
84 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

Service Clouds: Distributed Infrastructure for
Adaptive Communication Services
Farshad A. Samimi, Philip K. McKinley, S. Masoud Sadjadi, Chiping Tang,

Jonathan K. Shapiro, and Zhinan Zhou

Abstract— This paper describes Service Clouds, a distributed
infrastructure designed to facilitate rapid prototyping and de-
ployment of adaptive communication services. The infrastructure
combines adaptive middleware functionality with an overlay
network substrate in order to support dynamic instantiation
and reconfiguration of services. The Service Clouds architecture
includes a collection of low-level facilities that can be invoked di-
rectly by applications or used to compose more complex services.
After describing the Service Clouds architecture, we present
results of experimental case studies conducted on the PlanetLab
Internet testbed alone and a mobile computing testbed.

Index Terms— Adaptive communication, self-managing sys-
tem, overlay network, service composition, mobile computing,
autonomic computing, quality of service.

I. INTRODUCTION

COMPUTER applications play an increasing role in man-
aging their own execution environment. This trend is due

in part to the emergence of autonomic computing [1], [2],
where systems are designed to adapt dynamically to changes
in the environment with only limited human guidance. One
area in which adaptive behavior can be particularly helpful is
communication-related software: self-adaptation can be used
to improve quality of service (QoS), support fault tolerance,
and enhance security in the presence of changing network
conditions. This paper presents the design and evaluation of
an extensible, distributed infrastructure to support the devel-
opment and deployment of enhanced communication services.

Realizing adaptive behavior typically requires cooperation
of multiple software components. This cooperation may be
vertical, involving different system layers, or horizontal, in-
volving software on different platforms. Many approaches to
vertical cooperation are based on adaptive middleware [3]–[6].
Middleware is an ideal location to implement many types of
self-monitoring and adaptive behavior. Examples of horizontal
cooperation include dynamic composition of services among
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Fig. 1. Conceptual view of the Service Clouds infrastructure.

multiple nodes [7]–[9] and transcoding of data at intermediate
nodes [10]. Many approaches involve the use of overlay
networks [11], in which end hosts form a virtual network atop
a physical network. The presence of hosts along the paths
between endpoints enables intermediate processing of data
streams, without modifying the underlying network protocols
or router software.

Designing systems involving both vertical and horizontal
cooperation is challenging due to the dynamic nature of
adaptive software, uncertainty in the execution environment,
and heterogeneity among software modules and hardware
platforms. We argue that a general, extensible infrastructure
to support such interactions can be very useful to the develop-
ment and deployment of autonomic communication services.
In this paper, we describe Service Clouds, an architecture for
organizing constituent service components and using them to
compose complex communication services. Service Clouds is
part of RAPIDware, an ONR-sponsored project investigating
the design of high-assurance adaptable middleware [12].

Figure 1 shows a conceptual view of Service Clouds.
Effectively, the nodes in the overlay network provide a “blank
computational canvas” on which services can be instantiated as
needed by user applications, and later reconfigured in response
to changing conditions. Individual nodes in the cloud use
adaptive middleware and cross-layer collaboration to support
self-configuring behavior; an overlay network among these
nodes serves as a vehicle to support cross-platform adaptation.
The main contribution of this work is to propose a model
for building such an infrastructure, including identification of
the main components and their interaction. In addition, we
describe an extension of the Service Clouds model to support
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robust mobile computing at the wireless edge of the Internet.
Finally, we have implemented a prototype of Service Clouds
and used it to compose autonomic communication services
atop both the PlanetLab Internet testbed [13] and a local
mobile computing testbed.

This paper is organized as follows. After discussing related
work in Section II, we describe the Service Clouds architecture
and the prototype implementation in Section III. In the remain-
ing sections, we present three case studies where we used the
Service Clouds infrastructure to develop new communication
services. The first is a TCP-Relay service, in which a node is
dynamically selected and configured to serve as a relay for a
data stream. Experiments demonstrate that in many cases this
service can yield significantly better performance than using
a direct TCP/IP connection. The second is MCON, a service
for constructing robust connections for multimedia streaming.
When a new connection is being established, MCON exploits
physical network topology information to dynamically find
and establish a high-quality secondary path, which is used as
shadow connection to the primary path. The third is supporting
dynamic proxy services at the wireless edge. Experiments
demonstrate autonomic instantiation and reconfiguration of
proxies to keep a roaming user connected to the network.
Preliminary results of this work have been presented in con-
ference papers [14], [15]; herein we provide a more complete
description of the project and additional experimental results.

