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Abstract. This paper describes TRAP/J, a software tool that enables
new adaptable behavior to be added to existing Java applications trans-
parently (that is, without modifying the application source code and
without extending the JVM). The generation process combines behav-
ioral reflection and aspect-oriented programming to achieve this goal.
Specifically, TRAP/J enables the developer to select, at compile time,
a subset of classes in the existing program that are to be adaptable at
run time. TRAP/J then generates specific aspects and reflective classes
associated with the selected classes, producing an adapt-ready program.
As the program executes, new behavior can be introduced via interfaces
to the adaptable classes. A case study is presented in which TRAP/J
is used to introduce adaptive behavior to an existing audio-streaming
application, enabling it to operate effectively in a lossy wireless network
by detecting and responding to changing network conditions.

Keywords: generator framework, transparent adaptation, dynamic re-
configuration, aspect-oriented programming, behavioral reflection, mid-
dleware, mobile computing, quality-of-service.

1 Introduction

As the computing and communication infrastructure continues to expand and
diversify, developing software that can respond to changing conditions is be-
coming increasingly important. A notable example is the advent of the “Mobile
Internet,” where software on handheld and wearable computing devices must
adapt to several potentially conflicting concerns, such as quality-of-service, se-
curity and energy consumption. Unfortunately, many distributed applications
being ported to mobile computing environments were not designed to adapt to
changing conditions involving such concerns. We say that a program is adaptable
if it contains facilities for selecting and incorporating new behavior at run time.
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Adaptable applications can be difficult to develop and maintain. In partic-
ular, adaptive code associated with concerns such as quality of service tends to
crosscut the conventional “functional decomposition” of an application. There-
fore, manually attempting to modify an existing program to support adaptation
can be tedious and error-prone, and usually produces adaptive code that is tan-
gled throughout the functional code of the application.

In this work, we investigate how to transparently enhance existing applica-
tions so that they can be adapted to cross-cutting concerns at run time. By
transparent, we mean that the new behavior is added without modifying the
application source code and without extending the JVM. This study is part of
RAPIDware, an ONR-sponsored project that addresses the design of adaptable
software for network-centric battlefield environments and for protecting critical
infrastructures from component failures and cyber-attack. However, we also ex-
pect the resulting software technologies to apply to more general mobile Internet
applications, where transparency is increasingly important.

The predominant mechanism for implementing adaptation in object-oriented
software is behavioral reflection [1,2], which can be used to modify how an object
responds to a message. In recent years, behavioral reflection has been used to
support adaptation to a variety of different concerns, including quality of ser-
vice and fault tolerance. Unfortunately, programs that use behavioral reflection
typically incur additional overhead, since in some cases every message sent to
an object must be intercepted and possibly redirected. To improve efficiency, a
developer should be able to selectively introduce behavioral reflection only where
needed to support the desired adaptations.

In earlier work [3], we showed how to use aspect-oriented programming to
selectively introduce behavioral reflection into an existing program. However, the
reflection used there is ad hoc in that the developer must invent the reflective
mechanisms and supporting infrastructure for adaptation, and must create an
aspect that weaves this infrastructure into the existing program.

This paper describes transparent reflective aspect programming (TRAP),
which combines behavioral reflection [1] and aspect-oriented programming [4] to
transform extant programs into adapt-ready programs automatically and trans-
parently. TRAP supports general behavioral reflection by automatically gen-
erating wrapper classes and meta-classes from selected classes in an applica-
tion. TRAP then generates aspects that replace instantiations of selected classes
with instantiations of their corresponding wrapper classes. This two-pronged,
automated approach enables selective behavioral reflection with minimal ex-
ecution overhead. To validate these ideas, we developed TRAP/J, which in-
stantiates TRAP for Java programs. In an earlier poster summary [5], we dis-
cussed the use of TRAP/J in wireless network applications. In this paper, we
focus on the operation of TRAP/J and describe the details of the techniques
used to generate adapt-ready programs and their reconfiguration at run time.
TRAP/J source code is available for download at the RAPIDware homepage
(www.cse.msu.edu/rapidware).
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The remainder of this paper is organized as follows. Section 2 presents back-
ground information, categorizes research projects that address adaptability in
distributed applications, and discusses how TRAP relates to other approaches.
Section 3 describes the operation of the TRAP/J prototype. Section 4 presents
a case study in which we used TRAP/J to augment an existing audio-streaming
application with adaptive behavior, enabling it to operate more effectively across
wireless networks. Finally, Section 5 summarizes the paper and discusses future
investigations.

