also demonstrated in the provided QoS. Traffic from one DEVA
should not impact bandwidth and latency allocated by the manager to another
one. The only exception to this is when best effort links are requested, in which
case no guarantee is made by the system.

In the next experiment, we test the effects of multiple DEVAs running in our
Magellan cluster. First we execute two applications that share the same physical
resources, and we constrain the allocated bandwidth to ensure each of them has
the requested QoS. We compare it to the same case when allocating the VMs
individually through the IaaS manager, OpenNebula.

For this experiment, we choose two applications with different behaviors: first,
we create HTTP traffic between two VMs, one of them with the Apache Web
server version 2.2.3, and the other with the apache benchmark tool. Next, we
simulate network traffic by transferring files between another pair of VMs. The
two clients share one host, and the two servers are placed in another host.
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Fig. 4. HTTP traffic between two VMs with and without network contention. Right
figure uses DEVA traffic control mechanisms to fulfill requested QoS.

Figure 4 shows the cumulative distribution function of the Web server response
time. The left figure shows unmanaged network traffic: while half of the requests
take similar time, the waiting time for the other half increases up to four times
with the additional network load. In the right figure, two DEVAs are requested
with different requirements: the pair of VMs with the HTTP traffic has a 600
Mbps virtual link, while the other two VMs have a virtual link of 40Mbps. It



476 D. Villegas and S.M. Sadjadi

can be seen that the response time when additional traffic is generated remains
similar to the case in which only the HTTP requests take place. As the figure
shows, 80% of requests are completed in the same time, while the top 20%
experience delays up to three times.

5.3 Use of Heterogeneous DEVAs and Resources

Finally, we run an experiment to demonstrate how VMs in a DEVA can be placed
across different administrative domains while QoS is enforced. In this case, we
provision a DEVA with three VMs: two of them are connected among them with
a 160 Mbps virtual link, and the third is connected to the first two with a 16
Mbps link. Next, we reduce the available nodes in the Magellan cluster to two
and add a physical machine from another cluster, Mind, located in a different
campus at FIU. The assign algorithm maps two of the VMs to Magellan and the
third one to Mind, and creates a VPN tunnel among them to provide a virtual
network. We calculate link bandwidth among VMs by using netperf and the
round trip time by averaging 50 pings between the machines. Figure 5 shows
how the virtual ensemble maintains the requested QoS.
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RTT: 1.156 ms
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magellan.cs.fiu.edu mind.eng.fiu.edu
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192.168.1.3

Fig. 5. Intersite deployment of a DEVA

6 Related Work

Amazon EC2 [1] is perhaps the most prominent example of IaaS public cloud.
Users can request any number of virtual machines to be instantiated in the shared
infrastructure. VM capabilities are defined by the requested instance type, and
price is set accordingly to the time and characteristics of the used VMs. One of
the main shortcomings of EC2 is the lack of QoS assurances for network traffic:
while processor, memory and disk capabilities are well defined, users can’t make
assumptions about the network.

Eucalyptus [11], OpenNebula [14] and Nimbus [6] are IaaS cloud implemen-
tations that have some similarities with EC2. However, these solutions do not
support composite groups of VMs with a defined network QoS in the requests.
Another difference is in the deployment of VMs accross different domains. Open-
Nebula supports interoperation by implementing different protocols such as the
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Open Cloud Computing Interface (OCCI) or by extending the local resources
into public clouds. In our case, we the DEVA manager decides when to create a
tunnel to connect VMs in different sites based on the requested QoS.

Another type of solutions focus on the network virtualization aspect, rather
than in the resource management and providing an interface for users to manage
composite groups of virtual resources. VIOLIN [13], VNET [15], VINE [16] or
IPOP [3] are examples of such systems.

Also, DEVAs have similitudes with virtual clusters such as [9] or [10]. Differ-
ently than in our work, these solutions focus on instantiating the required virtual
resources and providing the appropriate software and network configuration.

Finally, our work has points in common with network testbeds, where many
of the problems of provisioning execution environments to replicate network
topologies have to be solved. Emulab [4] allows users to create network experi-
ments over shared resources by requesting a configuration of virtual hosts and
connections. The main difference from our work and Emulab is that the latter
is principally targeted for repeatable network experiments, while our system is
designed to host virtual environments to run possibly long lasting applications.
Also, since our primary goal is not to replicate the user’s network characteristics,
we can make some optimizations in the requested topologies. In GENI, [2] de-
scribes a similar approach in which ORCA [5] is extended to support additional
networking infrastructure to create multi-site VM deployments via VLAN tags.
Our work is more focused in the placement aspect and QoS fulfillment.

7 Conclusions and Future Work

We have described an approach to instantiate groups of Virtual Machines in
the cloud while fulfilling their composite QoS requirements. Our experiments
indicate that this implementation is viable and can be used to execute different
workloads with specific network and processing requirements. As future work, we
plan to further investigate the dynamic behavior of DEVAs, and how to respond
to varying traffic and resource utilization. The DEVA manager can perform
actions to further control QoS of the sytem by migrating VMs among resources,
or adjusting the allocations according to the global state. Finally, we want to
explore different placement policies among sites to accomplish site-specific and
global goals such as lower power utilization or higher throughput.
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