II. RELATED WORK

The Service Clouds concept integrates and extends results
from three areas of research. First, adaptive middleware and
distributed programming frameworks and models [16]–[19]
enable dynamic reconfiguration of software in response to
changing conditions. Research in this area has been extensive
(see [20] for a survey) and has provided a better understand-
ing of several key concepts relevant to autonomic comput-
ing, including reflection, separation of concerns, component-
based design, and transparent interception of communica-
tion streams. Second, cross-layer cooperation mechanisms
[21], [22] enable coordinated adaptation of the system as a
whole, and in ways not possible within a single layer. The
Service Clouds architecture supports cross-layer cooperation
and incorporates low-level network status information in the
establishment and configuration of high-level communication
services. Third, overlay networks [11] provide an adaptable
and responsive chassis on which to implement communication
services for many distributed applications [10], [23]–[25].

Recently, researchers have investigated several ways to
combine these technologies to support dynamic overlay-based
services: iOverlay [26] for lightweight message switching
and overlay monitoring; Accord [18] and GridKit [27] for
programming support in developing autonomic distributed
services; SpiderNet [7] and CANS [28] for dynamic creation
and reconfiguration of services along a data path; DSMI [29]
for resource-aware stream management; and MACEDON [25]
for providing a language-based approach to describing overlay
services and automatically generating code for their imple-
mentations. The pluggable nature of Service Clouds enables
incorporation of existing frameworks such as iOverlay. In
addition, developers could take advantage of programming

frameworks such as MACEDON, Accord, and GridKit in
designing new components for integration into the Service
Clouds infrastructure. The Service Clouds model integrates
all three major parts (middleware, cross-layer adaptation, and
overlay networks) in a single framework. Our case studies
demonstrate that such an integrated infrastructure can greatly
facilitate the development and deployment of autonomic com-
munication services. Moreover, we view Service Clouds as
complementary to SpiderNet, CANS, and DSMI, focusing
on the dynamic instantiation and reconfiguration of services
on “blank” nodes and the establishment and maintenance of
service paths among them.

Service Clouds is also related to research in network
management and service provisioning [30], [31], monitoring
services [32], and multi-domain network operation [31], [33]
in which management and monitoring extend across differ-
ent administrative domains. Martin-Flatin [34] has proposed
a self-managing organizational model in which lower-level
managers perform event correlation and self-management
rather than having all agents report to higher-level managers.
The novelty of this approach is self-managing systems that
can communicate with higher-level managers, across multiple
domains, when necessary. Such approaches can be used to
support efficient execution of autonomic overlay frameworks
such as Service Clouds. Strassner and Dupler [35] describe
a model-driven approach to implementing network services
and argue that universal representation of network function-
ality is necessary to enable automatic management. As an
overlay-based infrastructure, Service Clouds can benefit from
autonomic services in the network underlay, especially in
realizing cross-layer cooperation and distributed management.
Moreover, we are currently using model-based approaches in
designing the next generation of Service Clouds.

Finally, we emphasize that while our initial investigations
focus primarily on functionality and application performance,
issues such as software assurance and security of the in-
frastructure are also being investigated in our laboratory. Ex-
amples of software assurance include how to specify, analyze,
and verify that a system will always exhibit safety, liveness,
and quality-of-service properties when it is deployed. A key
issue in dynamically adaptive systems is to ensure that a given
adaptive action does not put the system into an inconsistent
state [36]. In terms of security, the core of any service
infrastructure must be extremely well protected from attackers
by the usual battery of security tools (e.g strong encryption
to ensure the confidentiality and authenticity of communica-
tion). Beyond this, in an ongoing project we are addressing
covert monitoring of the infrastructure. Specifically, we are
investigating how to hide changes in software monitoring
from would-be intruders to prevent them from impeding or
corrupting the monitoring process. Artifacts and techniques
produced by these studies are planned for integration into the
next generation of Service Clouds.

III. ARCHITECTURE AND PROTOTYPE

The design of Service Clouds has its roots in an earlier
study [37], where we designed and constructed the Kernel-
Middleware eXchange (KMX), a set of interfaces and services



86 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 4, NO. 2, SEPTEMBER 2007

Fig. 2. Relationship of Service Clouds to other system layers.

to facilitate collaboration between middleware and the operat-
ing system. We used KMX to improve QoS in video streams
transmitted across wireless networks. That study yielded the
concept of a transient proxy, whereby a service is instantiated
on one or more hosts in the network, as needed, in response to
changing conditions. We view Service Clouds as a generaliza-
tion of this concept. The overlay network provides processing
and communication resources on which transient services can
be created as needed to assist distributed applications.

Model. Figure 2 shows a high-level view of the Ser-
vice Clouds software organization and its relationship to
Schmidt’s model of middleware layers [38]. Most of the
Service Clouds infrastructure can be considered as host-
infrastructure middleware, as it can be invoked directly by
either the application itself or by another middleware layer. An
Application-Middleware eXchange (AMX) provides interfaces
for that purpose, and encapsulates high-level logic to drive
various overlay services. The architecture is designed with
other developers in mind. Distributed composite services are
created by plugging in new algorithms and integrating them
with lower-level control and data services, as well as with
mechanisms for cross-layer collaboration.