2 Background and Related Work

Many approaches to constructing adaptable software, including TRAP/J, use
behavioral reflection, aspect-oriented programming, or a combination of both. In
this section, we briefly review these technologies in the context of Java, followed
by a discussion of projects related to TRAP/J.

2.1 Behavioral Reflection and Java

According to Maes [1], behavioral or computational reflection refers to the ability
of a program to reason about, and possibly alter, its own behavior. Reflection
enables a system to “open up” its implementation details for such analysis with-
out compromising portability or revealing parts unnecessarily [2]. As depicted
in Figure 1, a reflective system (represented as base-level objects) has a self
representation (represented as meta-level objects) that is causally connected to
the system, meaning that any modifications either to the system or to its rep-
resentation are reflected in the other. A meta-object protocol (MOP) is a set of
meta-level interfaces that enables “systematic” (as opposed to ad hoc) inspection
and modification of the base-level objects [2].

Base Level

Meta LevelMeta-Object Protocols

Base-Level Objects

Meta-Level Objects

Fig. 1. Base- and meta-level objects.

Although Java supports structural reflection, which provides information
about objects and classes at run time, it does not support behavioral reflec-
tion, which is needed to dynamically change the interpretation of an application.
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TRAP/J and several other projects [6,3,7,8,9,10,11,12,13,14,15,16], discussed
later, extend Java with behavioral reflection.

2.2 Aspect-Oriented Programming and Java

Many programming aspects, such as quality of service, fault tolerance, and se-
curity, cannot be localized in one object or procedure [4]. Typically, the im-
plementation of such an aspect is scattered throughout a program, resulting in
tangled code that is difficult to develop and maintain. Aspect-oriented program-
ming (AOP) [4] addresses this problem by promoting separation of concerns at
development time. Later, at compile or run time, an aspect weaver is used to
weave different aspects of the program together to form a complete program
with the desired behavior. AspectJ [17], used in TRAP/J, is a widely used AOP
extension to Java. A class-like language element, called an aspect, is used to
modularize a cross-cutting concern. An aspect typically consists of “pointcuts”
and “advice.” A pointcut defines a set of “join points” in a program, and ad-
vice is code that executes at each join point defined in a pointcut. As described
in Section 4, TRAP/J uses aspects to provide the necessary “hooks” to realize
run-time recomposition of the application.

2.3 Related Work

Like TRAP/J, many approaches to constructing adaptable applications involve
intercepting interactions among objects in functional code, and redirecting them
to adaptive code. We identify four categories of related work.

The first category includes middleware extensions to support adaptive be-
havior. Since the traditional role of middleware is to hide resource distribution
and platform heterogeneity from the business logic of applications, it is a logical
place to put adaptive behavior related to other cross-cutting concerns, such as
quality-of-service, energy management, fault tolerance, and security. Examples
include TAO [18], DynamicTAO [19], ZEN [20], Open ORB [21], QuO [22], Or-
bix [23], ORBacus [24], Squirrel [25], IRL [26], Eternal [27], and ACT [28]. In
addition to providing transparency to the functional code, some approaches pro-
vide transparency to the distribution middleware code as well. For example, IRL
and ACT use CORBA portable interceptors [29] to intercept CORBA messages
transparently, and Eternal intercepts calls to the TCP layer using the Linux
/proc file system. Adaptive middleware approaches provide an effective means to
support adaptability, but they are applicable only to programs that are written
for a specific middleware platform such as CORBA, Java RMI, or DCOM/.NET.

In the second category, programming language extensions are introduced to
facilitate the development of adaptive code. Extensions to Java include Open
Java [11], R-Java [12], Handi-Wrap [16], PCL [30], and Adaptive Java [6]. In
general, approaches in this category significantly improve the process for devel-
oping and maintaining adaptable programs by hiding the details of interceptions
and redirections from the application developer. To add adaptive behavior to an
existing program, however, a developer is required to modify the program source
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code directly. In other words, this approach is well suited to the development
of new adaptable applications, but cannot be applied transparently to existing
ones.

The third category provides such transparency by extending virtual machines
with facilities to intercept and redirect interactions in the functional code. Ex-
amples of extensions to the Java virtual machine (JVM) include Iguana/J [8],
metaXa [9] (previously called Meta Java), Guaraná [13], PROSE [31], and R-
Java [12]. These projects employ a variety of techniques. For example, Guaraná
extends the JVM by directly modifying the Kaffe open source JVM [32], whereas
PROSE and Iguana/J extend the standard JVM by weaving aspects, without
modifying the JVM source code. In general, approaches in this category are very
flexible with respect to dynamic reconfiguration, in that new code can be intro-
duced to the application at run time. Iguana/J supports unanticipated adapta-
tion at run time by allowing new MOPs to be associated with classes and objects
of a running application, without the need for any pre- or post-processing of the
application code at compile or load time. However, while these solutions provide
transparency with respect to the application source code, extensions to the JVM
might reduce their portability.

Finally, the fourth category includes approaches that transparently augment
the application code itself with facilities for interception and redirection. Promi-
nent examples include generative programming, generic programming, feature-
oriented development, and AOP [33, 34]. Among these approaches, AOP, par-
ticularly when combined with computational reflection, has been applied to a
wide variety of systems. Example projects include AspectJ [17], Hyper/J [35],
DemeterJ (DJ) [36], JAC [37], Composition Filters [38], ARCAD [7], Reflex [15],
Kava [14], Dalang [39], Javassist [40]. Most of these systems are designed to work
in two phases. In the first phase, interception hooks are woven into the applica-
tion code at either compile time, using a pre- or post-processor, or at load time,
using a specialized class loader. For example, AspectJ enables aspect weaving at
compile time. In contrast, Reflex and Kava use bytecode rewriting at load time
to support transparent generation of adaptable programs. In the second phase,
intercepted operations are forwarded to adaptive code using reflection.

TRAP/J belongs to this last category and employs a two-phase approach
to adaptation. TRAP/J is completely transparent with respect to the original
application source code and does not require an extended JVM. By support-
ing compile-time selection of classes for possible later adaptation, TRAP/J en-
ables the developer to balance flexibility and efficiency. TRAP/J is most similar
to the RNTL ARCAD project [7]. ARCAD also uses AspectJ at compile time
and behavioral reflection at run time. However, the partial behavioral reflection
provided in TRAP/J is more fine-grained and efficient than that of ARCAD.
Specifically, TRAP/J supports method invocation reflection, enabling an arbi-
trary subset of an object’s methods to be selected for interception and reification;
ARCAD does not support such fine-grained reflection. The ability of TRAP/J
to avoid unnecessary reifications is due to its multi-layer architecture, described
in the next section. Reflex [15] also provides a partial behavioral reflection us-
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ing a two-phase approach. However, unlike TRAP/J and ARCAD, Reflex uses
load time byte code rewriting to weave interception hooks into existing Java
programs, resulting in additional overhead. On the other hand, Reflex provides
a comprehensive approach to partial behavioral reflection, including selection
of classes and/or objects to be reflective, selection of operations to be reified
(e.g., message send, message receive, and object creation), and selection of spe-
cific operation occurrences to be reified. TRAP/J supports reflection of both
classes and objects, but currently supports reification of only send message op-
erations. TRAP/J supports automatic activation/deactivation of reflection, that
is, there is no need for explicit calls to activate/deactivate a specific reification
at run time. We argue this feature simplifies the use of TRAP/J relative to other
approaches.