Architecture. Figure 3 provides a more detailed view of
the Service Clouds architecture. The architecture comprises
four main groups of services, sandwiched between the AMX
and KMX layers. The Distributed Composite Services layer
coordinates interactions among the layers of a single platform
and activities across platforms. Each composite service is de-
composed into Data Services (e.g., transcoding a video stream
for transmission on a low bandwidth link) and Control Ser-
vices (e.g., coordinating the corresponding encoding/decoding
actions at the sender and receiver of the stream). Basic Overlay
Services provide generic facilities for establishing an over-
lay topology, exchanging status information and distributing
control packets among overlay hosts. The current prototype
framework provides the “glue code” and a repository of
component services to be used as a toolkit for developing and
deploying higher-level services. Source templates are provided
for each service type, facilitating extension of the framework.
In addition, we are currently applying design patterns and
model-driven development to construct a new prototype of
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Fig. 3. Service Clouds architecture.

Service Clouds, with a goal of enabling developers to auto-
matically generate new service elements from corresponding
models. Next, we discuss each group of services, starting at
the bottom and working upward.

Basic Overlay Services include three main types of compo-
nents: meta-information collectors, cross-platform communi-
cators, and overlay routers. Meta-information collectors at a
given node gather system status information, such as current
packet loss rate and available bandwidth on each overlay link
connected to the node. Cross-platform communicators send
and receive inquiry packets, which carry meta-information
across platforms in a distributed system. An overlay router
component forwards data packets among overlay nodes, and
also supports their interception for intermediate processing.

Control Services include both event processors and DCS-
specific services. An event processor handles control events
and inquiry packets, for example, extracting information useful
to higher-level services (such as failure of a component at an-
other node). An event processor can also perform intermediate
processing, for example, constructing statistical information
on network conditions. In contrast, a DCS-specific service
implements functionality tied to a particular high-level service,
for example, an application-specific probing service.

Data Services are used to process data streams as they
traverse a node. Monitors carry out measurements on data
streams. The metrics can be generic in nature (e.g., packet
delay and loss rate) or domain-specific (e.g., jitter in a video
stream). Actuators are used to modify data streams, based on
the information gathered by monitors or by explicit requests
from higher-level services. We differentiate two types of
actuators: local adaptors and transient proxies. A local adaptor
operates on a data stream at the source and/or the destination.
For example, a local adaptor operating on a mobile node
may handle intermittent disconnections so that applications



SAMIMI et al.: SERVICE CLOUDS: DISTRIBUTED INFRASTRUCTURE FOR ADAPTIVE COMMUNICATION SERVICES 87

Data PacketsManagement Commands

Meta-Information

Cross-Platform    Communicators

CollectorsBasic Overlay Services

Control Services

s

Data Services

Distributed Composite Services (DCS)

om
po

)

Inquiries/replies

Operating System and Distributed Infrastructure

er

Kernel-Middlesware eXchange (KMX)

Application-Middleware eXchange (AMX)

Appl icat ion
Service Request Service Reply

Overlay Engines

Event Processors

Overlay Data Routers

DCS-Specific Services

Coordination and Service   Composition

rvic

Mobile Service Computation

TCP Relay Manager

TCP Relay Establish

Path-Establish Path RTT

Service Monitor

Loss Monitor
Topology MonitorInquiry Communicator

Interaction between building blocks Management commands
Data stream flowMonitoring probes/queries/replies

Application service request/reply

Inquiry/replies between nodes

RTT Monitor

Recomposer

UDP Relay

Source Router

TCP Relay

Resiliency Adaptor

FEC Encoder/DecoderUDP Relay Manager

Inquiry-Packet
Processing

Path-Explore

Service Composer

Service Gateway

Primitives

MCON Computation

TCP Relay Computation

Legend

Fig. 4. Instantiation of the general Service Clouds model.

running on the node do not hang or crash. Transient proxies are
adaptors that manipulate data streams at intermediate nodes.
For example, a transient proxy at the wireless edge of the
Internet can intercept a stream carrying sensitive data and re-
encrypt it before it traverses a (potentially less secure) wireless
channel.

The Distributed Composite Services unit includes two types
of components: overlay engines and coordination and ser-
vice composition. An overlay engine executes a distributed
algorithm across overlay nodes. Examples include building
and maintaining a multicast tree for content distribution, es-
tablishing redundant overlay connections between nodes, and
identifying and configuring relay nodes to improve throughput
in bulk data transfers. Coordination and service composition
refers to overseeing of several supporting activities needed
to realize vertical and horizontal cooperation. For example,
a coordinator can determine to use a particular overlay algo-
rithm, set the update intervals in meta-information collectors
for gathering information (which affects the overhead and ac-
curacy of the gathered data), and configure an event processing
component to perform pre-processing of the received pieces
of information.

Prototype. Figure 4 shows the components that comprise
the current Service Clouds prototype. The prototype combines
service-oriented building blocks in a framework to interact
with each other. The layered architecture enables higher-level
components to use and share lower ones. The functionality
of individual components will be described later with the
corresponding case study.