3 TRAP/J Operation

The TRAP/J prototype leverages Java structural reflection both in its code
generators and in its run-time redirection of messages. For the aspect syntax
and the aspect weaver, we adopted AspectJ [17].

3.1 Overview

TRAP/J operates in two phases. The first phase takes place at compile time and
converts an existing application into an application that is adapt-ready [3] with
respect to one or more concerns. We say that a program is adapt-ready if its
behavior can be managed at run time. Figure 2 shows a high-level representation
of TRAP/J operation at compile time. The application source code is compiled
using the Java compiler (javac), and the compiled classes and a file containing
a list of class names are input to an Aspect Generator and a Reflective Class
Generator. For each class name in the list, these generators produce one aspect,
one wrapper-level class, and one meta-level class. Next, the generated aspects
and reflective classes, along with the original application source code, are passed
to the AspectJ compiler (ajc), which weaves the generated and original source
code together to produce the adapt-ready application.

The second phase occurs at run time. New behavior can be introduced to
the adapt-ready application using the wrapper- and meta-level classes (hence-
forth referred to as the adaptation infrastructure). We use the term composer
to refer to the entity that actually uses this adaptation infrastructure to adapt
the adapt-ready application. The composer might be a human—a software devel-
oper or an administrator interacting with a running program through a graphical
user interface—or a piece of software—a dynamic aspect weaver, a component
loader, a runtime system, or a metaobject. In the current prototype of TRAP/J,
the composer is an administrator interacting with the adapt-ready application
through graphical user interfaces, called administrative consoles. However, our
ongoing investigations address use of TRAP/J by software-based composers.
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Fig. 2. TRAP/J operation at compile time.

Figure 3 illustrates the interaction among the Java Virtual Machine (JVM)
and the administrative consoles (GUI). First, the adapt-ready application is
loaded by the JVM. At the time each metaobject is instantiated, it registers itself
with the Java rmiregistry using a unique ID. Next, if an adaptation is required,
the composer dynamically adds new code to the adapt-ready application at
run time, using Java RMI to interact with the metaobjects. As part of the
behavioral reflection provided in the adaptation infrastructure, a meta-object
protocol (MOP) is supported in TRAP/J that allows interception and reification
of method invocations targeted to objects of the classes selected at compile time
to be adaptable.

3.2 TRAP/J Run-Time Model

To illustrate the operation of TRAP/J, let us consider a simple application
comprising two classes, Service and Client, and three objects, (client, s1, and s2).
Figure 4 depicts a simple run-time class graph for this application that is compli-
ant with the run-time architecture of most class-based object-oriented languages.
The class library contains Service and Client classes, and the heap contains client,
s1, and s2 objects. The “instantiates” relationship among objects and their classes
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Adapt-Ready App. New Code

TRAP/JTRAP/J

Java Virtual Machine (java)

Adaptation-Specific
Interactive 

Administrative
Consoles

TRAP
Interactive

Administrative
Consoles

Control FlowData Flow

Fig. 3. TRAP/J run-time support.

Client Class

Service Class

client

s1 s2

Class LibraryClass Library HeapHeap

instantiates

uses

Fig. 4. A simplified run-time class graph.

are shown using dashed arrows, and the “uses” relationships among objects are
depicted with solid arrows.

Figure 5 illustrates a layered run-time class graph model for this application.
Note that the base-level layer depicted in Figure 5 is equivalent to the class graph
illustrated in Figure 4. For simplicity, only the “uses” relationships are repre-
sented in Figure 5. The wrapper level contains the generated wrapper classes for
the selected subset of base-level classes and their corresponding instances. The
base-level client objects use these wrapper-level instances instead of base-level
service objects. As shown, s1 and s2 no longer refer to objects of the type Service,
but instead refer to objects of type ServiceWrapper class. The meta level contains
the generated meta-level classes corresponding to each selected base-level class
and their corresponding instances. Each wrapper class has exactly one associated
meta-level class, and associated with each wrapper object can be at most one
metaobject. Note that the behavior of each object in response to each message is
dynamically programmable, using the generic method execution MOP provided
in TRAP/J.

Finally, the delegate level contains adaptive code that can dynamically over-
ride base-level methods that are wrapped by the wrapper classes. Adaptive code
is introduced into TRAP/J using delegate classes. A delegate class can contain
implementation for an arbitrary collection of base-level methods of the wrapped
classes, enabling the localization of a cross-cutting concern in a delegate class. A
composer can program metaobjects dynamically to redirect messages destined
originally to base-level methods to their corresponding implementations in del-
egate classes. Each metaobject can use one or more delegate instances, enabling
different cross-cutting concerns to be handled by different delegate instances.
Moreover, delegates can be shared among different metaobjects, effectively pro-
viding a means to support dynamic aspects.

For example, let us assume that we want to adapt the behavior of a socket
object (instantiated from a Java socket class such as the Java.net.MulticastSocket
class) in an existing Java program at run time. First, at compile time, we use
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Fig. 5. TRAP layered run-time model.

TRAP/J generators to generate the wrapper and metaobject classes associated
with the socket class. Next, at run time, a composer can program the metaobject
associated with the socket object to support dynamic reconfiguration. Program-
ming the metaobject can be done by introducing a delegate class to the metaob-
ject at run time. The metaobject then loads the delegate class, instantiates an
object of the delegate class, intercepts all subsequent messages originally tar-
geted to the socket object, and forwards the intercepted messages to the delegate
object. Let us assume that the delegate object provides a new implementation
for the send(. . . ) method of the socket class. In this case, all subsequent mes-
sages to the send(. . . ) method are handled by the delegate object and the other
messages are handled by the original socket object. Alternatively, the delegate
object could modify the intercepted messages and then forward them back to
the socket object, resulting in a new behavior. Note that TRAP/J allows the
composer to remove delegates at runtime, bringing the object behavior back to
its original implementation. Thus, TRAP/J is a non-invasive [41] approach to
dynamic adaptation.
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4 Case Study

To illustrate the use of TRAP/J, we describe a detailed example in the con-
text of a specific application. The example application is a Java program for
streaming live audio over a network [42]. Although the original application was
developed for wired networks, we used TRAP/J to make it adaptable to wireless
environments, where the packet loss rate is dynamic and location dependent.
Specifically, we use TRAP/J to weave in an adaptable socket class, whose be-
havior can be adapted at run time to compensate the packet loss in wireless
networks.

4.1 Example Application

The Audio-Streaming Application (ASA) [42] is designed to stream interactive
audio from a microphone at one network node to multiple receiving nodes. The
program is designed to satisfy a real-time constraint, specifically, the delay be-
tween audio recording and playing should be less than 100 milliseconds.

Figure 6 illustrates the operation of ASA in a wireless environment: a lap-
top workstation transmits the audio stream to multiple wireless iPAQs over an
802.11b (11Mbps) ad-hoc wireless local area network (WLAN). Unlike wired net-
works, wireless environments factors such as signal strength, interference, and
antenna alignment produce dynamic and location-dependent packet losses. In
current WLANs, these problems affect multicast connections more than unicast
connections, since the 802.11b MAC layer does not provide link-level acknowl-
edgements for multicast frames.

Sender

Receiver

Receiver

Receiver
Ad-Hoc 
Wireless 
Network

Audio Stream Path

Fig. 6. Audio streaming in a wireless LAN.

Figure 7 illustrates the strategy we used to enable ASA to adapt to variable
channel conditions in wireless networks. Specifically, we used TRAP/J to modify
ASA transparently so that it uses MetaSockets instead of Java multicast sockets.
MetaSockets [42] are adaptable communication components created from existing
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Java socket classes, but their structure and behavior can be adapted at run time
in response to external stimuli (e.g., dynamic wireless channel conditions). In an
earlier study, we implemented MetaSockets in Adaptive Java [6], which extends
Java with new constructs and keywords to facilitate the design of adaptable
components. In this study, we use TRAP/J to replace normal Java sockets with
MetaSockets, transparently to the ASA code.