The Service Clouds prototype is written primarily in Java,
but components can incorporate modules written in other
languages, by using the Java Native Interface. The prototype

software has a main driver, which implements service compo-
sition and coordination. It reads configuration files containing
the IP addresses of overlay nodes and the initial overlay
topology, instantiates a basic set of components as threads,
and configures them according to the default or specified
parameter values. Example parameters include the interval
between probes for monitoring packet loss, the maximum
number of hops an inquiry packet can travel, and an assortment
of debugging options. To manage the distributed infrastructure,
we use Java Message Service (JMS). The AMX interface to
the infrastructure is implemented using local TCP sockets.
Components such as meta-information collectors implement
the singleton pattern, which means that different overlay
services refer to and use the same instantiation of a monitoring
service. This design facilitates sharing of component services
among more complex services.

The format of inquiry packets exchanged among nodes is
XML, and we use Document Object Model (DOM) to enable
Service Clouds components to access and manipulate their
content. Although DOM may not be as fast as the other
alternatives, such as the Simple API for XML (SAX), it
provides a convenient interface for inspecting and modifying
XML fields, and benchmarking of our prototype indicates
its performance is satisfactory. Further, the emergence of
efficient XML technologies, such as binary XML format,
also addresses concerns about bandwidth consumption and the
speed of processing XML documents.

We have used the Service Clouds prototype to conduct
three case studies, presented in the following sections. All
three studies make use of PlanetLab [13], an Internet research
testbed comprising hundreds of Linux-based Internet nodes
distributed all over the world. The third case study combines
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Fig. 5. PlanetLab nodes used in the case studies.

PlanetLab nodes with those on a mobile computing testbed.
Figure 5 shows the PlanetLab nodes used in the case studies.

IV. TCP-RELAY CASE STUDY

The first case study investigates a means to improve
throughput for bulk data transfers. Recent studies indicate that
application-level relays in an overlay network can actually
improve TCP throughput for long-distance bulk transfers [39].
Specifically, due to the dependence of TCP throughput on
round-trip time, splitting a connection into two (or more)
shorter segments can increase throughput, depending on the
location of the relay nodes and the overhead of intercepting
and relaying the data. To develop a practical TCP relay
service, key issues to be addressed include identification of
promising relay nodes for individual data transfers, and the
dynamic instantiation of the relay software. In this case study,
we use the Service Clouds infrastructure to construct such
a service, and we evaluate the resulting performance. We
note that TCP relays can be more easily deployed than some
other approaches to improving TCP throughput, such as using
advanced congestion control protocols [40], which require
either router support or kernel modifications. Alternatively,
TCP relays can be used in tandem with such techniques.

Basic Operation. Figure 6 illustrates the use of a TCP relay
for a data transfer from a source s to a destination d. Let
Rsd and psd denote the round-trip time (RTT) and loss rate,
respectively, along the default Internet path connecting s and
d. The performance of a large TCP transfer from s to d is
mainly determined by TCP’s long-run average transmission
rate, denoted Tsd, which can be approximated using the
following formula [41]:

Tsd ≈ 1.5 M

Rsd
√

psd
,

where M is the maximum size of a TCP segment. Since Tsd

is inversely proportional to RTT, TCP flows with long prop-
agation delays tend to suffer when competing for bottleneck
bandwidth against flows with low RTT values. On the other

r

s d
suitable relay

unsuitable relay relayed path rate =
min(Tsr , Trd )

TrdTsr

direct TCP path rate = Tsd
Tsd

Fig. 6. An example of a TCP relay.

hand, if the same transfer is implemented with two separate
TCP connections through node r, then the approximate aver-
age throughput Tsrd will be the minimum throughput on the
two hops, Tsrd = min(Tsr, Trd).

If more than one suitable relay can be chosen, then a routing
decision is required to determine which of the possible relays
will yield the best performance. Typically, a well chosen relay
will be roughly equidistant between s and d and satisfy:

Rsr + Rrd < γ Rsd,

where γ > 1 is a small stretch factor. In this case study,
we limit consideration to a single relay. However, routing a
connection through a sequence of relays can further improve
performance, with marginally diminishing improvement as the
number of relays increases.

A TCP relay service must satisfy several requirements.
First, the path properties such as RTT and loss rate used to
predict TCP throughput must be measured continuously and
unobtrusively. Since no overlay node can directly measure
all paths, measurement results must be distributed across the
overlay. Second, the initiator of the transfer must use these
measurements to predict the TCP throughput for all possible
relays and select the best option (which may be the direct
Internet path if a good relay does not exist). Third, the initiator
must signal the chosen relay node to set up and tear down
a linked pair of TCP connections. Finally, the relay must
forward data efficiently, with as little overhead as possible.
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TABLE I

LIST OF NODES IN THE TCP-RELAY EXPERIMENT.

LocationNodeI D

Germanyfreedom.ri.uni-tuebingen.de4
USA-CAplanet1.cs.ucsb.edu3
USA-NYplanetlab1.cs.cornell2
Hong Kong (China)plab1.cs.ust.hk1

Australiaplanet-lab-1.csse.monash.edu.au0

Italyplanetlab2.polito.it9

USA-PAplanet1.pittsburgh.intel-research.net5

USA-WAplanetlab01.cs.washington.edu6

Canadaplanetlab3.uvic.ca7

USA-CAplanetslug1.cse.ucsc.edu8

As we will see below, these requirements map neatly to the
separation of concerns among particular component types in
the Service Clouds architecture.

Implementation Details. Figure 4 includes components
that were used in TCP-Relay. First, the RTT Monitor com-
ponent encapsulates the collection and distribution of delay
measurements. Second, the TCP Relay Computation compo-
nent encapsulates the computation required to predict TCP
throughput and find optimal relays. It exposes an interface
for relay selection and relies on the RTT Monitor to provide
input for its computation. Third, the Relay Establish and Relay
Manager components collectively implement the signaling
protocol to setup and control a relay. Finally, the TCP Relay
component implements data forwarding at the relay node,
executing in a transient thread instantiated by the Relay
Manager for the duration of a particular transfer.

Experimental Results. To evaluate the TCP-Relay service
for connections with long RTT, we constructed an overlay net-
work comprising 10 geographically diverse PlanetLab nodes,
as illustrated in Figure 5, and conducted an exhaustive set
of data transfers between all possible sender-receiver pairs.
Table I lists the nodes used in this case study. In these tests, all
transfers originate and terminate at overlay nodes, possibly us-
ing other overlay nodes as relays. To evaluate the performance
with respect to a particular pair, we performed two back-
to-back data transfers of equal size—one via a direct TCP
connection and another using the TCP relay infrastructure—
recording the throughput achieved by the relayed transfer
divided by that of the direct transfer. We refer to this quantity
as the improvement ratio. While Service Clouds is not always
able to find a promising relay (in which case the native
TCP/IP connection is used) our results show it can enhance
performance for many situations.

Since our focus in this paper is on the architecture and
use of Service Clouds, we present only a sample of the
results. Figure 7 shows results for a particular sender-receiver
pair in our experiment. The sender (ID 0 in Table I) is in
Australia, and the receiver (ID 1) is in Hong Kong. For
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Fig. 7. TCP-Relay results for a selected pair.

this pair, our prototype service consistently selected a relay
on the East Coast of the United States (ID 2). Although
the location of the relay is counterintuitive, an examination
of paths discovered by “traceroute” offers a straightforward
explanation. The default Internet route from the sender to the
receiver makes a trans-Pacific hop to the United States, then
traverses a high-performance backbone network (Abilene) to
an inter-ISP exchange point in Chicago. A few hops after
Chicago is a second trans-Pacific hop to China. Each trans-
Pacific hop adds roughly 200 msec to the total RTT, placing
the Chicago exchange point very close to the midpoint of the
route. The chosen relay turns out to be an excellent choice—
adding only a 20 msec detour through Abilene before rejoining
the direct route in Chicago.

Figure 7(a) shows the predicted and observed improvement
ratio for relayed transfers of various sizes using the Australia-
to-Hong Kong pair. Each observed value is an average of
at least 10 measurements. The plot shows that the measured
improvements are close to the theoretical prediction. We also
observe the amortization of startup latency at larger transfer
sizes, which can be seen in comparisons of the durations of
direct and relayed transfers in Figure 7(b). The largest transfer
in our tests, 64MB, constitutes a relatively small bulk transfer.
Yet even at this scale, we see a significant reduction in transfer
time compared to using native TCP/IP—from about 15 to
about 10 minutes.
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V. MULTIPATH CONNECTION CASE STUDY

Establishing multiple connections (e.g., a primary path and
one or more backup paths) between a source and destina-
tion node can improve communication QoS by mitigating
packet loss due to network failures and transient delays.
This capability is especially important to applications such as
high-reliability conferencing, where uninterrupted communi-
cation is essential. However, in overlay networks, selection
of high-quality primary and backup paths is a challenging
problem due to the sharing of physical links among overlay
paths. Such sharing affects many routing metrics, including
joint failure probability and link congestion. In an earlier
work, we described TAROM [42], a distributed algorithm
for disseminating physical topology information to establish
multipath connections. In this case study, we use TAROM
in the construction of MCON (Multipath CONnection), a
distributed service that automatically finds, establishes, and
uses a high-quality secondary path whenever a primary overlay
path is established.

Basic Operation. MCON combines traditional distributed
multipath computation with topology-aware overlay routing
and overlay multipath computation. A topology-aware overlay
approach [43] considers shared physical links between two
paths as a factor when determining high-quality backup paths.
Since sharing of physical links among overlay paths reduces
their joint reliability, this method leads to finding more robust
backup paths.