Wireless Network

Sender

Trapped 
Socket

Java 
Socket

JVM on 
Windows XP

Receiver

Trapped 
Socket

Java 
Socket

JVM on 
Familiar Linux

Base Level

Meta Level

Java.net package

Java Virtual Machine

Audio Packet Path

FEC
Encoder

FEC
Decoder

x
xx
x

1  2  3 4 1  2  3 4

Packet Lostx

Fig. 7. Adaptation strategy.

The particular MetaSocket adaptation used here is the dynamic insertion and
removal of forward-error correction (FEC) filters [43]. Specifically, an FEC en-
coder filter can be inserted and removed dynamically at the sending MetaSocket,
in synchronization with an FEC decoder being inserted and removed at each re-
ceiving MetaSocket. Use of FEC under high packet loss conditions reduces the
packet loss rate as observed by the application. Under low packet loss conditions,
however, FEC should be removed so as not to waste bandwidth on redundant
data.

4.2 Making ASA Adapt-Ready

Figure 8 shows excerpted code for the original Sender class. The main method
creates a new instance of the Sender class and calls its run method. The run
method first creates an instance of AudioRecorder and MulticastSocket and assigns
them to the instance variables, ar and ms, respectively. The multicast socket (ms)
is used to send the audio datagram packets to the receiver applications. Next,
the run method executes an infinite loop that, for each iteration, reads live audio
data and transmits the data via the mulitcast socket.

Compile-Time Actions. The Sender.java file and a file containing only the
java.net.MulticastSocket class name are input to the TRAP/J aspect and reflective
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1 public class Sender {
2 AudioRecorder ar;
3 MulticastSocket ms;
4 public void run() { . . .
5 ar = new AudioRecorder(. . . );
6 ms = new MulticastSocket();
7 byte[] buf = new byte[500];
8 DatagramPacket packetToSend =
9 new DatagramPacket(buf, buf.length,

10 target address, target port);
11 while (!EndOfStream) {
12 ar.read(buf, 0, 500);
13 ms.send(packetToSend);
14 } // end while . . .
15 }
16 } // end Sender

Fig. 8. Excerpted code for the Sender class.

generators. The TRAP/J class generators produce one aspect file, named Absorb-
ing MulticastSocket.aj (for base level), and two reflective classes, named Wrapper-
Level MulticastSocket.java (wrapper level) and MetaLevel MulticastSocket.java (meta
level). Next, the generated files and the original application code are compiled
using the AspectJ compiler (ajc) to produce the adapt-ready program. We note
that new versions of ajc accept .class files instead of .java files [44], which implies
that TRAP/J does not even need the original source code in order to make the
application adapt-ready.

Generated Aspect. The aspect generated by TRAP/J defines an initial-
ization pointcut and the corresponding around advice for each public constructor
of the MulticastSocket class. An around advice causes an instance of the generated
wrapper class, instead of an instance of MulticastSocket, to serve the sender. Fig-
ure 9 shows excerpted code for the generated Absorbing MulticastSocket aspect.
This figure shows the “initialization” pointcut (lines 2-3) and its corresponding
advice (lines 5-9) for the MulticastSocket constructor used in the Sender class. Re-
ferring back to the layered class graph in Figure 5, the sender (client) uses an
instance of the wrapper class instead of the base class. In addition to handling
public constructors, TRAP/J also defines a pointcut and an around advice to in-
tercept all public final and public static methods.

Generated Wrapper-Level Class. Figure 10 shows excerpted code for
the WrapperLevel MulticastSocket class, the generated wrapper class for the Multi-
castSocket. This wrapper class extends the MulticastSocket class. All the public
constructors are overridden by passing the parameters to the super class (base-
level class) (lines 4-5). Also, all the public instance methods are overridden (lines
7-22).
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1 public aspect Absorbing MulticastSocket {
2 pointcut MulticastSocket() :
3 call(java.net.MulticastSocket.new()) && . . . ;
4
5 java.net.MulticastSocket around()
6 throws java.net.SocketException
7 : MulticastSocket() {
8 return new WrapperLevel MulticastSocket();
9 }

10
11 pointcut MulticastSocket int(int p0) :
12 call(java.net.MulticastSocket.new(int))
13 && args(p0) && . . . ;
14
15 // Pointcuts and advices around the final public methods
16 pointcut getClass(WrapperLevel MulticastSocket
17 targetObj) :
18 . . . ;
19 }

Fig. 9. Excerpted generated aspect code.