The basic operation of MCON connection establishment is
depicted in Figure 8. To establish a multipath connection, the
source node sends a request packet to the destination node
along the primary path (path-establish procedure). This packet
collects path composition (physical topology) and quality in-
formation (packet loss in this prototype) along the way. Upon
reception, the destination node forwards this information to its
neighbors in path-explore packets, each of which attempts to
find its way to the source. When a node receives a path-explore
packet, it uses both the received information and its local state
to calculate the joint quality of the primary path and the partial
path from itself to the destination. If the joint quality-cost ratio
is above a specified threshold, it forwards this information
to its neighbors. By adjusting the value of the threshold, the
application can control the scope and overhead of this path-
explore process. If a node receives path-explore packets from
two neighbors, it calculates the joint quality of the two partial
paths and forwards the information of the primary and the
better partial path to its neighbors. The process terminates
when the remaining branches reach the source, providing it
with a set of high-quality backup paths. Details of the protocol
can be found in [42].

Implementation Details. In the Service Clouds imple-
mentation, two resiliency strategies are supported: topology-
unaware (TUA) and topology-aware using inference (TA-i).
The former attempts to find a high-quality secondary path
with respect to the overlay topology, but without considering
underlying path sharing in the physical network. The latter
uses physical topology information, some of it measured
directly and the rest obtained using inference techniques
that have previously been shown to be highly accurate [43].

NdNs

path-explore

path-establish

Fig. 8. Basic operation of MCON.

As described earlier, the logic for a distributed service is
encapsulated in an overlay engine. In the case of MCON, we
had available to us a C++ implementation of the TAROM
algorithm, which had been used as part of a simulation study.
With only minor modifications, we were able to plug the
existing C++ code into the Service Clouds infrastructure as an
MCON overlay engine, and access it through the Java Native
Interface.

MCON-specific control services include components to
transmit and forward Path-Establish and Path-Explore packets
among nodes. In terms of data services, MCON requires a
Resiliency Adaptor (an instance of a local adaptor) at both the
source and destination. At the source, the adaptor creates a
duplicate of the data stream and sends it to the destination
over the discovered secondary path. At the destination, the
adaptor delivers the first copy of each data packet received
and discards redundant copies.

Experimental Results. In this set of experiments, we
selected 20 Planetlab nodes, listed in Table II (also illustrated
on the geographical map in Figure 5), and established an
overlay network among them. We chose five sender-receiver
pairs from the overlay network and transmitted a UDP stream
from each sender to its corresponding receiver using each of
three different services: one without any resiliency services
(NR), one with topology-unaware multipath service (TUA),
and one with topology-aware multipath service (TA-i). For
the experiments presented here, the application generates data
packets of length 1KB and sends them with 30 msec intervals
for 3 minutes, which generates 6000 UDP packets for each
sample stream. The results presented are the average of seven
separate experimental runs.

We compare the performance of TUA and TA-i with NR in
terms of packet loss rate reduction, robustness improvement,
and overhead delay. The robustness improvement I for a
multipath data transmission is defined as the percentage of
fatal failure probability (the rate of simultaneous packet losses
on all paths) reduction due to the usage of the secondary path,
or, I = (Fs − Fd)/Fs, where Fs is the single path failure
probability of the primary path, and Fd is the double path
failure probability of both the primary and the secondary path.
Figure 9 shows a sample of the results for different test groups
(aggregated according to sender-receiver pairs) and the overall
results. Figure 9(a) demonstrates that compared with NR, both
TUA and TA-i can substantially reduce the average packet
loss rate. Figure 9(b) shows TA-i exhibits higher robustness
improvement than TUA, except in group 3. For group 4, the
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Fig. 9. MCON empirical results on PlanetLab.

TABLE II

LIST OF NODES IN THE MCON EXPERIMENTS.

Receiver

Receiver

Receiver

Receiver

Receiver

Sender

Sender

Sender

Sender

Sender

Sender/
Receiver

5

4

3

2

1

Pair
#

planetlab-3.cs.princeton.edu2

Canada

Canada

blast.cs.uwaterloo.ca9

South Koreacsplanetlab2.kaist.ac.kr8

Norwayplanetlab1.cs.uit.no7

Canadaplanetlab2.win.trlabs.ca6

planetlab2.arizona-gigapop.net5

Swedenplanetlab2.sics.se4

Australiaplanet-lab-2.csse.monash.edu.au3

US – CA

US – CA

US – OR

US – OR

US – NY

US – NJ

US – KY

US – OH

US – NC

US – MA

US – NJ

US – AZ

plab2.ee.ucla.edu1

Canadaplanetlab1.enel.ucalgary.ca0

LocationNode NameID

planetlab1.netlab.uky.edu18

planetlab3.uvic.ca19

planetlab1.rutgers.edu17

planetlab1.een.orst.edu16

planetlabone.ccs.neu.edu15

planet03.csc.ncsu.edu14

planetlab-2.eecs.cwru.edu13

planetlab3.comet.columbia.edu12

planetlab1.nbgisp.com11

plil-pa-4.hp1.hp.com10

average robustness improvement for TA-i is over 20 times
greater than that of TUA. Finally, while the use of the Service
Clouds infrastructure introduces additional computational and
communication overhead, Figure 9(c) shows that except for
group 1, the effect on data packet delay is relatively small,
when compared to NR.

These results demonstrate that the MCON service imple-
mented within the Service Clouds prototype, can improve
communication reliability in real Internet environments. More-
over, we emphasize that this improvement exists, even though

the implementation is not optimized. We simply plugged an
existing algorithm and rudimentary monitoring routines into
the prototype. While some anomalies appear in the results,
due to the dynamics of the Internet testbed, the overall
performance demonstrates the benefits of using these services.
Further, we note that the experiments described here were
conducted under “normal” network conditions; the most im-
portant benefit of the MCON service is likely to be in handling
situations where serious failures occur along the primary path,
and a high-quality secondary path is needed to deliver the data
stream to the destination.

VI. DYNAMIC PROXY CASE STUDY

In the third case study, we extend the Service Clouds
concept to support adaptive behavior in mobile computing.
In this model, depicted in Figure 10, mobile service clouds
(MSC) comprise collections of hosts that implement services
close to the wireless edge (e.g., a collection of nodes on
a university intranet or used by an ISP to enhance QoS at
wireless hotspots), while deep service clouds perform services
using an Internet overlay network (such as the PlanetLab wired
hosts). In a manner reminiscent of Domain Name Service,
the clouds in this federation cooperate to meet the needs of
applications. As a mobile user interacts with different service
clouds while moving about the wireless edge, services are
instantiated and reconfigured dynamically to meet changing
needs.

Basic Operation. Let us consider scenarios where a mobile
node on a wireless link wants to receive continuous data
streams (e.g., in an interactive video conference or in a live
video broadcast), despite changes in network connections and
failures of hardware and software components. In this case,
MSC needs to fulfill the following requirements. First, the
quality of the received stream must remain acceptable as the
wireless link experiences packet loss. Second, the video stream
must be transcoded to satisfy resource restrictions such as
wireless bandwidth and processing power at the mobile device.
Third, stream delivery should not be interrupted as conditions
on the service path change (e.g., when user movement causes
a wireless network domain change, or when a service node
fails).

At the wireless edge, services are often deployed on proxy
nodes, which operate on behalf of mobile hosts. Extensive
research has been conducted in the design of proxy services
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to support data transcoding, handle frequent disconnections,
and enhance the quality of wireless connections through
error-correction techniques [44]–[47]. Service Clouds provides
the infrastructure needed to quickly compose such services
and, at run time, to support their dynamic instantiation and
reconfiguration in response to changing conditions.

Implementation Details. For the prototype implementation
of Mobile Service Clouds, we introduced new components
but also reused several others. The components are depicted
in Figure 4. First, the “Coordination and Service Composi-
tion” manages the interaction between a mobile host and a
service cloud federation. Tasks include selection of a node
in a deep service cloud—using the Service Path Computation
overlay engine—called the primary proxy, which coordinates
composition and maintenance of the service path between two
end nodes. The Service Path Computation engine also finds a
suitable node in a mobile service cloud on which to deploy
the transient proxy services (FEC in our study). We also
required lower-level services to help identify potential proxies,
including an implementation of the RTT monitor that measures
round-trip time to an arbitrary node on demand, and the Path
RTT component that measures end-to-end RTT between two
nodes, whose communication is required to pass through an
intermediate node.

The Service Gateway component implements a simple pro-
tocol to accept and reply to service requests. Upon receiving
a request, it invokes the overlay engine to find a suitable
primary proxy. The Service Composer component implements
mechanisms for composing a service path. It uses the Relay
Manager to instantiate and configure a UDP relay on the
primary proxy and the transient proxy. The UDP relay on

the transient proxy enables the infrastructure to intercept the
stream and augment it with FEC encoding. Accordingly, as
soon as the FEC proxy service is instantiated, the Service
Monitor on the transient proxy begins sending heartbeat mes-
sages through a TCP channel toward the service monitor on
the primary proxy. The Recomposer component on the primary
proxy tracks activity of the service monitors. Upon detecting
a failure, it starts a self-healing operation that recomposes
the service path and restores communication. Additionally, a
monitor on the client middleware notifies the primary proxy
of changes, such as low-battery status or change of IP address,
and the recomposer reconfigures the service as necessary.

Experiments in Seamless Mobility. The particular scenario
we consider is a multicast-capable proxy that also supports
mobility. Here, a set of clients wish to receive a multimedia
stream (e.g, in video-conferencing or live video broadcast),
and the infrastructure fulfills the following requirements: first,
avoiding stream interruptions as a user relocates and connects
to a new network domain, gaining a new IP address; second,
high-quality reception regardless of the network connection.