To better explain how the generated code works, let us consider the details
of how the send method is overridden, as shown in Figure 10. The generated
send method first checks if the metaObject variable, referring to the metaobject
corresponding to this wrapper-level object, is null (line 9). If so, then the base-
level (super) method is called, as if the base-level method had been invoked
directly by another object, such as an instance of sender. Otherwise, a message
containing the context information is dynamically created using Java reflection
and passed to the metaobject (metaObject) (lines 11-21). It might be the case
that a metaobject may need to call one or more of the base-level methods. To
support such cases, which we suspect might be very common, the wrapper-level
class provides access to the base-level methods through the special wrapper-level
methods whose names match the base-level method names, but with an “Orig ”
prefix.

Generated Meta-Level Class. Figure 11 shows excerpted code for Meta-
Level MulticastSocket, the generated meta-level class for MulticastSocket. This
class keeps an instance variable, delegates, which is of type Vector and refers to
all the delegate objects associated with a metaobject that implements one or
more of the base-level methods. To support dynamic adaptation of the static
methods, a meta-level class provides the staticDelegates instance variable and
its corresponding insertion and removal methods (not shown). Delegate classes
introduce new code to applications at run time by overriding a collection of
base-level methods selected from one or more of the adaptable base-level classes.
An adaptable base-level class has corresponding wrapper- and meta-level classes,
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1 public class WrapperLevel MulticastSocket extends
2 MulticastSocket implements WrapperLevel Interface {
3
4 // Overriding the base-level constructors.
5 public WrapperLevel MulticastSocket() throws SocketException { super(); }
6
7 // Overriding the base-level methods.
8 public void send(java.net.DatagramPacket p0) throws IOException {
9 if(metaObject == null) { super.send(p0); return; }

10 . . .
11 Class[] paramType = new Class[1];
12 paramType[0] = java.net.DatagramPacket.class;
13 Method method = WrapperLevel MulticastSocket.
14 class.getDeclaredMethod(“send”, paramType);
15
16 Object[] tempArgs = new Object[1]; tempArgs[0] = p0;
17 ChangeableBoolean isReplyReady = new ChangeableBoolean(false);
18
19 try { metaObject.invokeMetaMethod(method, tempArgs, . . . ); }
20 catch (java.io.IOException e) { throw e; }
21 catch (MetaMethodIsNotAvailable e) {}
22 }
23 }

Fig. 10. Excerpted generated wrapper code.

generated by TRAP/J at compile time. metaobjects can be programmed dynam-
ically by inserting or removing delegate objects at run time. To enable a user
to change the behavior of a metaobject dynamically, the meta-level class im-
plements the DelegateManagement interface, which in turn extends the Java RMI
Remote interface (lines 5-10). A composer can remotely “program” a metaobject
through Java RMI. The insertDelegate and removeDelegate methods are developed
for this purpose.

The meta-object protocol developed for meta-level classes defines only one
method, invokeMetaMethod, which first checks if any delegate is associated with
this metaobject (lines 12-22). If not, then a MetaMethodIsNotAvailable exception
is thrown, which eventually causes the wrapper method to call the base-level
method as described before. Alternatively, if one or more delegates is available,
then the first delegate that overrides the method is selected, a new method on
the delegate is created using Java reflection, and the method is invoked.

4.3 Audio Streaming Experiment

To evaluate the TRAP/J-enhanced audio application, we conducted experiments
using the configuration illustrated in Figure 6. Figure 12 shows a sample of the
results. An experiment was conducted with an adapt-ready version of ASA. A
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1 public class MetaLevel MulticastSocket
2 extends UnicastRemoteObject
3 implements MetaLevel Interface,DelegateManagement{
4
5 private Vector delegates = new Vector();
6 public synchronized void insertDelegate
7 (int i, String delegateClassName)
8 throws RemoteException { . . . }
9 public synchronized void removeDelegate(int i)

10 throws RemoteException { . . . }
11
12 public synchronized Object invokeMetaMethod
13 (Method method, Object[] args,
14 ChangeableBoolean isReplyReady) throws Throwable{
15 // Finding a delegate that implements this method
16 . . .
17 if(!delegateFound) // No meta-level method available
18 throw new MetaMethodIsNotAvailable();
19 else
20 return newMethod.invoke(delegates.get(i-1),
21 tempArgs);
22 } }

Fig. 11. Excerpted generated metaobject code.

user holding a receiving iPAQ is walking within the wireless cell, receiving and
playing a live audio stream. For the first 120 seconds, the program has no FEC
capability. At 120 seconds, the user walks away from the sender and enters an
area with loss rate around 30%. The adaptable application detects the high
loss rate and inserts a (4,2) FEC filter, which greatly reduces the packet loss
rate as observed by the application, and improves the quality of the audio as
heard by the user. At 240 seconds, the user approaches the sender, where the
network loss rate is again low. The adaptable application detects the improved
transmission and removes the FEC filters, avoiding the waste of bandwidth with
redundant packets. Again at 360 seconds, the user walks away from the sender,
resulting in the insertion of FEC filters. This experiment demonstrates the utility
of TRAP/J to transparently and automatically enhance an existing application
with new adaptive behavior.

5 Summary and Future Investigations

In this paper, we described the design and operation of TRAP/J, a genera-
tor framework that enables dynamic reconfiguration of Java applications with-
out modifying the application source code and without extending the JVM.
TRAP/J operates in two phases. At compile time, TRAP/J produces an adapt-
ready version of the application. Later at run time, TRAP/J enables adding new
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Fig. 12. The effect of using FEC filters to adapt ASA to high loss rates on a wireless
network.

behavior to the adapt-ready application dynamically. A case study in a wireless
network environment was used to demonstrate the operation and effectiveness
of TRAP/J.

Our ongoing investigations involving TRAP address several issues. First, in
the current TRAP/J prototype, we addressed the reification of only method in-
vocations at the base level. We are planning to extend the TRAP/J reflective
model to include reification of other base-level operations, including object cre-
ation, object deletion, method call (send), method dispatch, field read, and field
write. Second, the concept used to develop TRAP/J does not depend to the Java
Language. Currently, we are developing a TRAP/C++ prototype that enables
dynamic reconfiguration of existing C++ programs. For generating adapt-ready
programs in TRAP/C++, instead of using an aspect weaver such as AspectJ,
we employ a compile-time MOP using Open C++ [45]. Third, TRAP can be
used to support autonomic computing [46], where the behavior of manageable
elements of a program can be externally controlled by software-based composers.
Specifically, TRAP can be used to wrap existing applications transparently to
generate such manageable elements. Fourth, the TRAP approach can be used
for transparent and adaptive auditing of software. The foundation of an effective
covert auditing system is the ability to modify the behavior of software compo-
nents at run time, namely, to insert and remove software sensors (and possibly
actuators) in active components, while prohibiting arbitrary unauthorized (and
possibly malicious) code from loading and executing as insider. Currently, we
are investigating this application of TRAP for critical infrastructure protection.
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Further Information

A number of related papers of the Software Engineering and Network Systems
Laboratory can be found at: http://www.cse.msu.edu/sens. Papers and other
results related to the RAPIDware project, including a download of the TRAP/J
source code, are available at http://www.cse.msu.edu/rapidware.
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IC-98-32, Universidade Estadual de Campinas (1998)

14. Welch, I., Stroud, R.J.: Kava - A Reflective Java Based on Bytecode Rewriting. In
Cazzola, W., Stroud, R.J., Tisato, F., eds.: Reflection and Software Engineering.
Lecture Notes in Computer Science 1826. Springer-Verlag, Heidelberg, Germany
(2000) 157–169
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