Figure 11 shows the testbed, with 3 PlanetLab nodes in
a deep service cloud, two workstations in a mobile service
cloud on our university intranet, and two laptops with RTP-
based video players (listed in Table III). Subnet A is a wired
LAN and subnet B is wireless. The middleware software on
a client connects to a Service Gateway (N3) and requests the
video. The Primary Proxy (N1) creates a service path and
coordinates monitoring and automatic reconfiguration during
the communication. In this scenario, proxies at the wireless
edge deploy two functionalities: multicasting and forward
error correction (FEC). Since multicasting is not commonly
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TABLE III

LIST OF NODES IN THE DYNAMIC PROXY EXPERIMENT.

Video Streaming Servercopland.cse.msu.eduS

senslap11.egr.msu.eduE2

Wireless edge node

Wireless edge node

countbasey.cse.msu.eduE1

Candidate Primary Proxy
(chosen at run time)

planetlab3.uvic.caN3

Candidate Primary Proxyplanetslug1.cse.ucsc.eduN2

Service Gatewayplanetlab1.cs.unibo.itN1

User 2senslap12.cse.msu.eduM2

User 1 (mobile)senslap10.cse.msu.eduM1

available on the Internet, the stream is unicasted toward the
wireless edge, where the proxy multicasts it toward the clients.
To maintain the quality of the video, the proxy applies FEC
on the stream when a client detects high packet loss rate.
The infrastructure supports continuous streaming by dynamic
instantiation of proxies, while users roam along different
subnets.

Figure 11 depicts the following scenario: (1) User M1
on wired subnet A requests to watch the video from the
server; accordingly, the primary proxy creates a service path
comprising streaming relays and a unicast-to-multicast proxy
on E1. (2) User M2 requests the same video on wired subnet
A; since the video is already being multicasted in subnet A, no
extra configuration is necessary, except registering user M2 as
a service receiver and configuring M2 to receive the video.
(3) User M1 switches from wired connection on subnet A
to wireless connection on subnet B; the middleware on the
client detects change of IP address and notifies the primary
proxy. At this point, the primary proxy extends the service
path to make the stream available in subnet B via a proxy
on E2. Moreover, since the connection to E2 is wireless, if
packet loss rate becomes intolerable, the proxy performs FEC
encoding.

In this implementation, the stream comprises audio and
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Fig. 12. Audio packet loss rate at mobile node M1.

video packets sent over separate UDP sockets. For test pur-
poses we stream a prerecorded 30 frame-per-second motion-
JPEG video. Whenever the client in the wireless subnet detects
intolerable loss rate (20%), the proxy in the mobile cloud
FEC encodes the stream by breaking each packet to four
packets and sending them along with four extra parity packets.
Figure 12 plots the packet loss rates for audio at M1. We
have deployed FEC encoding only on the audio stream to bal-
ance QoS and bandwidth consumption. High-quality wireless
streaming requires more complicated adaptation techniques to
transcode the video, which is beyond the scope of this study.
As the plot shows, at second 5 the user switches from wired
subnet to the wireless one and the network loss rate raises
significantly. Accordingly, the system enables or disables FEC
encoding, based on the feedback from the client middleware,
and effectively mitigates the packet loss rate observed by the
application.

In [14], we describe the use of Service Clouds to con-
struct self-healing proxy services. The tests described above
demonstrate that the Service Clouds infrastructure can also be
used to construct adaptive service paths at the wireless edge.
The infrastructure provides self-management in the dynamic
instantiation and migration of proxy services. The resulting
system can adapt to dynamic changes in the environment of
mobile nodes, including changes in connectivity and channel
conditions, while maintaining a high quality of service on the
stream delivered to the user.

VII. CONCLUSIONS

In this paper, we described Service Clouds, an overlay-
based infrastructure for composing adaptive communication
services. We described three experimental case studies using
a Service Clouds prototype on the PlanetLab testbed: dynamic
selection, creation and use of TCP relays for bulk data
transfer; dynamic construction and use of secondary paths
for highly resilient streaming; and dynamic instantiation and
reconfiguration of proxies at the wireless edge to support
mobile computing. These case studies demonstrate the use-
fulness of the Service Clouds infrastructure in deploying new
services, and the performance results reveal the benefits of the
services themselves. The Service Clouds model facilitates the
engineering and deployment of complex and robust services
without requiring changes or reconfiguration to the underlying
networks. Specifically, by providing a rich and extensible
overlay-based software infrastructure, Service Clouds enables
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developers to quickly and add new capabilities to the Internet,
at very low cost.
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Further Information. Related publications on the RAPID-
ware project, as well as a download of the Service Clouds
prototype, can be found at the following website:
http://www.cse.msu.edu/rapidware.
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